

A Note on Right Ideals of Ordered Semigroups

Jaya Lalitha. G¹, Dr. Y. Sarala² and Dr. Madhusudhana Rao³

¹*Research Scholar, Department of Mathematics, KL University, A.P, India*

²*Faculty of Mathematics, Department of Mathematics, KL University, A.P, India*

³*Faculty of Mathematics, Department of Mathematics, VSR & NVR College, Tenali, AP
saralayella1970@gmail.com*

Abstract

The idea of maximal rightideals is initiated from ordered semigroups. Characterizations of maximal rightideals are discussed here. For an ordered semigroup Z , one and only one of the adopting four conditions is fulfilled. (1) Z is left simple. (2) $R(l) \neq Z$, $\forall l \in Z$. (3) $\exists l \in Z \exists Z = R(l)$, $l \in (lZ]$, $l^2 \in U = Z \setminus \{l\}$, and U is the distinct maximal rightideal of Z . (4) $Z \setminus U = \{y \in Z / (yZ] = Z\}$, $Z \setminus U$ is a subsemigroup of Z and U is the distinct maximal rightideal of Z .

Keywords: Maximal rightideal, right-simple and right-simple semigroup.

1. Preliminaries

An Ordered semigroup is an ordered set Z & at the same time a semigroup $\exists l \leq m \Rightarrow yl \leq ym$ and $ly \leq my \forall y \in Z$.

In this paper, Z indicates an arbitrary ordered semigroup. Assume J be a nonempty subset of Z . Then the set $\{y \in Z / y \leq j \text{ for some } j \in J\}$ is denoted by the notation (J) . For $J = \{l\}$ we write (l) instead of $(\{l\})$. We have $J \subseteq (J)$ and $A \subseteq B \Rightarrow (A) \subseteq (B)$, for any non empty subset A, B of Z . [1], [2].

A nonempty subset R of Z is a rightideal of Z , if $RZ \subseteq R$ and $(R) \subseteq R$, [1]. The Intersection of all rightideals of Z accommodating a nonempty subset A of Z is the rightideal of Z generated by A . For $A = \{l\}$, we denote by $R(l)$ the rightideal of Z generated by l ($l \in Z$). A rightideal R of Z is known to be proper if $R \neq Z$. An ordered semigroup Z is known to be right simple if it does not accommodate proper rightideals [3].

Assume Z be an ordered semigroup with a zero element (i.e $\exists 0 \in Z : 0y = y0 = 0$, $0 \leq y \forall y \in Z$). If $Z = \{0\}$, then Z is a right simple. If $\exists l \in Z$, $l \neq 0$, then $\{0\}$ is a rightideal of Z , $\{0\} \subseteq Z$. Thus, an ordered semigroup Z with a zero element $\exists Z \neq$

$\{0\}$ is not right simple.

Definition 1.1: Assume (Z, \cdot, \leq) be an ordered semigroup. A subsemigroup K of Z is known to be right simple, if the ordered semigroup (K, \cdot, \leq) is right-simple. Assume R be a rightideal of Z . As $R^2 \subseteq RZ \subseteq R$, R is a subsemigroup of Z .

Definition 1.2: Assume (Z, \cdot, \leq) be an ordered semigroup. A rightideal R of Z is known to be right simple, if the ordered semigroup (R, \cdot, \leq) is right simple.

Lemma 1.3: For any $l \in Z$, $R(l) = (l \cup lZ) = (l) \cup (lZ)$. [1]

Lemma 1.4: R is right simple $\Leftrightarrow (lR) = R$ for all $l \in Z$. [3]

Lemma 1.5: Assume $\{R_x : x \in A\}$ be a family of rightideals of Z . then $\bigcup_{x \in A} R_x$ is a rightideal of Z and $\bigcap_{x \in A} R_x$ is also a rightideals of Z if $\bigcap_{x \in A} R_x \neq \emptyset$.

The Proof a Lemma 1.5 is a easy.

Lemma 1.6: Assume R be a rightideal of Z and K is a right simple subsemigroup of Z if $K \cap R \neq \emptyset$. Then $K \subseteq R$.

Proof: Let $l \in K \cap R$. since K is right simple, $l \in K$, by Lemma 1.4, we have $(lK) = K$. Then we have $K = (lK) \subseteq (RK) \subseteq (RZ) \subseteq (R) = R$.

2. Maximal RightIdeals

Definition 2.1: Assume R be a proper rightideal of Z . R is known to be a maximal if T is a rightideal of $Z \ni R \subset T$, then $T = Z$.

