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ABSTRACT 

 
Ground amplification effect due to incident plane surface horizontal waves 
through anisotropic elastic materials is studied. Mathematical formulation over 
the modeled earth's and deposit materials buried down in the earth are 
transformed into integral equations. These integral equations altogether with 
the boundary condition and continuity equation are then simulated and solved 
numerically. The solution of these amplification effects over the simulation 
half circular inhomogeneous materials deposit are shown graphically. 
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INTRODUCTION 
The ground amplification of seismic wave on alluvial valleys have been studied by 
numerous authors. Bravo et al, Trifunac, Sánchez-Sesma and Esquivel, Wong and 
Jennings, Wong and Trifunac, Wong et al. Integral equation formulations have been 
found to be particularly useful in obtaining numerical solutions to problems of this 
type. In particular, Wong and Jennings have used singular integral equations to solve 
the problem of scattering and diffraction of incident surface horizontaly (SH) waves 
by canyons of arbitrary cross section. Also Bravo  extended the method by 
considering stratified alluvial deposits. Clements and Larsson extending these integral 
formulation techniques by including the case of homogeneous anisotropic materials. 
More recently Kusuma extending further these integral formulation techniques by 
including the case of inhomogeneous anisotropic materials. Since the flexibility on the 
integral formulation method can be applied not only on the alluvial valleys at the 
surface can also be applied for the materials buried deep down from the surface.    
 This paper studied the ground amplification of the seismic wave through 
inhomogeneous anisotropic materials buried down the earth surface. Some 
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terminology, backgound and construction of the model are discused in section 2. In 
section 3 the problem formulation of integral equation are developed.  Section 4 
provides the numerical results for the simulation and test problem.   
 
 
GROUND MOTION ABOVE INHOMOGENEOUS ANISOTROPIC DEPOSIT 
MATERIALS  
Using Cartesian coordinates system ܱݔଵݔଶݔଷ, let’s consider an anisotropic elastic half 
space occupying the region ݔଶ > 0 as illustrated in figure 1. The half space here is 
divided into two regions in which the first region contains a homogeneous isotropic 
material with shear moduli ߤ௜௝

(ଵ) = ௜௝ߣ
(ଵ) and the second region contains an 

inhomogeneous anisotropic deposit material with the shear moduli  ߤ௜௝
(ଶ) =

௜௝ߣ
(ଶ)ቀߙଵ

(ଶ)ݔଵ + ଶߙ
(ଶ)ݔଶ + ଷߙ

(ଶ)ቁ
ଶ
. Both materials are assumed to adhere rigidly to each 

other so that the displacement and stress are continuous across the interface boundary 
between the first and the second regions and the constants in the shear moduli satisfy 
the symmetry conditions ߣ௜௝

(ଵ) = ௝௜ߣ
(ଵ) and ߣ௜௝

(ଶ) = ௝௜ߣ
(ଶ). 

 Let ݑ(ଵ) and ݑ(ଶ) be the displacement in the ݔଷ direction in the half space of earth 
and the deposit materials respectively. For the propagation of horizontally polarizes 
SH waves, the displacement satisfies the equations of motion 

௜௝ߣ
(ଵ) ߲ଶݑ(ଵ)

௝ݔ௜߲ݔ߲
= ଴ߩ

(ଵ) ߲ଶݑ(ଵ)

ଶݐ߲ ,                                                    (1) 

for the region 1 and 
߲
௜ݔ߲

ቈߣ௜௝
(ଶ) ቀߙଵ

(ଶ)ݔଵ + ଶߙ
(ଶ)ݔଶ + ଷߙ

(ଶ)ቁ
ଶ (ଶ)ݑ߲

௝ݔ߲
቉ = ଴ߩ 

(ଶ) ቀߙଵ
(ଶ)ݔଵ + ଶߙ

(ଶ)ݔଶ + ଷߙ
(ଶ)ቁ

ଶ ߲ଶݑ(ଶ)

ଶݐ߲
, (2) 

for region 2. Here ߩ଴
(ଵ) and ߩ଴

(ଶ) are constants and denote the density of the materials 
in region 1 and 2 respectively, ݐ denotes the time and repeated Latin subscripts denote 
summation from 1 to 2. 
 In order to generate a wave amplification, it is necessary assuming the 
displacement take the form ݑ(ଵ)(ݔଵ,ݔଶ) = (ଶݔ,ଵݔ)(ଶ)ݑ and  (ݐ߱ߡ) exp (ଶݔ,ଵݔ)(ଵ)ݒ =
 Equation (1) and (2) will be reduced to .(ݐ߱ߡ) exp (ଶݔ,ଵݔ)(ଶ)ݒ

