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Abstract

The paper is devoted to the asymptotic theory for a mathematical model of dendritic
crystal solidification. A single needle dendrite is considered from an under-cooled
pure melt with temperature T∞ and it is supposed to grow under the effect of con-
vection motion induced by an oscillating external source with a small magnitude
U∞. By assuming that the Reynolds number Re is small, and using the analyti-
cal method of matched asymptotic expansions, we can generate the globally valid
asymptotic expansion solutions of the flow field in the whole physical domain. This
enables us to explore the effect of the externally applied convection motion on the
crystal growth and its pattern formation.
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1. Introduction

Dendritic solidification of axisymmetric needle crystal is one of the fundamental subjects
in the areas of condensed matter physics and modern material science in the past several
decades [1]–[10]. This challenging subject has raised significant issues that involve
not only the experimental results in physics but also the analytical methods for solving
problems in mathematics [5]–[10].

The first important result in dendritic growth was Ivantsov’s exact similarity solution
published in 1947 [1]. It describes the steady, isothermal, paraboloidal axisymmetric,
needle-like crystal growth with zero surface tension on the interface between the solid
phase and liquid phase. The mathematical solution contributes a fundamental basis
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for further research works such as the perturbed dendritic growth with nonzero surface
tension. The next significant contribution was the experimental results by Schaefer,
Glicksman andAyers (1975) [4]. These researchers made extensive, detailed experiments
and correctly defined the pattern selection problem for realistic dendritic growth: the
growth velocity of the dendrite-tip is a uniquely determined function of the growth
condition and the properties of material.

This paper is an investigation dealing with the interaction of external convection and
dendritic growth. The experimental observations have shown that convective motion
in melt may have a significant effect on the instability mechanisms, and consequently,
affects the micro-structure formation at the interface in dendritic solidification. Convec-
tive motion in melt can be induced by a variety of sources such as the density change
during phase transition; the buoyancy effect due to the presence of gravity field; an
applied external flow or other sources.

With the presence of convection, the governing mathematical model becomes more
complicated and difficult to solve in the sense that the hydrodynamics must be introduced
into the system. In the literature, the steady dendritic growth in an external flow was
studied by a number of researchers, such asAnanth & Gill (1991) [11], Dash & Gill (1984)
[12], Saville & Beaghton (1988) [13] numerically and analytically. These researchers
considered the special case of zero surface tension, and obtained the similarity solutions
that based on some simplified models of Navier-Stokes equations, including Stokes flow
model, and Oseen flow model, etc. As long as the Navier-Stokes equations are adopted,
they are only approximate solutions. However, as we know that the Stokes model is
only a good approximation to the Navier-Stokes model in the near field, whereas the
Oseen model a good approximation in the far field. Therefore, their solutions cannot be
considered as good approximations in the whole physical domain, as far as the Navier-
Stokes model is concerned. Moreover, the approaches adopted by these researchers
neither allow the generation of the next-order approximations, nor give an estimation of
error between their solutions and the exact solutions.

An uniformly valid asymptotic expansion solution, based on the Navier-Stokes model,
for large Prandtl number, was first introduced by Xu [7]–[8]. On the basis of Xu’s work,
we attempt to generate an uniformly valid asymptotic solution for the problem that in-
volves a small Reynolds number under the effect of convection motion induced by an
oscillatory external flow. Our results reveal that even for the case of zero surface tension,
the system no longer allows an exact similarity solution. When we further consider a
small Reynolds number, the system under the effect of convective motion allows a nearly
similarity solution which involves

(1) the perturbed term dependent of the under-cooling temperature T∞ and the con-
vection magnitude U∞;

(2) an error of O
(

Re

ln(1/Re)

)
.
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2. Mathematical Formulation

The dendritic evolution of needle crystal during solidification has been under intensively
study by physicists and material scientists for several decades. We shall confine our
attention to the simpler case of a single needle dendrite from an under-cooled pure
melt in the negative Z-axis direction with a constant average tip velocity V . The major
transport process in a pure melt is heat conduction. The under-cooling temperature of the
melt is T∞. The melt is considered as an incompressible Newtonian fluid and is assumed
to be infinite in extent. The dendrite is supposed to grow in an oscillating external flow,
along the Z-axis in the far field ahead of the tip with a small amplitude U∞, with zero
surface tension on the interface between liquid and solid states. Assume that the thermal
diffusivity κT and the heat capacity cp of the liquid state are the same as those of the
solid state, the mass density of liquid state is ρ and the mass density of solid state is ρs .
Both the tip growth velocity V and the flow velocity U∞ are measured in laboratory
frame. Let U be the absolute velocity field of the fluid and T be the temperature field in
the liquid melt.

