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Abstract

Let S, T and A be self-maps on a metric space (X, d) satisfying the inclusions
S(X) ⊂ A(X) and T (X) ⊂ A(X) and the inequality

d(Sx, T y) ≤ φ
(

max
{
d(Ax, Ay), d(Sx, Ax), d(T y, Ay),

d(T y,Ax)+d(Sx,Ay)

2

})
(1)

for all x, y ∈ X, where φ is an upper semicontinuous contractive modulus with
φ(0) = 0 and φ(t) < t whenever t > 0. Singh and Mishra (1997) proved that if any
one of the subspaces S(X), T (X) and A(X) of X is complete, then S, T and A will
have a common coincidence point. Further if the pairs (A, S) and (A, T ) commute
at their coincidence points, that is (A, S) and (A, T ) are weakly compatible pairs,
then S, T and A will have a unique common fixed point.

The present paper extends the above result to four self-maps under weaker form
of the inequality (1). It can also be shown that the weak compatibility of either
of the pairs (A, S) and (A, T ) is sufficient to obtain a common fixed point for the
three maps.
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1. Introduction

In this paper, (X, d) denotes a metric space, Sx the image of x ∈ X under a self-map S

on X and SA, the composition of self-maps S and A on X.

Definition 1.1. Self-maps S and A on X are compatible [1] if

lim
n→∞ d(SAxn, ASxn) = 0 (1.1)

whenever 〈xn〉∞n=1 ⊂ X is such that

lim
n→∞ Sxn = lim

n→∞ Axn = p for some p ∈ X. (1.2)

If xn = x for all n, compatibility of (S, A) implies that SAx = ASx whenever Ax = Sx.
Self-maps which commute at their coincidence points are weakly compatible [2].

Definition 1.2. Let φ ≡ φ : [0, ∞) → [0, ∞) be a contractive moduluswith the choice
φ(0) = 0 and φ(t) < t for t > 0. A contractive modulus φ is upper semicontinuous
(abbriviated as usc) if and only if

lim sup
n→∞

φ(tn) ≤ φ(t0)

for all t = t0 and all
〈tn〉 ∞

n=1 ⊂ [0, ∞)

with
lim

n→∞ tn = t0.

Using these ideas, Singh and Mishra [3] proved the following result:

Theorem 1.3. Let S, T and A be self-maps on X satisfying the inclusions

S(X) ⊂ A(X) and T (X) ⊂ A(X) (1.3)

and the contractive-type condition

d(Sx, T y) ≤ φ

(
max

{
d(Ax, Ay), d(Sx, Ax), d(T y, Ay),

d(T y,Ax)+d(Sx,Ay)
2

})
for all x, y ∈ X, (1.4)

where ψ is an usc contractive modulus. Suppose that

(a) one of S(X), T (X) and A(X) is a complete subspace of X,

(b) (A, S) and (A, T ) are weakly compatible.

Then the three maps S, T and A will have a unique common fixed point.

The present paper extends Theorem 1.3 to two pairs of weakly compatible self-maps
under weaker form of the inequality (1.4). As a particular case for three self-maps A, S

and T , we obtain its corollary which reveals that the weak compatibility of either of the
pairs (A, S) and (A, T ) is sufficient to obtain a common fixed point for the three maps.
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2. Main Result

We prove the following result

Theorem 2.1. Let A,B, S and T be self-maps on X satisfying the inclusions

S(X) ⊂ A(X) and T (X) ⊂ B(X) (2.1)

and the inequality

d(Sx, T y) ≤φ

(
max

{
d(Ax, By), d(Ax, Sx), d(By, T y),

d(T y, Ax) + d(Sx, By)

2
,

1

4
· d(Ax, T y) + d(Ax, Sx) + d(Sx, By)

1 + d(By, T y)d(Sx, By)d(Ax, T y)
,

1

4
· d(Ax, T y) + d(Sx, By) + d(By, T y)

1 + d(Ax, T y)d(Ax, Sx)d(Sx, By)

})

f or all x, y ∈ X, (2.2)

where φ is usc contractive modulus. Suppose that any one of the subspaces S(X), T (X)

and A(X)
⋃

B(X) of X is complete. Then S, T,Aand B will have a common coincidence
point. Further if (A, S) and (B, T ) are weakly compatible, then S, T, A and B will have
a unique common fixed point.