௜௝ߣ
(ଵ) ߲ଶݒ(ଵ)

௝ݔ௜߲ݔ߲
+ ଴ߩ

(ଵ)߱ଶݒ(ଵ) = 0,                                                  (3) 

߲
௜ݔ߲

ቈߣ௜௝
(ଶ)ቀߙଵ

(ଶ)ݔଵ + ଶߙ
(ଶ)ݔଶ + ଷߙ

(ଶ)ቁ
ଶ (ଶ)ݒ߲

௝ݔ߲
቉ + 

଴ߩ 
(ଶ)߱ଶቀߙଵ

(ଶ)ݔଵ + ଶߙ
(ଶ)ݔଶ + ଷߙ

(ଶ)ቁ
ଶ
(ଶ)ݒ = 0.                    (4) 

 Our interest is a plane wave of unit amplitude which propagates toward the 
surface of the elastic half space 

ூݒ
(ଵ) = exp ߱ߡ ൬ݐ +

ଵݔ
ܿଵ

+
ଶݔ
ܿଶ
൰ ,                                                (5) 
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where ܿଵ = /(ଵ)ߚ sin ூߛ , ܿଶ = /(ଵ)ߚ cosߛூ  denotes the velocity of the incident  (ଵ)ߚ  ,
waves and  ߛூ  denotes the angle of the incident wave. Since ݒூ

(ଵ) in (5) propagates in 
the first material, it must satisfy equation  (3) so that 

൧ଶ(ଵ)ߚൣ =
ଵଵߣ

(ଵ)sinଶߛூ + ଵଶߣ2
(ଵ)sin ߛூ cos ூߛ + ଶଶߣ

(ଵ)cosଶߛூ
଴ߩ

(ଵ) .                         (6) 

 Furthermore, in the case when region 1 and 2 are occupied by the same materials. 
The traction free condition on  ݔଶ = 0 should be hold. These mean, there are reflected 
wave  ݒோ

(ଵ) which take the form 

ோݒ
(ଵ) = exp ߱ߡ ൬ݐ +

ଵݔ
݀ଵ
−
ଶݔ
݀ଶ
൰ .                                                (7) 

 Thus if there are no irregularities, the free field solution of the displacement can 
be written as 

ைݒ
(ଵ) = ூݒ

(ଵ) + ோݒ
(ଵ).                                                     (8) 

 The stresses are given by 

௜ଷߪ
(ଵ) = ௜௝ߣ

(ଵ) (ଵ)ݒ߲

௝ݔ߲
,                                                      (9) 

so that the stress ߪଶଷ
(ଵ) on ݔଶ = 0  is 

ଶଷߪ
(ଵ) = ൬ఒమభ

(భ)

௖భ
+ ఒమమ

(భ)

௖మ
൰ exp ቂ߱ߡ ቀݐ + ௫భ

௖భ
ቁቃ+ ൬ఒమభ

(భ)

ௗభ
− ఒమమ

(భ)

ௗమ
൰exp ቂ߱ߡ ቀݐ + ௫భ

ௗభ
ቁቃ .           (10)                           

 This stress will be zero for all times t if 
݀ଵ = ܿଵ,                                                                          (11) 
1
݀ଶ

=
1
ܿଶ

+
ଶଵߣ2

(ଵ)

ଶଶߣ
(ଵ)ܿଵ

.                                                         (12) 

 These equations serves to provide ݀ଶ in terms of the unkwown quantities  ܿଶ, ܿଵ,  
ଶଵߣ

(ଵ) and ߣଶଶ
(ଵ).  Note that if (7) is substituted into (3) then since it represents a solution 

to (3) it follows that 
ଵଵߣ

(ଵ)

ܿଵଶ
−

ଵଶߣ2
(ଵ)

ܿଵ݀ଶ
+
ଶଶߣ

(ଵ)

݀ଶଶ
= ଴ߩ

(ଵ),                                               (13) 

and if  (11) is used to substitute for 1/݀ଶ in (13) and then into (6) so that (12) ensures 
(7) is a solution to (3) on the assumption that (5) is also solution to (3). 
 Let ݀ଵ = ோ and  ݀ଶߛ sin/′ߚ = ோߛ ோ whereߛ cos /′ߚ  is the angle of the reflection, 
then 

tan(ߛோ) =
݀ଶ
݀ଵ

=
tan(ߛூ)

1 + 2ቀߣଵଶ
(ଵ)/ߣଶଶ

(ଵ)ቁtan(ߛூ)
,                                  (14) 

and once  ߛோ  has been determined from this equation, the wave speed ߚ′ of the 
reflected wave may be readily determined from equation  ߚ′ = ݀ଵ sin(ߛோ). 
 To include the influence of the inhomogeneous anisotropic deposit materials in 
region 2, the solution for the exterior of the deposit is put in the form 

(ଵ)ݒ = ைݒ
(ଵ) + ஽ݒ

(ଵ),                                                       (15) 
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in which ݒ஽
(ଵ) is the displacement due to the diffracted waves. In this region 2, the 

displacement ݒ(ଶ) = ோݒ
(ଶ) will be caused by the refracted waves. 

