Global Journal of Pure and Applied Mathematics.

ISSN 0973-1768 Volume 10, Number 5 (2014), pp. 647-655
© Research India Publications
http://www.ripublication.com

A Note on Inverse Problem with Boundary Element Method
for Inhomogeneous Anisotropic Materials

Jeffry Kusuma

Dept. of Mathematics, Fac. of Mathematics and Natural Sciences,
Hasanuddin University, Jalan Perintis Kemerdekaan, 90245 Makassar, Indonesia
jeffry.kusuma@gmail.com

ABSTRACT

Ground amplification effect due to incident plane surface horizontal waves
through anisotropic elastic materials is studied. Mathematical formulation over
the modeled earth's and deposit materials buried down in the earth are
transformed into integral equations. These integral equations altogether with
the boundary condition and continuity equation are then simulated and solved
numerically. The solution of these amplification effects over the simulation
half circular inhomogeneous materials deposit are shown graphically.
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INTRODUCTION
The ground amplification of seismic wave on alluvial valleys have been studied by
numerous authors. Bravo et al, Trifunac, Sdnchez-Sesma and Esquivel, Wong and
Jennings, Wong and Trifunac, Wong et al. Integral equation formulations have been
found to be particularly useful in obtaining numerical solutions to problems of this
type. In particular, Wong and Jennings have used singular integral equations to solve
the problem of scattering and diffraction of incident surface horizontaly (SH) waves
by canyons of arbitrary cross section. Also Bravo extended the method by
considering stratified alluvial deposits. Clements and Larsson extending these integral
formulation techniques by including the case of homogeneous anisotropic materials.
More recently Kusuma extending further these integral formulation techniques by
including the case of inhomogeneous anisotropic materials. Since the flexibility on the
integral formulation method can be applied not only on the alluvial valleys at the
surface can also be applied for the materials buried deep down from the surface.

This paper studied the ground amplification of the seismic wave through
inhomogeneous anisotropic materials buried down the earth surface. Some
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terminology, backgound and construction of the model are discused in section 2. In
section 3 the problem formulation of integral equation are developed. Section 4
provides the numerical results for the simulation and test problem.

GROUND MOTION ABOVE INHOMOGENEOUS ANISOTROPIC DEPOSIT
MATERIALS

Using Cartesian coordinates system Ox;x,x5, let’s consider an anisotropic elastic half
space occupying the region x, > 0 as illustrated in figure 1. The half space here is
divided into two regions in which the first region contains a homogeneous isotropic

material with shear moduli ui(jl):/lg) and the second region contains an
inhomogeneous anisotropic deposit material with the shear moduli uff):

2
Agf)(afz)xl +aPx, + agz)) . Both materials are assumed to adhere rigidly to each
other so that the displacement and stress are continuous across the interface boundary
between the first and the second regions and the constants in the shear moduli satisfy
the symmetry conditions A5 = A% and A5 = A%,

Let u( and u(® be the displacement in the x5 direction in the half space of earth
and the deposit materials respectively. For the propagation of horizontally polarizes
SH waves, the displacement satisfies the equations of motion

) 0%uD _ o 0*u® B
U gxdx;, 10 otz
for the region 1 and

2 9u@ 2924
19 (0 o+ o) B = 0 (P o+ o) T, @
for region 2. Here p(()l) and p(()z) are constants and denote the density of the materials
in region 1 and 2 respectively, t denotes the time and repeated Latin subscripts denote
summation from 1 to 2.

In order to generate a wave amplification, it is necessary assuming the
displacement take the form u® (x;, x,) = v (x;, x,) exp (wt) and u® (x;, x,) =
v® (x4, x,) exp (wt). Equation (1) and (2) will be reduced to

@ *v®

-4 2y =0 3
Y axiaxj pO Wy ' ( )
G, 29v®
@ @ 2 2
a—xillij (0(1 X1 +ta, ' x; +a; ) axj l+
2
p(()z)a)2 (aiz)xl + agz)xz + agz)) v® =0, (4)

Our interest is a plane wave of unit amplitude which propagates toward the
surface of the elastic half space