We first present the general mathematical formulation of the needle crystal growth
with convection and in the next section we further reduce our system and shall consider
the effect of the oscillatory external source. The governing equations consisting of the
continuity equation, the Navier-Stokes equations and the heat conduction equations are
as follows:

Mass conservation equation
∇ · U = 0.

Momentum equations Applying the Boussinesq approximation, the Navier-Stokes equa-
tions become

∂U
∂t

+ (U · ∇)U = − 1

ρ
∇P + ν ∇2U + β(T − T∞) geZ.

The first term in the R.H.S. of the above equation is the pressure term, the second
term is the viscous stress term and the third term is the buoyancy force term. Taking
the curl on both sides of the equation we obtain

∂�

∂t
+ ∇ × (� × U) = ν∇2� + ∇ × [β(T − T∞) geZ], � = ∇ × U.

Energy equation for the liquid state

∂T

∂t
+ U · ∇T = κT ∇2T .

Energy equation for the solid state

∂Ts
∂t

= κT ∇2Ts.
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We denote by U the absolute velocity field of the fluid, T the temperature field in the
liquid melt, Ts the temperature field in the solid state, ν the kinematic viscosity, β the
thermal expansion coefficient, P the reduced pressure, g the gravitational acceleration,
eZ the unit vector along the Z-axis.

The boundary conditions are as follows.

(1) In the far field: U = U∞ eZ, and T = T∞.

(2) On the interface, the system is assumed in the local thermodynamical equilibrium
state. Thus the system have to satisfy

(a) Thermodynamical equilibrium condition;

(b) Gibbs-Thomson condition (This condition is that the temperature at each
point on the solid-liquid interface equals the local equilibrium freezing tem-
perature, which depends on the local interface curvature.);

(c) Enthalpy conservation condition;

(d) Total Mass conservation condition;

(e) Continuity condition of tangential component of velocity.

We shall non-dimensionalize the governing equations and the boundary conditions in
order to reduce the complexity of the formulation and next introduce the paraboloidal
coordinate system (ξ, η, θ) for (x, y, z):

x = η2
0 ξη cos θ, y = η2

0 ξη sin θ, z = 1

2
η2

0 (ξ2 − η2),

where the parameter η2
0 is to be determined. It will be seen that this parameter is needed

to normalize the interface shape function, so that the zero-order inner solution has the
interface shape η∗ = 1 for any given under-cooling T∞.

The primary focus of this paper is to investigate the effect of convective motion
induced only by the oscillatory external flow on needle dendritic growth, in the far field
ahead of the tip with a small magnitude U∞. We assume that gravity is taken to be
negligible, the surface tension is assumed to be zero, so the dendrite should be axisym-
metric and convection is only induced by the oscillatory external source. The governing
equations are consisting of the continuity equation, the Navier-Stokes equations and
the heat conduction equations. We express below the complete system in terms of the
paraboloidal coordinates.

Kinematic equation
D2

1
 = −η4
0 (ξ2 + η2) ζ, (2.1)

Vorticity equation

1

Re
D2

1ζ = η4
0 (ξ2 + η2)

∂ζ

∂t
+ 2ζ

η2
0 ξ2η2

∂(
, ξη)

∂(ξ, η)
− 1

η2
0 ξη

∂(
, ζ )

∂(ξ, η)
, (2.2)
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Energy equation for the liquid state

∇2
1T = η4

0 (ξ2 + η2)
∂T

∂t
+ 1

η2
0 ξη

(
∂


∂η

∂T

∂ξ
− ∂


∂ξ

∂T

∂η

)
, (2.3)

where the differential operators are defined as:

D2
1 := ∂2

∂ξ2
+ ∂2

∂η2
− 1

ξ

∂

∂ξ
− 1

η

∂

∂η
,

and

∇2
1 := ∂2

∂ξ2
+ ∂2

∂η2
+ 1

ξ

∂

∂ξ
, +1

η

∂

∂η
.