 
 
INTEGRAL EQUATION 
Proceeding further as in Clements and Larsson for the region ℛଵ with boundary ࣝଵ 
and outward pointing normal components ݊ଵ and  ݊ଶ, the integral equation 
corresponding to (3) is 

,ܽ)(ଵ)ݒ߬ ܾ) = න ቈߣ௜௝
(ଵ) ߲ܸ(ଵ)

௝ݔ߲
݊௜ݒ(ଵ) −

஼భ
௜௝ߣ

(ଵ) (ଵ)ݒ߲

௝ݔ߲
݊௜ܸ(ଵ)቉  ݀ܵ,                  (16) 

where ߬ = 1 if (ܽ,ܾ) ∈  ℛଵ and 0 < ߬ < 1 if  (ܽ,ܾ) ∈  ࣝଵ. The fundamental solution 
of  ܸ(ଵ) is given by 

ܸ(ଵ) =
ߡ
ܭ4

(ଵ) ቂܪ଴ଶ ቀv (ଵ)ܴ(ଵ)ቁ+ ଴ଶܪ ቀv (ଵ)
R

(ଵ)ቁቃ,                            (17) 

where    

ܴ(ଵ) = ൥(ݔଵ − ܽ)ଶ +
ଵଵߣ

(ଵ)

ଶଶߣ
(ଵ) ଶݔ) − ܾ)ଶ −

ଵଶߣ2
(ଵ)

ଶଶߣ
(ଵ) ଵݔ) − ଶݔ)(ܽ − ܾ)൩

ଵ
ଶ

,                  (18) 

R
(ଵ) = ቎(ݔଵ − ܽ)ଶ + ൭

ଵଶߣ
(ଵ)

ଶଶߣ
(ଵ)൱

ଶ

ଶݔ) − ܾ)ଶ −
ଵଶߣ2

(ଵ)

ଶଶߣ
(ଵ) ଵݔ) − ଶݔ)(ܽ − ܾ) + 

ଶݔ) + ܾ)ଶ ൭
ଵଵߣ

(ଵ)ߣଶଶ
(ଵ) − ଵଶߣ

(ଵ)మ

ଶଶߣ
(ଵ)మ ൱൩

ଵ
ଶ

,                                                             (19) 

(ଵ)ܭ =
ଶଶߣ

(ଵ)

ଵଵߣ
(ଵ)ߣଶଶ

(ଵ) − ଵଶߣ
(ଵ)మ ,                                                                                               (20) 

v (ଵ) = ቂߩ଴
(ଵ)߱ଶܭ(ଵ)ቃ

ଵ
ଶ,                                                                                                  (21) 

and  ܪ଴  
ଶ denotes the Hankel function of the second kind of order zero. 

 Furthermore, for the region ℛଶ with boundary ܥଶ and outward pointing normal 
components ݊ଵ and ݊ଶ, the integral equation corresponding to  (6) is 

,ܽ)(ଶ)ݒ(ଶ)ܭ ܾ) = න ቈߣ௜௝
(ଶ)ቀߙଵ

(ଶ)ݔଵ + ଶߙ
(ଶ)ݔଶ + ଷߙ

(ଶ)ቁ
ଶ ߲ܸ(ଶ)

௝ݔ߲
݊௜ݒ(ଶ) −       

஼మ
         

௜௝ߣ
(ଶ)(ߙଵ

(ଶ)ݔଵ + ଶߙ
(ଶ)ݔଶ ଷߙ+

(ଶ))ଶ
(ଶ)ݒ߲

௝ݔ߲
݊௜ܸ(ଶ)቉  ݀ܵ,                 (22) 

where 

ܸ(ଶ) = ఐ
ସ
ቀߙଵ

(ଶ)ݔଵ + ଶߙ
(ଶ)ݔଶ + ଷߙ

(ଶ)ቁ
ିଵ
଴ଶܪ ቀv (ଶ)ܴ(ଶ)ቁ,                            (23) 