Proof. Let x0 ∈ X be arbitrary. Using the inclusions (2.1), we can inductively choose
points x1, x2, . . . , xn, . . . in X such that

y2n−1 = Sx2n−2 = Bx2n−1, y2n = T x2n−1 = Ax2n, for n = 1, 2, 3, ... (2.3)

We first show that

lim
n→∞ d(yn, yn+1) = 0. (2.4)
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Now wirting x = x2n and y = x2n−1 in (2.2), we see that

d(y2n+1, y2n) = d(Sx2n, T x2n−1)

≤ φ
(

max
{
d(Ax2n, Bx2n−1), d(Ax2n, Sx2n), d(Bx2n−1, T x2n−1),

d(T x2n−1, Ax2n) + d(Sx2n, Bx2n−1)

2
,

d(Ax2n, T x2n−1) + d(Ax2n, Sx2n) + d(Sx2n, Bx2n−1)

4[1 + d(Bx2n−1, T x2n−1)d(Sx2n, Bx2n−1)d(Ax2n, T x2n−1)] ,
d(Ax2n, T x2n−1) + d(Sx2n, Bx2n−1) + d(Bx2n−1, T x2n−1)

4[1 + d(Ax2n, T x2n−1)d(Ax2n, Sx2n)d(Sx2n, Bx2n−1)]
})

= φ
(

max
{
d(y2n, y2n−1), d(y2n−1, y2n), d(y2n, y2n+1),

d(y2n, y2n) + d(y2n+1, y2n−1)

2
,

1

4
· d(y2n, y2n) + d(y2n, y2n+1) + d(y2n+1, y2n−1)

1 + d(y2n−1, y2n)d(y2n+1, y2n−1)d(y2n, y2n)
,

1

4
· d(y2n, y2n) + d(y2n+1, y2n−1) + d(y2n−1, y2n)

1 + d(y2n, y2n))d(y2n, y2n+1)d(y2n+1, y2n−1)

})
. (2.5)

Since
a + b

2
≤ max(a, b) for any a, b ≥ 0, from the triangle inequality of d it follows

that

d(y2n+1, y2n+1) + d(y2n, y2n+1) ≤ d(y2n−1, y2n) + 2d(y2n, y2n+1)

so that

1
4 [d(y2n−1, y2n+1) + d(y2n, y2n+1)]

≤ max

{
1

2
d(y2n−1, y2n), d(y2n, y2n+1)

}
. (2.6)

Similarly,

1
4 [d(y2n+1, y2n−1) + d(y2n−1, y2n)]

≤ max

{
d(y2n−1, y2n),

1

2
d(y2n, y2n+1)

}
. (2.7)

Using (2.6) and (2.7) in (2.5), we get

d(y2n+1, y2n) ≤ φ
(

max
{
d(y2n, y2n+1), d(y2n−1, y2n)

})
for n ≥ 2. (2.8)

Repeating the same argument, we get

d(y2n−1, y2n) ≤ φ
(

max
{
d(y2n−2, y2n−1), d(y2n−1, y2n)

})
for n ≥ 2. (2.9)
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Thus from (2.8) and (2.9), we write

d(yn, yn+1) ≤ φ
(

max
{
d(yn, yn+1), d(yn−1, yn)

})
for all n ≥ 2. (2.10)

If d(ym, ym+1) > d(ym, ym−1) for some m ≥ 2, then d(ym, ym+1) > 0 so that (2.10) and
the choice of φ would give a contradiction that 0 < d(ym, ym+1) ≤ φ(d(ym, ym+1)) <

d(ym, ym+1). Therefore

d(yn, yn+1) ≤ d(yn, yn−1) for all n ≥ 2. (2.11)

That is 〈d(yn, yn−1)〉 ∞
n=1 is nonincreasing sequence of nonnegative numbers and hence

converges to some a ≥ 0. Using (2.11) in (2.10), we find that

d(yn, yn+1) ≤ φ
(
d(yn−1, yn)

)
for all n ≥ 2.