X X
v = expw (t + 24 —2), (5)
c,  Cy
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where ¢; = B/ siny;, ¢, = fM/cosy;, BD denotes the velocity of the incident
waves and y; denotes the angle of the incident wave. Since v,(l) in (5) propagates in

the first material, it must satisfy equation (3) so that

W12 A0sinzy, + 220siny, cos y; + A$)cos?y,
@] = @ . (6)
Po

Furthermore, in the case when region 1 and 2 are occupied by the same materials.
The traction free condition on x, = 0 should be hold. These mean, there are reflected

wave v}?) which take the form
X X
v}gl) = exp w <t +2 - —2) (7

Thus if there are no irregularities, the free field solution of the displacement can
be written as

v(gl) = v,(l) + v}gl). (8)
The stresses are given by

av(l)
1 _ 4,
O30 = Ay dx; ' ©)

s0 that the stress a2’ onx, = 0 is

02(;) — <ﬁ + ﬂ) exp [Lw (t + ﬂ)] + <ﬁ — Q) exp [Lw (t + %)] (10)

Cq Cp C1 dqy da 1
This stress will be zero for all times t if
di = ¢, (11)
(1)
1 1 24
— 21 (12)

d_z B 3 /1212)C1'
These equations serves to provide d, in terms of the unkwown quantities c,, ¢,
Agll) and Aglz). Note that if (7) is substituted into (3) then since it represents a solution
to (3) it follows that
® ® 1
Ay _ 221, +/122 — p(l) (13)
C12 C1d2 d% 0
and if (11) is used to substitute for 1/d, in (13) and then into (6) so that (12) ensures
(7) is a solution to (3) on the assumption that (5) is also solution to (3).

Let d;, = B'/sinygand d, = B/ cosygr where y; is the angle of the reflection,
then

da _ tan(y;)

di 1+ 2(/1512)//1212))tan(y,)’
and once yy has been determined from this equation, the wave speed S'of the
reflected wave may be readily determined from equation B' = d, sin(yz).

To include the influence of the inhomogeneous anisotropic deposit materials in
region 2, the solution for the exterior of the deposit is put in the form

v® = 4 D, (15)

tan(yz) = (14)
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in which v,§1> is the displacement due to the diffracted waves. In this region 2, the

displacement v@® = v{? will be caused by the refracted waves.

INTEGRAL EQUATION

Proceeding further as in Clements and Larsson for the region R, with boundary ¢,
and outward pointing normal components n, and n,, the integral equation
corresponding to (3) is

ww®(a, b) =j [lij
C1

where t =1 if (a,b) € R, and 0 <t <1 if (a,b) € C,. The fundamental solution
of V(1 is given by

) av®
nv® — 29 —niV(l)l ds, (16)
x]' 6x]

@ = iK(l) [Hg (v(l)R(l)) + H? (V(l)ﬁ(l))]a (17)
where
1
A(l) 21(1) 2

R = [(x; = a)? + =5 (¥, = b)? = =35 (x; — ) (x, = b)| (18)

A A

22 22
2
A(l) 21(1)
R = [(x; —a)2 + (%) (rz = b)? = —g3- Gy — @) (o, — b) +
/122 /122

1

1(1)1(1) _ 1(1)2 2
(x; + b)? ( IR (19)

122
i
KD = N (20)
AP35 - ag)
1

\—/(1) — [pél)sz(l)]z, (21)

and HZ denotes the Hankel function of the second kind of order zero.
Furthermore, for the region R, with boundary C, and outward pointing normal
components n,; and n,, the integral equation corresponding to (6) is

@), _ @( @ @ @2VD o
K®v#)(a,b) = A (al X1+ a,” x, + ag ) —n;v'? —
o2 0x;

av(z)
AEJZ.)(aiz)Xl + (Zgz)xz +a§2))2 o nlv(Z)l ds, (22)
j
where

-1
@ = i(aiz)xl + agz)xz + aéz)) H? (V(Z)R(Z)), (23)

N =

A(Z) 21(2)
R® = |(x, — a)? + ﬁ(x2 —b)? - /1(5 (e —a)(x; — b)] . (24)

