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ABSTRACT 
 

The Lattice Boltzmann method (LBM) is used to simulate the flow of non-
Newtonian blood, considering that viscosity is a function of the velocity 
gradient in the Casson model. Analytical solutions have been derived to 
validate the Lattice Boltzmann scheme. The agreement between the velocity 
profile of LBM for non-Newtonian blood and the profile values obtained in 
the analytic solutions is excellent. Therefore, LBM can be used as a tool to 
study the blood rheology in the non-Newtonian model. The numerical results 
of LBM are found to be corresponding to the experimental result that blood 
behaves in a non-Newtonian manner at low shear rates and becomes 
Newtonian at high shear rates.  
 
Keywords: non-Newtonian, Casson’s rheology model, Lattice Boltzmann 
method (LBM) 

 
 
1. Introduction 
Blood is a marvelous fluid that nurtures life; it contains many enzymes, hormones, 
and oxygen. The study of the important functions of blood can be left to 
hematologists, biochemists, and pathological chemists. However, the most important 
information as far as biomechanics is concerned is the constitutive equation [1]. The 
Newtonian constitutive equation is used to describe the behavior of blood flow in 
larger diameter arteries, while the non-Newtonian equation is used for smaller 
diameter arteries [2]-[4]. In this paper, we study the non-Newtonian model, namely, 
the Casson model, which is widely used to investigate blood flow in smaller arteries. 
The study in [5] suggested that the Casson model is appropriate to study the flow in 
smaller arteries. Merrill and coworkers observed that the Casson model can predict 
satisfactorily the blood flow behavior in tubes with diameters in the range of 130–
1000 m [6]. Blair and Copley showed that the Casson model is an adequate model 
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for the study of simple shear behavior of blood flow in small arteries ([7], [8]). Charm 
and Kurland showed that the Casson model could be applied to human blood at wide 
ranges of hematocrit and shear rates [9]. The Lattice Boltzmann method (LBM) is a 
novel numerical approach that has recently been adapted to blood rheology and 
particle interaction in blood flow. In this method, a discretized BGK form of LBM for 
the fluid particle distribution function is solved on a uniform lattice. In our work, 
LBM has been developed for the Casson model, and the numerical results are 
compared with the results of the analytical solution for a two-dimensional blood flow 
between parallel plates, where the governing equations can be solved analytically. 
 
 
2. Mathematical analysis. 
Blood behaves as a non-Newtonian fluid when it flows in the region of small vessels 
[10]-[15]. The Casson rheology model is defined as follows: 

 c y      (1)  

where  is the shear stress, c  is the Casson viscosity, y  is the yield stress and   is 

the shear rate. Since the apparent viscosity ( ) is defined as ( )  





, we obtain
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 In order to calculate the local relaxation time ( ) , the following equation is used 
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2

    (3)  

 The relation between viscosity ( ) and shear rate ( ) is determined, as shown in 
Figure 1, by using the parameter from Perktold and coworkers ([16], [17]). The 
viscosity decreases rapidly when the shear rate increases from 0 to 10 second−1. 
Thereafter, it decreases very slightly with the increase in the shear rate. As a result, 
blood behaves in a non-Newtonian manner when the shear rate is below 10 second−1.  
 As for the case of fluid flow between two parallel plates, the conservation of 
momentum leads to the following equation: 

 

U Py
y x

   
 

 
 (4)  

whereU is the velocity flow in x direction and P is the pressure. When the shear rate 
is equal to yield stress, the equation is obtained as follows: 
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 (5)  

 Upon simplifying equation (1), we get the following: 

 
2 y y

c

  




 
  (6)  

 Since we consider the blood flow in only the y direction, the stress rate ( ) is 
computed by using the first order finite difference approximation:  
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 If 0h  , the equation (7) becomes the following: 
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 Upon substituting equations (4) and (5) in equation (8), we get the following:  
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 By integrating equation (9), the analytic solution of the Casson’s model is 
obtained: 
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  
 (10)  

 
 

Figure1. The relation between Shear rate ( )  and viscosity ( )  
 

3. The Lattice Boltzmann method. 
A new numerical technique for simulating complex flow and transport phenomena, 
LBM provides an alternative approach where direct solution of the Navier-Stokes 
equations is not practical. The traditional computational methods in fluid dynamics 
(finite element method, finite difference method, and finite volume method) solve 
macroscopic fluid dynamics equations, while LBM solves a problem at a microscopic 
level in order to recover the particle density and the velocity from macroscopic 
properties ([18]). LBM consists of simple arithmetic calculations, which are easy to 
program. The space in LBM is divided into a regular Cartesian lattice grid as a 
consequence of the symmetry of the discrete-velocity set. Each lattice point has an 
assigned set of velocity vectors with specified magnitudes and directions. The total 
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velocity and the total particle density are defined by specifying the number of 
particles associated with each of the velocity vectors. The macroscopic particle 
distribution function is unknown in that it evolves at each time step through a two-
step procedure: convection and collision. The first step, convection, simply advances 
the particle from one lattice site to another lattice site along the directions of motion 
according to their velocities. The second step, collision, is to imitate various 
interactions among the particles. 
 The Lattice Boltzmann equation can be viewed as a discrete form of the 
Boltzmann equation. LBM can be derived directly from the simplified Boltzmann 
Bhatnagar–Gross-Krook (BGK) equation ([18]–[19]). The discrete form of the Lattice 
Boltzmann equation is as follows:  