The boundary conditions are:

1. The far-field conditions: as η → ∞,


 → 1

2
η4

0

(
1 + U∞ exp(iωt)

)
ξ2η2, ζ → 0, T → T∞. (2.4)

2. The smooth tip condition: at ξ = 0,

η′
s(0, t) = 0, ηs(0, 0) = 1. (2.5)

3. On the interface η = ηs(ξ, t), we must have

(a) thermodynamical equilibrium condition:

T = Ts = 0, (2.6)

(b) enthalpy conservation condition:

(∂T

∂η
− η′

s
∂T

∂ξ

)
+ η2

0 (ξηs)
′ + η4

0 (ξ2 + η2
s)

∂ηs
∂t

= 0, (2.7)

(c) mass conservation condition:

(∂


∂ξ
+ η′

s
∂


∂η

)
= η4

0 (ξηs)(ξηs)
′, (2.8)

(d) continuity condition of tangential component of velocity:

(∂


∂η
− η′

s
∂


∂ξ

)
+ η4

0 (ξηs) (ηsη
′
s − ξ) = 0. (2.9)
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3. Matched Asymptotic Expansions

To study the asymptotic expansion solution of flow field for the small Reynolds number
Re = V lT/ν which is equivalent to the case, when the Prandtl number Pr = ν/κT is large.
The entire physical space is divided into two regions, the inner region near the dendrite
and the outer region apart from the dendrite. The asymptotic solution which is valid in
the inner region is called the inner solution, while which is valid in the outer region is
called the outer solution. It will be seen that the inner solution has a different asymptotic
expansion from the outer solution, therefore they should be solved independently and
then be matched in an intermediate region. It is believed that we could find the solution,
therefore we assume there exists such intermediate region and see how the solution looks
like. The matched solution should be a globally valid asymptotic solution in the whole
physical domain.

Zero-order Inner Solution of Flow Field

The well-known Ivantsov solution represents that the dendrite is isothermal and its in-
terface shape is paraboloidal. It should be noted that this similarity solution with zero
surface tension is a particular solution of eqs. (2.1)–(2.3):

T∗ = T∞ + 1

2
η2

0 e
1
2 η2

0 E1

(1

2
η2

0 η2
)
, Ts∗ = 0, η∗ = 1, ζ∗ = 0, 
∗ = 1

2
η4

0 ξ2η2,

(3.1)

where E1(x) is an exponential integral defined by E1(x) :=
∫ ∞

x

e−t /t dt . The parameter

η2
0 is determined by the under-cooling T∞ because −T∞ = b eb E1(b), where b = η2

0/2.
To hunt for the inner region asymptotic expansions around the Ivantsov solution in the
limit as Re → 0 we assume that⎧⎪⎪⎪⎨

⎪⎪⎪⎩

 − 
∗ = ε0(Re) 
0(ξ, η, t) + ε1(Re) 
1(ξ, η, t) + · · · ,

ζ − ζ∗ = ε0(Re) ζ0(ξ, η, t) + ε1(Re) ζ1(ξ, η, t) + · · · ,

T − T∗ = ε0(Re) T0(ξ, η, t) + ε1(Re) T1(ξ, η, t) + · · · ,

ηs − 1 = ε0(Re) h0(ξ, t) + ε1(Re) h1(ξ, t) + · · · ,

(3.2)

where the inner region asymptotic sequence, {ε0(Re), ε1(Re), ε2(Re), · · · }, are to be
determined. In order to obtain the inner region solution, we substitute the expansions
(3.2) into the eqs. (2.1)–(2.3). Then we are able to derive each order of the inner
region expansions successively. We shall first find the velocity field. Accordingly the
temperature field and the interface shape could be obtained subsequently.