Then employing the limit as n → ∞ in this and using upper semicontinuity of φ, we get
a ≤ φ(a) so that a = 0, proving (2.4).

We claim that 〈yn〉 ∞
n=1 is a Cauchy sequence. If possible we assume that our claim

is false. Then for some ε > 0, we choose sequences 〈2mk〉 ∞
k=1 and 〈2nk〉 ∞

k=1 of even
integers such that d(y2mk

, y2nk
) ≥ ε for 2mk > 2nk > k for all k. Let 2mk be the

smallest even integer with this property so that d(y2mk−2, y2nk
) ≤ ε.

Using the triangle inequality of d and (2.4), above inequalities give

lim
n→∞ d(y2mk

, y2nk
) = lim

n→∞ d(y2mk
, y2nk+1)

= lim
n→∞ d(y2mk+1, y2nk+1) = lim

n→∞ d(y2mk+1, y2nk+2) = ε. (2.12)

Now with x = x2mk
and y = x2nk+1, the inequality (2.2) gives

d(Sx2mk
, T x2nk+1) ≤φ

(
max

{
d(Ax2mk

, Bx2nk+1), d(Ax2mk
, Sx2mk

),

d(Bx2nk+1, T x2nk+1),
d(T x2nk+1,Ax2mk

)+d(Sx2mk
,Bx2nk+1)

2 ,

1
4 · d(Ax2mk

,T x2nk+1)+d(Ax2mk
,Sx2mk

)+d(Sx2mk
,Bx2nk+1)

1+d(Bx2nk+1,T x2nk+1)d(Sx2mk
,Bx2nk+1)d(Ax2mk

,T x2nk+1)
,

1
4 · d(Ax2mk

,T x2nk+1)+d(Sx2mk
,Bx2nk+1)+d(Bx2nk+1,T x2nk+1)

1+d(Ax2mk
,T x2nk+1)d(Ax2mk

,Sx2mk
)d(Sx2mk

,Bx2nk+1)

})

Again, using the triangle inequality, proceeding the limit as k → ∞ in this, then using
(2.4), (2.12) and the upper semicontinuity of φ, we get

0 < ε ≤ φ
(

max
{
ε, 0, 0, 0+ε+ε

2 , 1
4 · ε+0+0+ε

1+0 , 1
4 · 0+ε+0+ε

1+0

}) = φ
(
ε
)

< ε.

This contradiction establishes that 〈yn〉 ∞
n=1 must be a Cauchy sequence and its subse-

quences 〈y2n〉 ∞
n=1 and 〈y2n+1〉 ∞

n=1 are also Cauchy.
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Case (i): A(X)
⋃

B(X) is complete.
Then

lim
n→∞ y2n = lim

n→∞ Ax2n = lim
n→∞ y2n+1

= lim
n→∞ Bx2n+1 = z = Au = Bv for some u, v ∈ X. (2.13)

Hence 〈yn〉 ∞
n=1 also converges to z = Au = Bv.

But then (2.2) with x = u and y = x2n+1 gives

d(Su, T x2n+1) ≤φ

(
max

{
d(Au, Bx2n+1), d(Au, Su), d(Bx2n+1, T x2n+1),

1

2
[d(T x2n+1, Au) + d(Su, Bx2n+1)] ,

1

4
· d(Au, T x2n+1) + d(Au, Su) + d(Su, Bx2n+1)

1 + d(Bx2n+1, T x2n+1)d(Su, Bx2n+1)d(Au, T x2n+1)
,

1

4
· d(Au, T x2n+1) + d(Su, Bx2n+1) + d(Bx2n+1, T x2n+1)

1 + d(Au, T x2n+1)d(Au, Su)d(Su, Bx2n+1)

})
.

Since φ is usc, applying the limit as n → ∞, this implies

d(Su, z) ≤φ

(
max

{
0, d(z, Su), 0,

1

2
d(Su, z),

1

4
· 0 + d(z, Su) + d(Su, z)

1 + 0
,

1

4
· 0 + d(Su, z) + 0

1 + 0

})

=φ
(
d(z, Su)

)

so that Su = z.