22 22
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2 (2 2
v® = [ po w25y ] (25)
(2),(2) @2
/111 /122 - /112
Here, the value of K3 may be determined by the help of solution of (4)
-1
w® =L (aPx, +aPx, + o) HZ(VsD), (26)
where
(2) (2) 2
2% 217 2
22 22

Thus using (26) in (22) in we obtain

K® = [w®(a,b)] ] 1P @Px; + aPx, + Py ——nw® —
C; J

(
1D @@, + P, + @2
By applying equation (16) and its fundamental solution (17) in the region 1
(outside of the deposited materials) then the only non-zero integral is the integral over
the deposited materials interface boundary (Sommerfeld radiation condition). If we
denote this interface boundary as curve ¢, and deposited materials free boundary as
Cr and specifying the normal components n, and n, pointing outward of the
deposited materials boundary, thus (16) and (22) on the deposited materials boundary
are

2)
J

: niV(z)l ds, (28)

1 [ 1AL,
- .G — (1)
217( )(a,b)—j 2 ——

av(l)
RSYC) I € e § 7€) 2
o 5%, n;v Aij 5%, n;V l ds, (29)

and

- oV
2), (2 2 2
K@[v®(a,b)] = j lgj)(ai D, + ag )%, +0£§ ))za_niv(z) -
C14+Cr - Xj

av(z)
1D (@@, + aPx, + a§2))zﬁniv(2)l is. (30)

]
The equation (29) and (30) together with the continuity equations

v = @) (31)
617(1) 2 617(2)
1 _ 2 2 2 2
NN S R €
and traction free boundary conditionon x, =0
1@(,@ ) @\20v?
i (al Xp+ay X, +oag ) n; =0, (33)

6xj
may be used to solved for displacement and stress over the interface boundary €; and
displacement along traction free surface x, = 0. Once this has been done, we can
obtain the value of the displacement v and/or v® at all points (a, b) in the half
space x, > 0 through equation (16) and (22).
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NUMERICAL RESULTS

In order to verify the acuracy of the numerical method, we consider a semi circular
deposit with a unit radius. The material deposit here is defined by non-dimensional
quantities which satisfy equation (x; —2)? + (x, + 1)2 < 1, and x, < —1 (Figure

2). Furthermore, suppose that the materials properties are non dimensional quantities
A2 08, @, i, af?, @ =12 and using the normalised frequency
w
=g
where B is given by (6), then the numerical results are ready to be calculated.

Using the boundary element method by using 80 segments on semi circular
deposit boundary and 70 segments on the free surface boundary, we obtain the
numerical results as shown in figure 3 up to figure 5.

Figure 3 shows the ground amplification obtained using materials specification are
AW =012 2D =000 a3 =012 p{" =300 2% =002 2% =000,
A2 =002, p,® =200, a (2) =0.00, 2 = 0.00, «” = 1.00 and incident wave
angle y; = 0°.

Figure 4 shows the ground amplification obtained using materials specification are
AW =012 2D =000 a3 =012 p{" =300 2% =002 2% =000,
A2 =002, p,® =200, a§2) =050, 2 = 0.00, «” = 0.00 and incident wave
angle y; = 0°.

Figure 5 shows the ground amplification obtained using materials specification are
AW =012 2D =000 a3 =012 p{’ =300 2% =002 2% =000,
A2 =002, p,® =200, a§2) =050, 2 = 0.00, a” = 0.00 and incident wave
angle y; = 30°,

(34)

a
Xy -
. |
Region 1 Region 2
{Deposit)
[
Incident SH wave Reflected SH wave

Figure 1: Incident and reflected waves on deposit materials and surrounding
half-space
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Figure 2: Effect of inhomogeneous deposit materials with y; = 0" and y; = 30°
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Figure 4: Effect of inhomogeneous semi-circular deposit materials with y, = 0’
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Figure 5: Effect of inhomogeneous semi-circular deposit materials with y, = 30°

CONCLUSION

The results in figure 3 up to figure 5 show that amplification effects are significantly
influenced by the materials specification and the angle of the incident waves. The
flexibility of the boundary integral element methods is an advantage in dealing with
irregularities of the deposit materials. For such kind of deposit materials buried down
inside the earth, the method described above can be directly used to obtain the
amplification effect.
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