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ABSTRACT

The Lattice Boltzmann method (LBM) is used to simulate the flow of non-
Newtonian blood, considering that viscosity is a function of the velocity
gradient in the Casson model. Analytical solutions have been derived to
validate the Lattice Boltzmann scheme. The agreement between the velocity
profile of LBM for non-Newtonian blood and the profile values obtained in
the analytic solutions is excellent. Therefore, LBM can be used as a tool to
study the blood rheology in the non-Newtonian model. The numerical results
of LBM are found to be corresponding to the experimental result that blood
behaves in a non-Newtonian manner at low shear rates and becomes
Newtonian at high shear rates.

Keywords: non-Newtonian, Casson’s rheology model, Lattice Boltzmann
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1. Introduction

Blood is a marvelous fluid that nurtures life; it contains many enzymes, hormones,
and oxygen. The study of the important functions of blood can be left to
hematologists, biochemists, and pathological chemists. However, the most important
information as far as biomechanics is concerned is the constitutive equation [1]. The
Newtonian constitutive equation is used to describe the behavior of blood flow in
larger diameter arteries, while the non-Newtonian equation is used for smaller
diameter arteries [2]-[4]. In this paper, we study the non-Newtonian model, namely,
the Casson model, which is widely used to investigate blood flow in smaller arteries.
The study in [5] suggested that the Casson model is appropriate to study the flow in
smaller arteries. Merrill and coworkers observed that the Casson model can predict
satisfactorily the blood flow behavior in tubes with diameters in the range of 130—
1000 pm|6]. Blair and Copley showed that the Casson model is an adequate model
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for the study of simple shear behavior of blood flow in small arteries ([7], [8]). Charm
and Kurland showed that the Casson model could be applied to human blood at wide
ranges of hematocrit and shear rates [9]. The Lattice Boltzmann method (LBM) is a
novel numerical approach that has recently been adapted to blood rheology and
particle interaction in blood flow. In this method, a discretized BGK form of LBM for
the fluid particle distribution function is solved on a uniform lattice. In our work,
LBM has been developed for the Casson model, and the numerical results are
compared with the results of the analytical solution for a two-dimensional blood flow
between parallel plates, where the governing equations can be solved analytically.

2. Mathematical analysis.
Blood behaves as a non-Newtonian fluid when it flows in the region of small vessels
[10]-[15]. The Casson rheology model is defined as follows:

Jo =\ny +{o, (1)

where o is the shear stress, 7, is the Casson viscosity, o, is the yield stress and y is

the shear rate. Since the apparent viscosity (u)is defined as u(y) :g_, we obtain
4
. (ny +o,)
u(y) = ; - )

In order to calculate the local relaxation time (z), the following equation is used

1
=3u+— 3
T=3puts 3)

The relation between viscosity (u)and shear rate (y) is determined, as shown in
Figure 1, by using the parameter from Perktold and coworkers ([16], [17]). The
viscosity decreases rapidly when the shear rate increases from 0 to 10 second ™.
Thereafter, it decreases very slightly with the increase in the shear rate. As a result,
blood behaves in a non-Newtonian manner when the shear rate is below 10 second .

As for the case of fluid flow between two parallel plates, the conservation of
momentum leads to the following equation:

ou oP
Ty T )
whereU is the velocity flow in X direction and P is the pressure. When the shear rate
is equal to yield stress, the equation is obtained as follows:

oP.

—o (== 5
V. =0,(3) (5)
Upon simplifying equation (1), we get the following:

c-2,/o0, +0,

V= : (6)
.

Since we consider the blood flow in only the y direction, the stress rate (y)is
computed by using the first order finite difference approximation:
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U(y+h)-U(y) _6_2 00, +0O,
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If h— 0, the equation (7) becomes the following:
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(7)

(8)

(9)

(10)

u’(y) =
Upon substituting equations (4) and (5) in equation (8), we get the following:
y@—z yy @ﬂ/ Gl
) OX “lox| ¢ ox
U'(y) =
M
By integrating equation (9), the analytic solution of the Casson’s model is
obtained:
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Figurel. The relation between Shear rate (y) and viscosity (u)

3. The Lattice Boltzmann method.

A new numerical technique for simulating complex flow and transport phenomena,
LBM provides an alternative approach where direct solution of the Navier-Stokes
equations is not practical. The traditional computational methods in fluid dynamics
(finite element method, finite difference method, and finite volume method) solve
macroscopic fluid dynamics equations, while LBM solves a problem at a microscopic
level in order to recover the particle density and the velocity from macroscopic
properties ([18]). LBM consists of simple arithmetic calculations, which are easy to
program. The space in LBM is divided into a regular Cartesian lattice grid as a
consequence of the symmetry of the discrete-velocity set. Each lattice point has an
assigned set of velocity vectors with specified magnitudes and directions. The total
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velocity and the total particle density are defined by specifying the number of
particles associated with each of the velocity vectors. The macroscopic particle
distribution function is unknown in that it evolves at each time step through a two-
step procedure: convection and collision. The first step, convection, simply advances
the particle from one lattice site to another lattice site along the directions of motion
according to their velocities. The second step, collision, is to imitate various
interactions among the particles.