On the other hand, writing x = x2n and y = v in (2.2) and simplifying, we get
T v = z. Thus

Su = Au = T v = Bv = z, (2.14)

which in view of weak compatibility of (A, S) and (B, T ) implies that

Sz = Az = T z = Bz. (2.15)

Thus u is a common coincidence point for A, S, B and T .



Contractive modulus and common fixed point 743

Finally writing x = u and y = z in (2.2), we obtain

d(z, T z) =d(Su, T z)

≤φ

(
max

{
d(Au, Bz), d(Au, Su), d(Bz, T z),

1

2
[d(T z, Au) + d(Su, Bz)] ,

1

4
· d(Au, T z) + d(Au, Su) + d(Su, Bz

1 + d(Bz, T z)d(Su, Bz)d(Au, T z)
,

1

4
· d(Au, T z) + d(Su, Bz) + d(Bz, T z)

1 + d(Au, T z)d(Au, Su)d(Su, Bz)

})

=φ

(
max

{
d(z, T z), 0, 0,

1

2
[d(T z, z) + d(z, T z)] ,

1

4
· d(z, T z) + 0 + d(z, T z

1 + 0
,

1

4
· d(z, T z) + d(z, T z) + 0

1 + 0

})

=φ
(
d(z, T z)

)
so that d(T z, z) = 0 or T z = z. This again in view of (2.15) reveals that z is a common
fixed point of A, S, B and T .

Case (ii): Let S(X) be orbitally complete at x0. Then 〈yn〉 ∞
n=1 converges to z ∈ S(X) ⊂

A(X). The conclusion follows from Case (i).

Case (iii): Let T (X) be orbitally complete at x0. Then 〈yn〉 ∞
n=1 converges to z ∈ T (X)

and hence z ∈ B(X), in view of (1.3). Again the conclusion follows from Case (i).

Uniqueness of the common fixed point follows directly from (2.2). �

Setting A = B in Theorem 2.1, we have

Corollary 2.2. Let A, S and T be self-maps on X satisfying (1.3), the condition (a) of
Theorem 1.3 and the inequality

d(Sx, T y) ≤φ

(
max

{
d(Ax, Ay), d(Ax, Sx), d(Ay, T y),

d(T y, Ax) + d(Sx, ay)

2
,

1

4
· d(Ax, T y) + d(Ax, Sx) + d(Sx, Ay)

1 + d(Ay, T y)d(Sx, Ay)d(Ax, T y)
,

1

4
· d(Ax, T y) + d(Sx, Ay) + d(Ay, T y)

1 + d(Ax, T y)d(Ax, Sx)d(Sx, Ay)

})

f or all x, y ∈ X, (2.16)

where φ is usc contractive modulus. Then S, T, and A will have a common coincidence
point. Further if either (A, S) or (A, T ) is weakly compatible, then S, T and A will have
a unique common fixed point.
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Proof. Suppose that A(X) is complete. Then as in Case (i) of Theorem 2.1, we see that
z = Au = Su We assume that (A, S) is weakly compatible. Then ASu = SAu or
Az = Sz. Then with x = y = z in (2.16), we get

d(Sz, T z) ≤φ

(
max

{
d(Az, Az), d(Az, Sz), d(Az, T z),

d(T z, Az) + d(Sz, Az)

2
,

1

4
· d(Az, T z) + d(Az, Sz) + d(Sz, Az)

1 + d(Az, T z)d(Sz, Az)d(Az, T z)
,

1

4
· d(Az, T z) + d(Sz, Az) + d(Az, T z)

1 + d(Az, T z)d(Az, Sz)d(Sz, Az)

})

= φ
(
d(Sz, T z)

)
(2.17)

so that Sz = T z and hence Sz = T z = Az.
Similarly one can prove that z is a common coincidence point of A, S and T when

(A, T ) is weakly compatible. The remaining proof follows similar to that of Theorem
2.1. �

If φ is nondecreasing, we see that the right hand side of (1.4) is less than or equal
to the the right hand side of (2.16). That is, (2.16) is weaker than (1.4) whenever φ is
nondcreasing. Thus Theorem 1.3 follows as a particular case of Corlooary 2.2, when φ

is nondecreasing.

Remark 2.3. Corlooary 2.2 suggests us to conclude that weak compatibility of either
pair is sufficient to obtain a common fixed point in case of three maps.
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