The zero-order inner solution of flow field is subject to the system of governing
equations: {

D2
1
0 = −η4

0 (ξ2 + η2) ζ0,

D2
1ζ0 = 0,

(3.3)
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which satisfies the interface boundary conditions at η = 1:


0 = 0,
∂
0

∂η
≈ 0. (3.4)

By solving the system (3.3)–(3.4) we utilize the intermediate variables (σ, τ ):

σ = 1

2
η2

0 ξ2, τ = 1

2
η2

0 η2. (3.5)

Using the new variables induces the new differential operator:

L2 = 1

2η2
0

D2
1 = σ

∂2

∂σ 2
+ τ

∂2

∂τ 2
.

The equations in (3.3) become{
L2
0 = −(σ + τ) ζ0,

L2ζ0 = 0,
(3.6)

respectively. It is known that the equations in (3.6) may allow the following forms of
solutions: ζ0 = f0(τ, t) + σ f1(τ, t) and 
0 = g0(τ, t) + σ g1(τ, t). By substituting
the form of solutions into (3.6) we can deduce the solutions

ζ0 = a0 + b0 τ,


0 =
(
d0 + d1 τ − a0

2
τ 2 − b0

6
τ 3

)
+ σ

[
e0 + (e1 + a0) τ − a0 τ ln τ − b0

2
τ 2

]
,

where a0, b0, d0, d1, e0, e1 are functions of t to be determined. In fact we are able to
find the functions b0, d0, d1, e0, e1 in terms of a0, by applying the boundary conditions
in (3.4). Consequently we could obtain the zero-order inner region solutions

ζ0 = a0(t),


0 = a0(t) ψ,
(3.7)

where

ψ(σ, τ) =
(

− 1

8
η4

0 + 1

2
η2

0 τ − 1

2
τ 2

)
+ σ

[
− 1

2
η2

0 +
(

1 + ln
(1

2
η2

0

))
τ − τ ln τ

]
.

Using the transformations (3.5) we could also write the solution 
0(σ, τ ) into the vari-
ables (ξ, η) such that 
0 = a0(t) ψ(ξ, η), where

ψ(ξ, η) = −1

4
η4

0

{(1

2
η4 − η2 + 1

2

)
− ξ2

[
− η2 ln η2 + η2 − 1

]}
. (3.8)
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The zero-order inner solutions ζ0 and 
0 contain an arbitrary function a0(t). The so-
lutions satisfy the boundary conditions in (3.4) on the interface, but fail to satisfy the
far field conditions at η → ∞. The inner asymptotic expansion solution is not valid
in the far field. In fact, we should consider a different asymptotic expansion solution
which could satisfy all the far field boundary conditions. This solution is called the outer
expansion solution. The inner and the outer expansion solutions would be matched in
an intermediate region and a0(t) could then be determined by matching. We will show
this step by step in the followings.

Zero-order Outer Solution

The zero-order inner solution given by (3.7) contains an undetermined function a0(t).
In fact, the function a0(t) and the zero-order inner expansion coefficient ε0(Re) in (3.2)
could be determined by asymptotically matching the zero-order inner solution with the
zero-order outer solution. Next we shall determine the zero-order outer solution which
is supposed to be valid in the far field.

In the far field when the variables (ξ, η) are large enough, we postulate that ξ =
O

(
1√
Re

)
, η = O

(
1√
Re

)
when Re is small. It is more convenient to introduce the

so-called outer variables (ξ∗, η∗):

ξ∗ = √
Re ξ, η∗ = √

Re η. (3.9)

The outer region asymptotic expansions as Re → 0 are written as⎧⎪⎪⎪⎨
⎪⎪⎪⎩


̂(ξ∗, η∗, t) − 
∗(ξ∗, η∗) = δ0(Re) 
̂0(ξ∗, η∗, t) + δ1(Re) 
̂1(ξ∗, η∗, t) + · · · ,

1

Re2

[
ζ̂ (ξ∗, η∗, t) − ζ∗(ξ∗, η∗)

]
= δ0(Re) ζ̂0(ξ∗, η∗, t) + δ1(Re) ζ̂1(ξ∗, η∗, t) + · · · ,

T̂ (ξ∗, η∗, t) − T∗(ξ∗, η∗) = δ0(Re) T̂0(ξ∗, η∗, t) + δ1(Re) T̂1(ξ∗, η∗, t) + · · · ,

