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Abstract

Let S, T and A be self-maps on a metric space (X, d) satisfying the inclusions
S(X) C A(X) and T(X) C A(X) and the inequality

d(Sx, Ty) < ¢(max {d(Ax, Ay),d(Sx, Ax), d(Ty, Ay), LeA0HELAN ) (1)

for all x, y € X, where ¢ is an upper semicontinuous contractive modulus with
¢(0) =0and ¢ (t) < t whenevert > 0. Singh and Mishra (1997) proved that if any
one of the subspaces S(X), T(X) and A(X) of X is complete, then S, 7" and A will
have a common coincidence point. Further if the pairs (A, §) and (A, T) commute
at their coincidence points, that is (A, S) and (A, T') are weakly compatible pairs,
then S, T and A will have a unique common fixed point.

The present paper extends the above result to four self-maps under weaker form
of the inequality (1). It can also be shown that the weak compatibility of either
of the pairs (A, S) and (A, T) is sufficient to obtain a common fixed point for the
three maps.
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1. Introduction

In this paper, (X, d) denotes a metric space, Sx the image of x € X under a self-map S
on X and S A, the composition of self-maps S and A on X.

Definition 1.1. Self-maps S and A on X are compatible [1] if
lim d(SAx,, ASx,) =0 (1.1)

n—oo
whenever (x,)°2; C X is such that

lim Sx, = lim Ax, = p forsome p € X. (1.2)
n—oo n—oo

If x,, = x forall n, compatibility of (S, A) implies that SAx = ASx whenever Ax = Sx.
Self-maps which commute at their coincidence points are weakly compatible [2].

Definition 1.2. Let ¢ = ¢ : [0, 00) — [0, 00) be a contractive moduluswith the choice
¢(0) = 0and ¢(r) < t fort > 0. A contractive modulus ¢ is upper semicontinuous
(abbriviated as usc) if and only if

lim sup ¢ (t,) < ¢ (1)

n—o0

for all t = 1y and all
(tn) p—1 C [0, 00)
with

lim 1, = 1.
n—oo

Using these ideas, Singh and Mishra [3] proved the following result:

Theorem 1.3. Let S, T and A be self-maps on X satisfying the inclusions
S(X) CA(X) and T(X)C A(X) (1.3)

and the contractive-type condition

d(Sx,Ty) < ¢<max {d(Ax, Ay),d(Sx, Ax),d(Ty, Ay),

d(Ty,Ax)—zi—d(Sx,Ay)}) forall x,y € X, (1.4)

where ¥ is an usc contractive modulus. Suppose that
(a) one of S(X), T(X) and A(X) is a complete subspace of X,

(b) (A, S) and (A, T) are weakly compatible.

Then the three maps S, T and A will have a unique common fixed point.

The present paper extends Theorem 1.3 to two pairs of weakly compatible self-maps
under weaker form of the inequality (1.4). As a particular case for three self-maps A, S
and T, we obtain its corollary which reveals that the weak compatibility of either of the
pairs (A, S) and (A, T) is sufficient to obtain a common fixed point for the three maps.
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2. Main Result

We prove the following result

Theorem 2.1. Let A,B, S and T be self-maps on X satisfying the inclusions

S(X) CA(X) and T(X)C B(X) 2.1

and the inequality

d(Ty, Ax) +d(Sx, By)
2 b

d(Sx,Ty) §¢<max {d(Ax, By),d(Ax, Sx),d(By, Ty),

1 d(Ax,Ty)+d(Ax, Sx) + d(Sx, By)
4 1+d(By, Ty)d(Sx, By)d(Ax, Ty)
1 d(Ax,Ty)+d(Sx, By)+d(By,Ty)
4 1+4d(Ax, Ty)d(Ax, Sx)d(Sx, By) })
forall x,y € X, (2.2)

where ¢ is usc contractive modulus. Suppose that any one of the subspaces S(X), T (X)
and A(X) U B(X) of Xis complete. Then S, T, A and B will have acommon coincidence

point. Further if (A, §) and (B, T) are weakly compatible, then S, T, A and B will have
a unique common fixed point.

Proof. Let xo € X be arbitrary. Using the inclusions (2.1), we can inductively choose
points xq, X2, ..., Xp, ... in X such that

Yon—1 = Sx2p—2 = Bxou—1, Yon = Txpp—1 = Ax2y, forn=1,2,3, ... (2.3)

We first show that

nll?go d(yn, yn+1) = 0. (2.4)
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Now wirting x = x2, and y = x2,—1 in (2.2), we see that

d(Yan+1> Yan) = d(Sx2n, TX20-1)
< ¢((max [d(Axan, Bxza-1), d(Axan, Sx20), d(Bxay-1, Txon-1),

d(Tx2p—1, Ax2n) + d(Sx2,, Bx2u—1)

2
d(Axay, Tx2p—1) + d(Axz,, Sx2,) + d(Sx2,, Bx2y—1)