ܴ(ଶ) = ൥(ݔଵ − ܽ)ଶ +
ଵଵߣ

(ଶ)

ଶଶߣ
(ଶ) ଶݔ) − ܾ)ଶ −

ଵଶߣ2
(ଶ)

ଶଶߣ
(ଶ) ଵݔ) − ଶݔ)(ܽ − ܾ)൩

ଵ
ଶ

,       (24) 
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v (ଶ) = ൥
଴ߩ

(ଶ)߱ଶߣଶଶ
(ଶ)

ଵଵߣ
(ଶ)ߣଶଶ

(ଶ) − ଵଶߣ
(ଶ)మ൩

ଵ
ଶ

.                                                                             (25) 

 Here, the value of ܭ(ଶ) may be determined by the help of solution of (4) 

(ଶ)ݓ = ఐ
ସ
ቀߙଵ

(ଶ)ݔଵ + ଶߙ
(ଶ)ݔଶ + ଷߙ

(ଶ)ቁ
ିଵ
)଴ଶܪ v (ଶ)ܵ(ଶ)),                      (26) 

where 

ܵ(ଶ) = ൥ݔଵଶ +
ଵଵߣ

(ଶ)

ଶଶߣ
(ଶ) ଶݔ

ଶ −  
ଵଶߣ2

(ଶ)

ଶଶߣ
(ଶ) ଶ൩ݔଵݔ

ଵ
ଶ

.                                             (27) 

 Thus using (26) in (22) in we obtain 

(ଶ)ܭ = ൧(ܾ,ܽ)(ଶ)ݓൣ
ିଵන ቂߣ௜௝

(ଶ)(ߙଵ
(ଶ)ݔଵ + ଶߙ

(ଶ)ݔଶ ଷߙ +
(ଶ))ଶ

߲ܸ(ଶ)

௝ݔ߲
݊௜ݓ(ଶ) −      

஼మ
         

௜௝ߣ
(ଶ)(ߙଵ

(ଶ)ݔଵ + ଶߙ
(ଶ)ݔଶ ଷߙ +

(ଶ))ଶ
(ଶ)ݓ߲

௝ݔ߲
݊௜ܸ(ଶ)቉  ݀ܵ,        (28) 

 By applying equation (16) and its fundamental solution (17) in the region 1 
(outside of the deposited materials) then the only non-zero integral is the integral over 
the deposited materials interface boundary (Sommerfeld radiation condition). If we 
denote this interface boundary as curve ࣝଵ and deposited materials free boundary as 
ࣝி and specifying the normal components ݊ଵ and  ݊ଶ pointing outward of the 
deposited materials boundary, thus (16) and (22) on the deposited materials boundary 
are 

1
2 ݒ

(ଵ)(ܽ, ܾ) = න ቈߣ௜௝
(ଵ) ߲ܸ(ଵ)

௝ݔ߲
݊௜ݒ(ଵ) −

஼భ
௜௝ߣ

(ଵ) (ଵ)ݒ߲

௝ݔ߲
݊௜ܸ(ଵ)቉  ݀ܵ,                 (29) 

and 

൧(ܾ,ܽ)(ଶ)ݒൣ(ଶ)ܭ = න ቂߣ௜௝
(ଶ)(ߙଵ

(ଶ)ݔଵ + ଶߙ
(ଶ)ݔଶ ଷߙ+

(ଶ))ଶ
߲ܸ(ଶ)

௝ݔ߲
݊௜ݒ(ଶ) −       

஼భା஼ಷ
       

௜௝ߣ
(ଶ)(ߙଵ

(ଶ)ݔଵ + ଶߙ
(ଶ)ݔଶ + ଷߙ 

(ଶ))ଶ
(ଶ)ݒ߲

௝ݔ߲
݊௜ܸ(ଶ)቉  ݀ܵ.        (30) 

 The equation (29) and (30) together with the continuity equations 
(ଵ)ݒ =  (31)                                                               ,(ଶ)ݒ