(3.10)
where the outer region asymptotic sequence, {δ0(Re), δ1(Re), δ2(Re), · · · }, are to be
determined. Using the outer variables in (3.9) induces the new differential operator:

D2∗ = 1

Re
D2

1 = ∂2

∂ξ2∗
+ ∂2

∂η2∗
− 1

ξ∗
∂

∂ξ∗
− 1

η∗
∂

∂η∗
. (3.11)

The governing equations (2.1) and (2.2) in terms of the outer variables become

D2∗
̂ = − 1

Re2
η4

0 (ξ2∗ + η2∗) ζ̂ , (3.12)

1

Re2
D2∗ζ̂ = 1

Re3
η4

0 (ξ2∗ + η2∗)
∂ζ̂

∂t
+ 2ζ̂

η2
0 ξ2∗η2∗

(
ξ∗

∂
̂

∂ξ∗
− η∗

∂
̂

∂η∗

)

− 1

η2
0 ξ∗η∗

(∂
̂

∂ξ∗
∂ζ̂

∂η∗
− ∂
̂

∂η∗
∂ζ̂

∂ξ∗

)
,

(3.13)
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which satisfy the boundary condition (2.4) as η∗ → ∞


̂ ≈ 1

Re2

1

2
η4

0

(
1+U∞ exp(iωt)

)
ξ2∗η2∗ = 
∗(ξ∗, η∗)+ 1

Re2

U∞
2

η4
0 exp(iωt) ξ2∗η2∗.

(3.14)
Comparing (3.14) with the expansion of 
̂ in (3.10) induces

δ0(Re) = 1

Re2
(3.15)

and


̂0(ξ∗, η∗, t) = U∞
2

η4
0 ξ2∗η2∗ exp(iωt). (3.16)

It also follows that
ζ̂0(ξ∗, η∗, t) = 0, (3.17)

which satisfies the far field boundary condition in (2.4). Combining (3.15), (3.16) and
(3.17) forms the zero-order outer expansion solution. As we mentioned above we need
this zero-order outer solution because we want to match it with the zero-order inner
solution in order to determine the unknown function a0(t) and the zero-order inner
expansion coefficient ε0(Re). Again, just like what we did in (3.5), it is more convenient
to use the utilized outer variables (σ∗, τ∗) = (η2

0 ξ2∗/2, η2
0 η2∗/2). With this set of new

variables we rewrite the zero-order outer solution δ0 
̂ as

δ0(Re) 
̂0(σ∗, τ∗, t) = 1

Re2
2U∞ σ∗τ∗ exp(iωt). (3.18)

Our purpose is to look for the function a0(t) in (3.7) and the zero-order inner ex-
pansion coefficient ε0(Re) in (3.2). This can be done by matching the zero-order outer
solution (3.18) with the zero-order inner solution ε0 
0 given by (3.7), (3.8) in terms of
the utilized outer variables:

ε0(Re) 
0 = −a0(t)
[
ε0(Re)

1

Re2
ln

1

Re

]
σ∗τ∗

+a0(t)
[
ε0(Re)

1

Re2

] {
− 1

2
τ 2∗ − σ∗τ∗ ln τ∗ + σ∗τ∗

(
1 + ln(

1

2
η2

0)
)}

+a0(t)
[
ε0(Re)

1

Re

] {1

2
η2

0 (τ∗ − σ∗)
}

−a0(t)

8
η4

0

[
ε0(Re)

]
.