A[1 + d(Bxoy—1, Tx2y—1)d(Sx2n, Bxon—1)d(Axan, Tx2n—1)]
d(Axon, Tx2p—1) +d(Sx2n, Bx2p—1) +d(Bxou—1, Tx2n—1) })
411 + d(Ax2na Tx2n—1)d(Ax2na Sx2n)d(Sx2na Bx,—1)]

= ¢<max {d(yzn, Yan—1)s d(Y2n—1, Y21) d(Y2n, Y2n+1),

d(Yan, y2n) +d(Yont1, Y2n—1)
2 9
d(2n, yoan) +d(V2ns Y2n+1) + d(Yant1, Yon—1)
1+ d(yZn—la y2n)d(y2n+1a yZn—l)d(y2na y2n) ,
) d(yZn» y2n) + d(yZn—H’ y2n—l) + d(yZn—la y2n) })
1+ d(yan, y20))d 20y Yont+1)d (Yan+1, yan—1) 1/

Bl A=

(2.5)

Since a4 < max(a, b) for any a, b > 0, from the triangle inequality of d it follows
that
d(Y2n+1, Yon+1) +d(yan, yant1) < d(yan—1, Y2n) + 2d(y2n, yan+1)
so that
1 1don—1, yong1) +d(y2n, y2041)]
< max {%d(yZn—l, y2n), d(Yon, y2n+1)} : (2.6)
Similarly,

% [d(y2n+1, Yan—1) +d(Yon—1, y2n)]
1
< max {d(yZn—la )’2n), Ed(yZna y2n+1)} . (2.7)
Using (2.6) and (2.7) in (2.5), we get

d(yant1, yon) < ¢(max {d(yan. y2a41), d(yon—1. yan)}) forn = 2. (2.8)

Repeating the same argument, we get

d(yon—1, y2n) < ¢(max {d(y2n—2, y2n—1), d(y2n—1, y2n)}) forn > 2. (2.9)
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Thus from (2.8) and (2.9), we write

d(ns Yn+1) < p(max {d(yn, Yyn+1)s d(u-1, yn)}) forall n=>2. (2.10)

Itd(ym, ym+1) > d(Ym, ym—1) forsomem > 2, thend(y;;, ym+1) > 0sothat (2.10) and
the choice of ¢ would give a contradiction that 0 < d(V, Ym+1) < ¢ dVm, Ym+1)) <
d(Yms Ym+1)- Therefore

d(Yn, Yn+1) < d(Yn, yn—1) forall n=>2. (2.11)

That is (d(yn, Ya—1)) 5 is nonincreasing sequence of nonnegative numbers and hence
converges to some a > 0. Using (2.11) in (2.10), we find that

d(Yn, Yn+1) < S(d(n—1, yn)) forall n>2.

Then employing the limit as » — oo in this and using upper semicontinuity of ¢, we get
a < ¢(a) so that a = 0, proving (2.4).

We claim that (y,) ;2 is a Cauchy sequence. If possible we assume that our claim
is false. Then for some € > 0, we choose sequences (2my) p—; and (2nx) 7=, of even
integers such that d(ym,, yan,) > € for 2my > 2n; > k for all k. Let 2my be the
smallest even integer with this property so that d(y2,, —2, yan,) < €.

Using the triangle inequality of d and (2.4), above inequalities give

lim d(yom;, yon,) = 1m d(yamy, yan+1)
n—oo n—oo

= lim d(yka-Ha y2nk+1) = lim d(yka-Hy yan—f—Z) = €. (2.12)
n— 00 n— 00

Now with x = x2,, and y = x5, 11, the inequality (2.2) gives

d(Sxomys TXonp+1) §¢(maX {d(szmk, Bxop,+1), d(Axomy, Sxomy),
d(T x2n)+1,AX2m; ) +d (Sx2m; , BXon, +1)
d(Bxan+1, TXonp+1), k s ke
. d(Ax2mkaTXan+1)+d(Ax2mk7S)C2mk)+d(sx2mkan2nk+1)
1+d(Bxony+1,Txony +1)d (Sx2my . Bxon, +1)d (Axomy , TXon, +1)°

d(Axay T X2 1)+d(Sxomy  Bxoy 1)+ (Bxoy 41, T X2 1) })

FN

I

1+d (Axomy, , Txony +1)d (Axom , SXomy ) (SXomy, , BXony +1)

Again, using the triangle inequality, proceeding the limit as k — oo in this, then using
(2.4), (2.12) and the upper semicontinuity of ¢, we get

0 < e < ¢(max{e,0,0, 4gte § . ct0igre L. Dberbiel) — g(e) <.