 ( , ) ( , ) ( , )f r tc t t f r t r t            
 (11) 

where f  is the distribution function at space r and time t .The particle distribution 

travel to the next lattice node in a time step t and the discrete velocity c


.The 
collision operator 

 differs according to the model details. In the lattice BGK 
(LBGK) that we use, the particles distribution after propagation is relaxed toward the 
equilibrium distribution ( , )eq

if r t  according to  

 

1( , ) ( ( , ) ( , ))eqr t f r t f r t  
       (12) 

 The relaxation parameter   determines the kinematic viscosity  of the simulated 
flow as follows: 
 (2 1) / 6    (13) 
 The equilibrium distribution eqf is defined for two dimensional as follows: 

 

2 2

2 4 2

3 9( ) 3(1 )
2 2

eq c u c u uf
c c c
 

    
   

 

 (14) 
 The weight constant and the lattice velocities are the following: 
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 The density ( )  and the flow velocity ( )u can be calculate from 
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4.  Numerical results and discussion 
The objectives of our study were that we discuss the numerical results from the 
investigation of non-Newtonian and Newtonian blood flow by using LBM and 
compare the numerical results with those from the analytical solution. To implement 
LBM, we used D2Q9 for the Casson’s model. The bounce back boundary condition is 
used for solid walls, while the inlet and outlet boundaries are the periodic boundary 
conditions. The viscosity ( ) and the relaxation time ( ) are constant in the case of 
the Newtonian fluid, while the viscosity is a function of the velocity gradient in the 
case of the non-Newtonian fluid. All the parameters in the simulation are defined in a 
dimensionless lattice unit. 

 

3(2 )
Re

12

P L
x






  (19) 

 From equation (19), we obtain the indication that the Reynolds number (Re)  
increases with the decrease in the blood viscosity ( ) . Figure 1 demonstrates that 
blood viscosity ( )  decreases with an increase in the shear rate ( ) . From equation 
(19) and Figure 1, we can conclude that the Reynolds number (Re) increases with an 
increase in the shear rate ( ) . The normalized velocity with the channel width for 
different Reynolds numbers (Re)  and Newtonian flow is shown in Figure 2. Here, we 
notice that when the Reynolds number (Re)  increases, the blood velocity profile 
approaches a parabolic shape that is the same as the velocity profile of the Newtonian 
fluid. These numerical results are in accordance with the experimental observation 
([2]). From the experimental results, it can be seen that the blood is almost non-
Newtonian in behavior at low shear rates, but it is Newtonian in behavior at high 
shear rates. One should note that the dimensionless velocity profiles of the Newtonian 
blood flow are identical with the different Reynolds numbers (Re) . In order to validate 
the Lattice Boltzmann results, the plots of the numerical and analytic velocity profiles 
for the different Reynolds numbers are sketched in Figures 3–7. It can be observed 
that the numerical velocity profiles are in excellent agreement with the analytic 
velocity profiles. Figure 3 and Figure 4 demonstrate that the velocity profile increases 
slightly when the channel width increases from 0 to 50, and then it decreases slightly 
when the channel width increases from 50 to 100. Figures 5–7 show that the velocity 
profile increases marginally when the channel width increases from 0 to 50, and then 
it decreases marginally when the channel width increases from 50 to 100. 
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Figure2. The velocity profiles with the channel width for different Reynolds 
number (Re)  and Newtonian 

 
Figure3. The velocity profile of non-Newtonian blood flow and the exact solution 
for Re 30  

 
Figure4. The velocity profile of non-Newtonian blood flow and the exact solution 
for Re 50  
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Figure5. The velocity profile of non-Newtonian blood flow and the exact solution 
for Re 100  

 
Figure6. The velocity profile of non-Newtonian blood flow and the exact solution 
for Re 500  

 
Figure7. The velocity profile of non-Newtonian blood flow and the exact solution 
for Re 1,000  
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4. Conclusion 
A D2Q9 Lattice Boltzmann method was developed to investigate blood rheology in 
the non-Newtonian flow of the Casson model and in Newtonian fluids. The velocity 
profile of LBM for non-Newtonian flow was found to be in excellent agreement with 
the profiles of the analytical solutions. These results demonstrate the capacity of LBM 
when it comes to non-Newtonian blood flow simulations. Additionally, we found that 
blood exhibits the properties of a non-Newtonian fluid at low shear rates, but it 
behaves like a Newtonian fluid at high shear rates. 
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