(3.19)
The above zero-order inner solution (3.19) contains four terms in descending order of
Re in which Re is chosen to be small. Now we focus on the right hand side of (3.18)
and that of (3.19) and will find that the zero-order outer solution (3.18) could only match
with the first term of the zero-order inner solution (3.19). We set

a0(t) = −2U∞ exp(iωt), (3.20)
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and

ε0(Re) = 1

ln(1/Re)
. (3.21)

The second, the third and the fourth term of the zero-order inner solution in (3.19) remain
unmatched. In fact we need some higher-order outer solutions to match with them. First
we need the first-order outer solution δ1(Re) 
̂1 to match with the second term of the
zero-order inner solution in (3.19). We set

δ1(Re) = ε0(Re)
1

Re2
= 1

Re2 ln(1/Re)
. (3.22)

Next we need the second-order outer solution δ2(Re) 
̂2 to match with the third term of
the zero-order inner solution in (3.19). We set

δ2(Re) = ε0(Re)
1

Re
= 1

Re ln(1/Re)
. (3.23)

Similarly, we can match the fourth term of (3.19) with δ3(Re) 
̂3 in order to find

δ3(Re) = ε0(Re) = 1

ln(1/Re)
. (3.24)

In the above we have exhausted all four terms of the zero-order inner solution and have
found the outer expansion coefficients: δ1(Re), δ2(Re) and δ3(Re). Since we are also
interested in the explicit form of the first-order outer solution δ1(Re) 
̂1 now we go back
to derive the outer solution 
̂1.

First-order Outer Solution

Here we hunt for the first-order outer solution δ1(Re) 
̂1 by asymptotically matching
with some inner solutions. However we find that the first-order outer solution 
̂1 cannot
be completely determined solely by the zero-order inner solution that we have just found
it before. In fact we will see that first-order outer solution 
̂1 contains three terms in
total and one term of which will match with the second term of the zero-order inner
solution in (3.19). The remaining two terms of the first-order outer solution need some
higher-order inner solution for matching. Now we substitute the outer region asymptotic
expansions of 
̂ and ζ̂ in (3.10), into the governing equations (3.12)–(3.13). Comparing
the order of δ1(Re) introduces the governing equations for the first-order outer solution:⎧⎪⎨

⎪⎩
D2∗
̂1 = −η4

0 (ξ2∗ + η2∗) ζ̂1,

D2∗ζ̂1 = η2
0 (1 + U∞)

(
ξ∗

∂ζ̂1

∂ξ∗
− η∗

∂ζ̂1

∂η∗

)
,

(3.25)

where D2∗ is defined in (3.11). Using exactly the same technique when we solve (3.6)
for the zero-order inner solution, the system (3.25) admits the solution in terms of the
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utilized outer variables (σ∗, τ∗):⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ζ̂1(σ∗, τ∗, t) = −2A3 + C1 exp
( − (1 + U∞) τ∗

)
,


̂1(σ∗, τ∗, t) = A0 + A1σ∗ + A2τ∗ + A3τ
2∗ + A4σ∗τ∗ + 2A3σ∗τ∗ ln τ∗

− C1

(1 + U∞)2
exp

( − (1 + U∞) τ∗
) − C1

1 + U∞
σ∗ E2

(
(1 + U∞) τ∗

)
,

(3.26)
where C1, A0, A1, A2, A3, A4 are functions of t that can be determined by matching,
the integral function E2(x) is given by

E2(x) :=
∫ ∞

x

∫ ∞

y

e−z

z
dz dy.

We present some details of finding the above mentioned six undetermined functions of
t . In order for the outer solution 
̂1 in (3.26) to match with the inner solution (3.19),
we expand the outer solution 
̂1 in the limit as τ∗ → 0, using the following standard
expansions as x → 0,

e−x = 1 − x + 1

2
x2 + O(x3), E2(x) = 1 + (γ − 1) x + x ln x + O(x2),

where γ = 0.57721 · · · is the Euler’s constant. Applying these standard expansions in
the limit as τ∗ → 0, the first-order flow field solution 
̂1 in (3.26) can be written as

δ1(Re) 
̂1 = 1

Re2 ln(1/Re)

{
C1

[ − 1

2
τ 2∗ − σ∗τ∗ ln τ∗ + σ∗τ∗

(
1 + ln(

1

2
η2

0)
)]

+[
A0 − C1

(1 + U∞)2
+ (A1 − C1

1 + U∞
) σ∗ + (A2 + C1

1 + U∞
) τ∗

+ A3τ
2∗ + A4σ∗τ∗ + 2A3σ∗τ∗ ln τ∗

]}
+ 1

Re2 ln(1/Re)

{
O

(
τ 3∗ , τ 4∗ , · · · , σ∗τ 2∗ , σ∗τ 3∗ , · · · ) }

+ 1

Re2 ln(1/Re)
C1 σ∗τ∗

{
− γ − ln

(1

2
η2

0 (1 + U∞)
)}

.