This contradiction establishes that (y,) 7>, must be a Cauchy sequence and its subse-
quences (y2,) ooy and (y2,+1) oo are also Cauchy.
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Case (i): A(X) U B(X) is complete.
Then

lim Yo = lim A)C2n = lim Yon+1
n—00 n—00 n—00

= lim Bxp,+1 =z= Au = Bv forsome u,ve X. (2.13)
n—o0

Hence (yn) ;- also converges to z = Au = Bv.
But then (2.2) with x = u and y = x4 gives

d(Su, Tx2+1) §¢(maX {d(Au, Bxon+1), d(Au, Su), d(Bxon+1, Txont1),

[d(Tx2n41, Au) + d(Su, Bxop41)],

d(Au, Txop+1) + d(Au, Su) + d(Su, Bxzp+1)
1 4+ d(Bxont1, Txopg1)d(Su, Bxopy1)d(Au, Txzuq1)’
d(Au, Tx2,41) +d(Su, Bxoy41) + d(Bxops1, TX2041) })
. 1 +d(Au, Txzy41)d(Au, Su)d(Su, Bxz,+1) '

A= BN

Since ¢ is usc, applying the limit as n — oo, this implies

1
d(Su, z) §¢<max {0, d(z, Su), 0, Ed(Su, 2),

1 0+d(z, Su) +d(Su, 2) 1_0+d(5u,z)+0})
4 140 "4 140
=¢(d(z, Su))

so that Su = z.

On the other hand, writing x = x, and y = v in (2.2) and simplifying, we get
Tv = z. Thus

Su=Au=Tv = Bv =z, (2.14)

which in view of weak compatibility of (A, §) and (B, T') implies that
Sz=Az=Tz= Bz. (2.15)

Thus u is a common coincidence point for A, S, B and T'.
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Finally writing x = u and y = z in (2.2), we obtain

d(z, Tz) =d(Su, Tz)

§¢<max {d(Au, Bz),d(Au, Su),d(Bz, Tz),

—d(Tz, Au) +d(Su, Bz)],

d(Au, Tz) + d(Au, Su) + d(Su, Bz

" 1+d(Bz, Tz)d(Su, Bz)d(Au, T7)
d(Au, Tz) +d(Su, Bz) + d(Bz, Tz)

1+ d(Au, T2)d(Au, Su)d(Su, Bz) })

B B N Nl SR

=¢<max {d(z, T2),0,0, % [d(Tz,2) +d(z, T?)],

1 . d(z,Tz)+0+d(z, Tz 1 . d(z,Tz) +d(z, Tz) +0
4 14+0 4 1+0
=¢(d(z, T2))

sothatd(Tz, z) = 0 or Tz = z. This again in view of (2.15) reveals that z is a common
fixed pointof A, S, Band T.

Case (ii): Let S(X) be orbitally complete at xo. Then (y,) ;= convergestoz € S(X) C
A(X). The conclusion follows from Case (i).

Case (iii): Let 7'(X) be orbitally complete at xo. Then (y,) -, converges to z € T (X)
and hence z € B(X), in view of (1.3). Again the conclusion follows from Case (i).

Uniqueness of the common fixed point follows directly from (2.2). [
Setting A = B in Theorem 2.1, we have

Corollary 2.2. Let A, S and T be self-maps on X satisfying (1.3), the condition (a) of
Theorem 1.3 and the inequality
d(Ty, Ax) +d(Sx, ay)

2 b

d(Sx,Ty) S¢(maX {d(Ax, Ay),d(Ax, Sx),d(Ay, Ty),
1 d(Ax,Ty)+d(Ax, Sx)+d(Sx, Ay)

4 1+d(Ay, Ty)d(Sx, Ay)d(Ax, Ty)
1 d(Ax,Ty)+d(Sx, Ay) +d(Ay, Ty)
4 1+d(Ax, Ty)d(Ax, Sx)d(Sx, Ay)

forall x,y € X, (2.16)

where ¢ is usc contractive modulus. Then S, T, and A will have a common coincidence
point. Further if either (A, §) or (A, T) is weakly compatible, then S, T and A will have
a unique common fixed point.
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Proof. Suppose that A(X) is complete. Then as in Case (i) of Theorem 2.1, we see that
z = Au = Su We assume that (A, S) is weakly compatible. Then ASu = SAu or
Az = Sz. Then with x = y = zin (2.16), we get

d(Tz, Az) + d(Sz, Az)
2 9

d(Sz,Tz) §¢(max {d(Az, Az),d(Az, S2),d(Az, Tz),
1 d(Az,Tz) +d(Az, S7) +d(Sz, Az)

4 1+4d(Az, T7)d(Sz, A2)d(Az, Tz)
1 . d(Az, Tz) +d(Sz, Az) +d(Az, Tz) })
4 1+4+d(Az,Tz)d(Az, S7)d(Sz, A2)

= ¢(d(Sz, T7)) (2.17)

so that Sz = Tz and hence Sz = Tz = Az.
Similarly one can prove that z is a common coincidence point of A, S and 7" when

(A, T) is weakly compatible. The remaining proof follows similar to that of Theorem
2.1. |

If ¢ is nondecreasing, we see that the right hand side of (1.4) is less than or equal
to the the right hand side of (2.16). That is, (2.16) is weaker than (1.4) whenever ¢ is
nondcreasing. Thus Theorem 1.3 follows as a particular case of Corlooary 2.2, when ¢
is nondecreasing.

Remark 2.3. Corlooary 2.2 suggests us to conclude that weak compatibility of either
pair is sufficient to obtain a common fixed point in case of three maps.
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