The Lattice Boltzmann equation can be viewed as a discrete form of the
Boltzmann equation. LBM can be derived directly from the simplified Boltzmann
Bhatnagar—Gross-Krook (BGK) equation ([18]-[19]). The discrete form of the Lattice
Boltzmann equation is as follows:

f (F+ALS, t+At)=f (F,1)+Q (F.1) (11)
where f s the distribution function at space T and timet.The particle distribution

travel to the next lattice node in a time stepAtand the discrete velocityc,.The
collision operator ¢ differs according to the model details. In the lattice BGK

(LBGK) that we use, the particles distribution after propagation is relaxed toward the
equilibrium distribution f(r,t) according to

Q, (7,0 == (1, (F.) — £,7(F.1) (12)
T

The relaxation parameter 7 determines the kinematic viscosity Lt of the simulated
flow as follows:
u=2r-11/6 (13)
The equilibrium distribution f=is defined for two dimensional as follows:

3c -0 9(c -0)* 3u?
eq _ a a —
7=t ¢ 2 2c2) (14)
The weight constant and the lattice velocities are the following:
419 a=0
w,=41/9 a=1,2,3,4
1/36 «=5,6,7,8 (15)
(0,0 a=0
c, =sc(cosb, sinb)), 6 =(a-1)7/2 a=1234
J2c(cos, sin6,), 6. =(a-5)x/2+nl4 o =1,2 (16)
The density (p) and the flow velocity (u) can be calculate from
8
pP= ; f, (17)
8
pu= ZCa f, (18)

a=0
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4. Numerical results and discussion

The objectives of our study were that we discuss the numerical results from the
investigation of non-Newtonian and Newtonian blood flow by using LBM and
compare the numerical results with those from the analytical solution. To implement
LBM, we used D2Q9 for the Casson’s model. The bounce back boundary condition is
used for solid walls, while the inlet and outlet boundaries are the periodic boundary
conditions. The viscosity (u)and the relaxation time (z)are constant in the case of
the Newtonian fluid, while the viscosity is a function of the velocity gradient in the
case of the non-Newtonian fluid. All the parameters in the simulation are defined in a
dimensionless lattice unit.

oP 3
P 2h)
12

From equation (19), we obtain the indication that the Reynolds number (Re)
increases with the decrease in the blood viscosity (u). Figure 1 demonstrates that
blood viscosity (u) decreases with an increase in the shear rate (y). From equation
(19) and Figure 1, we can conclude that the Reynolds number (Re) increases with an
increase in the shear rate (y). The normalized velocity with the channel width for
different Reynolds numbers (Re) and Newtonian flow is shown in Figure 2. Here, we
notice that when the Reynolds number (Re) increases, the blood velocity profile
approaches a parabolic shape that is the same as the velocity profile of the Newtonian
fluid. These numerical results are in accordance with the experimental observation
([2]). From the experimental results, it can be seen that the blood is almost non-
Newtonian in behavior at low shear rates, but it is Newtonian in behavior at high
shear rates. One should note that the dimensionless velocity profiles of the Newtonian
blood flow are identical with the different Reynolds numbers (Re) . In order to validate
the Lattice Boltzmann results, the plots of the numerical and analytic velocity profiles
for the different Reynolds numbers are sketched in Figures 3-7. It can be observed
that the numerical velocity profiles are in excellent agreement with the analytic
velocity profiles. Figure 3 and Figure 4 demonstrate that the velocity profile increases
slightly when the channel width increases from 0 to 50, and then it decreases slightly
when the channel width increases from 50 to 100. Figures 57 show that the velocity

profile increases marginally when the channel width increases from 0 to 50, and then
it decreases marginally when the channel width increases from 50 to 100.

Re = (19)
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Figure2. The velocity profiles with the channel width for different Reynolds
number (Re) and Newtonian
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Figure3. The velocity profile of non-Newtonian blood flow and the exact solution
forRe =30
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Figure4. The velocity profile of non-Newtonian blood flow and the exact solution
for Re =50
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Figure5. The velocity profile of non-Newtonian blood flow and the exact solution
for Re =100
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Figure6. The velocity profile of non-Newtonian blood flow and the exact solution
for Re =500
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4. Conclusion

A D2Q9 Lattice Boltzmann method was developed to investigate blood rheology in
the non-Newtonian flow of the Casson model and in Newtonian fluids. The velocity
profile of LBM for non-Newtonian flow was found to be in excellent agreement with
the profiles of the analytical solutions. These results demonstrate the capacity of LBM
when it comes to non-Newtonian blood flow simulations. Additionally, we found that
blood exhibits the properties of a non-Newtonian fluid at low shear rates, but it
behaves like a Newtonian fluid at high shear rates.
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