௜௝ߣ
(ଵ) (ଵ)ݒ߲

௝ݔ߲
݊௜ = ௜௝ߣ

(ଶ)ቀߙଵ
(ଶ)ݔଵ + ଶߙ

(ଶ)ݔଶ + ଷߙ
(ଶ)ቁ

ଶ (ଶ)ݒ߲

௝ݔ߲
݊௜ ,                       (32) 

and traction free boundary condition on ݔଶ = 0 

௜௝ߣ
(ଶ)ቀߙଵ

(ଶ)ݔଵ + ଶߙ
(ଶ)ݔଶ + ଷߙ

(ଶ)ቁ
ଶ (ଶ)ݒ߲

௝ݔ߲
݊௜ = 0,                               (33) 

may be used to solved for displacement and stress over the interface boundary ࡯૚ and 
displacement along traction free surface ࢞૛ = ૙. Once this has been done, we can 
obtain the value of the displacement ࢜(૚) and/or ࢜(૛) at all points (܊,܉) in the half 
space ࢞૛ > 0 through equation (16) and (22). 
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NUMERICAL RESULTS 
In order to verify the acuracy of  the numerical method, we consider a semi circular 
deposit with a unit radius. The material deposit here is defined by non-dimensional 
quantities which satisfy equation   (ݔଵ − 2)ଶ + ଶݔ) + 1)ଶ ≤ 1, and ݔଶ ≤ −1 (Figure 
2). Furthermore, suppose that the materials properties are non dimensional quantities 
௜௝ߣ

(Ω), ߩ଴
(Ω), ଵߙ 

(Ω), ଶߙ
(Ω),ߙଷ

(Ω), Ω = 1,2 and using the normalised frequency  

ߟ =
߱

(ଵ)ߚߨ ,                                                             (34) 

where ߚ(ଵ) is given by (6), then the numerical results are ready to be calculated. 
 Using the boundary element method by using 80 segments on semi circular 
deposit boundary and 70 segments on the free surface boundary, we obtain the 
numerical results as shown in figure 3 up to  figure 5.  
 Figure 3 shows the ground amplification obtained using materials specification are 
ଵଵߣ

(ଵ) = ଵଶߣ  ,0.12
(ଵ) = ଶଶߣ  ,0.00

(ଵ) = ଴ߩ  ,0.12
(ଵ) = ଵଵߣ ,3.00

(ଶ) = ଵଶߣ   ,0.02
(ଶ) = 0.00, 

ଶଶߣ 
(ଶ) = ଴(ଶ)ߩ  ,0.02 = ଵߙ ,2.00

(ଶ) = ଶߙ ,0.00
(ଶ) = ଷߙ ,0.00

(ଶ) = 1.00  and incident wave 
angle ߛூ = 0଴. 
 Figure 4 shows the ground amplification obtained using materials specification are 
ଵଵߣ

(ଵ) = ଵଶߣ  ,0.12
(ଵ) = ଶଶߣ  ,0.00

(ଵ) = ଴ߩ  ,0.12
(ଵ) = ଵଵߣ ,3.00

(ଶ) = ଵଶߣ   ,0.02
(ଶ) = 0.00, 

ଶଶߣ 
(ଶ) = ଴(ଶ)ߩ  ,0.02 = ଵߙ ,2.00

(ଶ) = ଶߙ ,0.50
(ଶ) = ଷߙ ,0.00

(ଶ) = 0.00  and incident wave 
angle ߛூ = 0଴. 
 Figure 5 shows the ground amplification obtained using materials specification are 
ଵଵߣ

(ଵ) = ଵଶߣ  ,0.12
(ଵ) = ଶଶߣ  ,0.00

(ଵ) = ଴ߩ  ,0.12
(ଵ) = ଵଵߣ ,3.00

(ଶ) = ଵଶߣ   ,0.02
(ଶ) = 0.00, 

ଶଶߣ 
(ଶ) = ଴(ଶ)ߩ  ,0.02 = ଵߙ ,2.00

(ଶ) = ଶߙ ,0.50
(ଶ) = ଷߙ ,0.00

(ଶ) = 0.00  and incident wave 
angle ߛூ = 30଴. 
 

 
 

Figure 1: Incident and reflected waves on deposit materials and surrounding 
half-space 
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Figure 2: Effect of inhomogeneous deposit materials with ࡵࢽ = ૙° and ࡵࢽ = ૜૙° 
 

 
 

Figure 3: Effect of inhomogeneous semi-circular deposit materials with ࡵࢽ = ૙° 
 

 
 

Figure 4: Effect of inhomogeneous semi-circular deposit materials with ࡵࢽ = ૙° 
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Figure 5: Effect of inhomogeneous semi-circular deposit materials with ࡵࢽ = ૜૙° 
 
 
CONCLUSION 
The results in figure 3 up to figure 5 show that amplification effects are significantly 
influenced by the materials specification and the angle of the incident waves. The 
flexibility of the boundary integral element methods is an advantage in dealing with 
irregularities of the deposit materials. For such kind of deposit materials buried down 
inside the earth, the method described above can be directly used to obtain the 
amplification effect.  
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