(3.27)
The above first-order flow field solution contains three terms (in three curly brackets).
In order for the first term in (3.27) to match with the second term in (3.19), we must set

C1 = a0(t) = −2U∞ exp(iωt), A0 = − 2U∞
(1 + U∞)2

exp(iωt),

A1 = − 2U∞
1 + U∞

exp(iωt), A2 = −A1, A3 = A4 = 0.
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Substituting the above into the original solution (3.26) introduces the first-order outer
solutions:⎧⎪⎨

⎪⎩
ζ̂1(σ∗, τ∗, t) = −2U∞ exp

(
iωt − (1 + U∞) τ∗

)
,

δ1(Re) 
̂1(σ∗, τ∗, t) = 1

Re2 ln(1/Re)
φ̂(σ∗, τ∗; U∞) exp(iωt),

(3.28)

where

φ̂(σ∗, τ∗; U∞)

:= 2U∞
1 + U∞

[
exp

( − (1 + U∞) τ∗
) − 1

1 + U∞
+ τ∗ − σ∗ + σ∗E2

(
(1 + U∞) τ∗

)]
.

(3.29)

Note that the remaining two terms of the first-order outer solution (3.27) remain un-
matched. In fact we need some higher-order inner solutions to match with them. In view
of that we shall find out what further inner solutions we need and see how could they
match with these two terms in the first-order outer solution.

Higher-order Inner Solutions

Recall that the unmatched second term of the first-order outer solution (3.27) is given by

δ1(Re)
{

O
(
τ 3∗ , τ 4∗ , · · · , σ∗τ 2∗ , σ∗τ 3∗ , · · · ) }

. We intend to match this term with some

higher-order inner solutions εj+1(Re) 
j+1, j = 0, 1, 2, · · · , which must satisfy the far
field conditions:

εj+1(Re) 
j+1 ≈ 1

Re2 ln(1/Re)
O(τ

3+j∗ , σ∗τ 2+j∗ )

= 1

Re2 ln(1/Re)
· Re3+j O(τ 3+j , σ τ 2+j ).

We deduce the inner expansion coefficient of each order, by the above matching principle.
We write

εj+1(Re) = Rej+1

ln(1/Re)
, j = 0, 1, 2, · · · . (3.30)

Lastly the third term of the first-order outer solution in (3.27) still remains unmatched.
We need a higher-order inner solution which we denote by

ε
(1)
0 (Re) 


(1)
0 (σ, τ, t)

to match with the unmatched third term. This higher-order inner solution must also
satisfy the far field condition:

ε
(1)
0 (Re) 


(1)
0 (σ∗, τ∗, t) ≈ 1

Re2 ln(1/Re)
2U∞ σ∗τ∗ λ exp(iωt),
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where λ is a constant defined as

λ := γ + ln

(
1

2
η2

0 (1 + U∞)

)
. (3.31)

We note that ε
(1)
0 (Re) 


(1)
0 (σ, τ, t) is only a term in the expansion of 
 in (3.2). We

substitute it into the governing equation (2.1) and compare the terms of order ε
(1)
0 (Re)

on both sides. We obtain the governing equation for that higher-order inner solution and
solve it for the flow field solution. To use the similar matching technique for finding the
zero-order inner solution we finally deduce that

ε
(1)
0 (Re) 


(1)
0 (ξ, η, t) = 1

ln2(1/Re)

[
− 2U∞ ψ(ξ, η) λ exp(iωt)

]
, (3.32)

where ψ(ξ, η) is exactly the same as in (3.8).

Asymptotic Matching for Obtaining Global Solution

We present the summary of the asymptotic matching process so far in the following. We
first derive the zero-order inner solution (3.19) which contains four terms of different
orders of Re. The first term could match with the zero-order outer solution (3.18)
completely. The second term matches with the first-order outer solution (3.27). But the
third term of that outer solution needs a higher-order inner solution, which has the same
form of solution as (3.19), to match with it. The second term of the induced higher-
order inner solution also needs a higher-order outer solution to match with it. That outer
solution would have the same form of solution in (3.27). Still, the third term of this
higher-order outer solution needs another higher-order inner solution for matching. The
above matching principle can be continued as a cycle.