Theorem 2.2: Assume R be a proper rightideal of Z . Then R is maximal \Leftrightarrow

(1) $Z \setminus R = \{l\}$ and $l^2 \in R$ or (2) $Z \setminus R$ accommodating (lZ) , $\forall l \in Z \setminus R$.

Proof: Assume R be a maximal rightideal of Z . we consider the two cases.

(i) $\exists l \in Z \setminus R \ni (lZ) \subseteq R$. In this case, we prove that the property (1) holds. In fact $l^2 = l \cdot l \in lZ \subseteq (lZ) \subseteq R$. By $(lZ) \subseteq R$ and Lemma 1.3 we have $R \cup (l) = (R \cup (lZ)) \cup (l) = R \cup ((Z) \cup (l)) = R \cup (l \cup lZ) = R \cup R(l)$ Then $R \cup (l)$ is a rightideal of Z , by Lemma 1.5 ; on the another hand, as $l \in Z \setminus R$. We have $R \subset R \cup (l)$, as $R \cup (l)$ is a rightideal of Z and R is a maximal right ideal of Z , we have $R \cup (l) = Z$. Thus $Z \setminus R \subseteq (l)$. Assume $y \in Z \setminus R$. Then $y \leq l$ and so $(yZ) \subseteq (lZ) \subseteq R$. From $(yZ) \subseteq R$, $y \in Z \setminus R$, a similar argument shows that $Z \setminus R \subseteq (y)$. Consequently $l \in (y)$. i.e $l \leq y$. Hence $l = y$. Thus $Z \setminus R = \{l\}$.

(ii) $(lZ) \subseteq R \forall l \in Z \setminus R$. In this case, the property (2) holds. Indeed : Assume $l \in Z \setminus R$. as (lZ) is a rightideal of Z , by Lemma 1.5 we have that $R \cup (lZ)$ is also a rightideal of Z . on the another hand, as $(lZ) \subseteq R$, we have $R \subset R \cup (lZ)$. As $R \cup (lZ)$ is a

rightideal of Z and R is a maximal ideal of Z we have $R \cup (lZ) = Z$. Thus $Z \setminus R \subseteq (lZ) \forall l \in Z \setminus R$. Assume R be a proper rightideal of Z and T be a rightideal of Z such that $R \subseteq T$.

- (1) Assume $Z \setminus R = \{l\}$ and $l^2 \in R$. Then $Z = R \cup \{l\}$, as $R \subseteq T$. We have $T \setminus R \neq \emptyset$. On the another hand $T \setminus R \subseteq Z \setminus R = \{l\}$. Then we have $T \setminus R = \{l\}$ and $T = R \cup \{l\} = Z$. Thus R is maximal.
- (2) Assume $Z \setminus R \subseteq (lZ) \forall l \in Z \setminus R$. Assume $t \in T \setminus R$, as $t \in Z \setminus R$, by hypothesis we have $Z \setminus R \subseteq (tZ) \subseteq (TZ) \subseteq (T) = T$. Hence $Z = L \cup (Z \setminus R) \subseteq T \cup T = T$ and so $T = Z$. Thus R is a maximal rightideal of Z . we indicate by U the union of all rightideals of Z . In other words if $A = \{I / I$ is a proper rightideal of $Z\}$ then $U = \bigcup\{I / I \in A\}$.

Remark: $Z = U \iff Z \neq R(l) \forall l \in Z$. In fact, suppose that $\exists l \in Z \ni Z = R(l)$. As $l \in S = U = \bigcup\{I / I \in R\}$, it follows that $l \in I$ for some proper rightideal I of Z and $Z = R(l) \subseteq I$. Impossible (As I is a proper rightideal of Z). Assume $l \in Z$, by hypothesis, $R(l) \neq Z$. Then $R(l)$ is a proper rightideal of S such that l belongs to $R(l)$. As $R(l) \in R$, $l \in R(l)$, we have $l \in U$. Thus $Z = U$.

Theorem 3.3: For an ordered semigroup Z , one and only one of the adopting four conditions is fulfilled. (1) Z is left simple. (2) $R(l) \neq Z, \forall l \in Z$. (3) $\exists l \in Z \ni Z = R(l), l \in (lZ), l^2 \in U = Z \setminus \{l\}$, and U is the one and only maximal rightideal of Z . (4) $Z \setminus U = \{y \in Z / (yZ) = Z\}$, $Z \setminus U$ is a subsemigroup of Z and U is the distinct maximal rightideal of Z .

Proof: If Z is not right simple, then \exists a proper rightideal I of Z . As $I \neq \emptyset$, we have $U \neq \emptyset$. Then by Lemma 1.5, U is a rightideal of Z .

- (i) Assume $U = Z$. Then the condition (2) is satisfied.
- (ii) Assume $U \neq Z$. In this case, either condition (3) or condition (4) is satisfied.

In fact, first of all, U is the distinct maximal rightideal of Z . Indeed: Assume T be a rightideal of S such that $T \supset U$. Suppose that $T \neq Z$. Then T is a proper rightideal of Z and so $T \subseteq \bigcup\{I / I \in R\} = U$, Impossible. Thus U is a maximal rightideal of Z . Assume K be a maximal rightideal of Z . Suppose that $K \neq U$.

(a) Assume $K \setminus U = \emptyset$. Then $K \subseteq U$ and so $K \subseteq U$. $\therefore U$ is a rightideal of Z and K is a maximal rightideal of Z . we have $U = Z$ Impossible.

(b) Assume $K \setminus U \neq \emptyset$. Assume $l \in K \setminus U$. $\therefore K$ is proper rightideal of Z , we have $K \subseteq \bigcup\{I / I \in R\} = U$. Then $l \in K \subseteq U$ impossible. Hence $K = U$. Thus U is the distinct maximal rightideal of Z . As U is a maximal rightideal of Z , by Theorem 3.2 one and only one of the adopting two conditions is fulfilled.

(A) $Z \setminus U = \{l\}$ and $l^2 \in U$. (B) $Z \setminus U \subseteq (lZ) \forall l \in Z \setminus U$.

(A) Assume $Z \setminus U = \{l\}$ and $l^2 \in U$. In this case condition (3) is satisfied. In fact, we have (a) $R(l) = Z$. Indeed: Assume $R(l) \neq Z$. Then $R(l)$ is a proper rightideal of Z and so $R(l) \subseteq U$. Thus $l \in U$ Impossible. (b) $l \in (lZ)$. Indeed: Assume $l \in (lZ)$.

Then $(l] \subseteq ((lZ]) = (lZ]$ and $Z = R(l) = (l] \cup (lZ] = (lZ]$. We have $l \leq l_z$ for some $z \in Z = (lZ]$ and $z \leq lt$ for some $t \in Z$. Thus we have $l \leq l_z \leq l(lt) = l^2t \in UZ \subseteq U$ and so $l \in U$. Impossible. (y) $l^2 \in U = Z \setminus \{l\}$. Indeed: By hypothesis $l^2 \in U$. As $Z \setminus U = \{l\}$. We have $U = Z \setminus \{l\}$. (B) Assume that $Z \setminus U \subseteq (lZ]$, $\forall l \in Z \setminus U$. Then condition (4) is satisfied. In fact, we have (a) $Z \setminus U = \{y \in Z / (yZ] = Z\}$. Indeed: Assume $y \in Z \setminus U$. By hypothesis $y \in Z \setminus U \subseteq (yZ]$. Then $(y] \subseteq ((yZ]) = (yZ]$ and $R(y) = (y] \cup (yZ] = (yZ]$. On the other hand $R(y) = Z$. Indeed: Assume $R(y) \subset Z$. As $R(y)$ is a proper rightideal of Z , we have $y \in R(y) \subseteq U$. Impossible. Thus $(yZ] = R(y) = Z$. Assume $y \in Z$, $(yZ] = Z$. Suppose that $y \in U$. As U is a rightideal of Z and $y \in U$, we have $R(y) \subseteq U$. On the other hand $R(y) = (y] \cup (yZ] = (y] \cup Z = Z$, since $U \neq Z$. We have $U \subseteq Z = R(y)$ which is impossible. Thus $y \in U$ and $y \in Z \setminus U$. (B) $Z \setminus U$ is a subsemigroup of Z . Indeed: $U \neq Z$. So $U \subset Z$ and $Z \setminus U \neq \emptyset$. Assume $a, b \in Z \setminus U$. By (a), we have $(aZ] = Z$, $(bZ] = Z$. Then $(abZ] = ((a(bZ]) = (aZ] = Z$ and so $ab \in Z \setminus U$.

References:

- [1] Kehayopulu.N, On weakly prime ideals of ordered semigroups, *Mathematica Japonica* 35 No.6(1990), 1051-1056.
- [2] Kehayopulu.N, On prime, weakly prime ideals in ordered semigroups, *Semigroup Forum* 44(1992), 341-346.
- [3] Kehayopulu.N, Note on Green's relations on ordered semigroups. *Mathematica Japonica* 36 No.2 (1991), 211-214.
- [4] Kehayopulu.N, On minimal quasi-ideals in ordered semigroups, *Abstracts AMS* 15 (6) (1994). * 94T-06-138.
- [5] Clifford.A.H and Preston G.B, " The Algebraic theory of semigroups " vol.I Amer Math Soc. , Math. Surveys 7, 1961.