The higher-order inner solution (3.32) induces a higher-order outer solution which
is found to be

δ
(1)
1 (Re) 
̂

(1)
1 (σ∗, τ∗, t) = 1

Re2 ln2(1/Re)
φ̂(σ∗, τ∗; U∞) λ exp(iωt),

where φ̂(σ∗, τ∗; U∞) is given by (3.29).
Proceeding with this matching cycle generally induces more higher-order inner and

outer solutions:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ε
(k)
0 (Re) 


(k)
0 (ξ, η, t) = 1

lnk+1(1/Re)

[
− 2U∞ ψ(ξ, η) λk exp(iωt)

]
,

δ
(k)
1 (Re) 
̂

(k)
1 (σ∗, τ∗, t) = 1

Re2 lnk+1(1/Re)
φ̂(σ∗, τ∗; U∞) λk exp(iωt),

(3.33)
where k = 1, 2, 3, · · · .
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It, ultimately, follows from the results of (3.1), (3.7), (3.20)–(3.21), (3.30), (3.33)
that the inner region matched asymptotic expansion solution for flow field is given by


(ξ, η, t) = 
∗ + ε0(Re) 
0(ξ, η, t)

+ε
(1)
0 (Re) 


(1)
0 (ξ, η, t)

+ε
(2)
0 (Re) 


(2)
0 (ξ, η, t) + · · ·

+ε1(Re) 
1(ξ, η, t) + ε2(Re) 
2(ξ, η, t) + · · ·
= 1

2
η4

0 ξ2η2 − 2U∞
ln(1/Re)

ψ(ξ, η) exp(iωt)

×
[
1 + λ

ln(1/Re)
+ λ2

ln2(1/Re)
+ · · ·

]
+ Re

ln(1/Re)

1(ξ, η, t) + Re2

ln(1/Re)

2(ξ, η, t) + · · ·

= 1

2
η4

0 ξ2η2 − 2U∞
ln(1/Re) − λ

ψ(ξ, η) exp(iωt)

+ Re

ln(1/Re)

1(ξ, η, t) + Re2

ln(1/Re)

2(ξ, η, t) + · · · ,

(3.34)

where ψ and λ are respectively given by (3.8) and (3.31). With reference to (3.2)
and (3.34), we may assume that the temperature field T (ξ, η, t) and the interface shape
function ηs(ξ, t) will have the same asymptotic form of expansion solutions around the
Ivantsov solution in the limit of Re → 0.

The outer region matched asymptotic expansion solution for the flow field, however,
which based on the results of (3.1), (3.9), (3.15)–(3.16), (3.23)–(3.24), (3.28), (3.33) can
be written as


̂(ξ∗, η∗, t) = 
∗ + δ0(Re) 
̂0(ξ∗, η∗, t)
+δ1(Re) 
̂1(ξ∗, η∗, t) + δ

(1)
1 (Re) 
̂

(1)
1 (ξ∗, η∗, t)

+δ
(2)
1 (Re) 
̂

(2)
1 (ξ∗, η∗, t) + · · ·

+δ2(Re) 
̂2(ξ∗, η∗, t) + δ3(Re) 
̂3(ξ∗, η∗, t) + · · ·

= 1

Re2

1

2
η4

0 ξ2∗η2∗ + 1

Re2

U∞
2

η4
0 ξ2∗η2∗ exp(iωt)

+ 1

Re2
(

ln(1/Re) − λ
) φ̂(ξ∗, η∗; U∞) exp(iωt)

+ 1

Re ln(1/Re)

̂2(ξ∗, η∗, t) + 1

ln(1/Re)

̂3(ξ∗, η∗, t) + · · · ,

(3.35)

where φ̂ is given by (3.29).
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4. Conclusion

In this paper we have introduced the method of matched asymptotic expansions and suc-
cessfully applied it to the physical problem of dendritic crystal growth as the Reynolds
number is considered to be small. Our results reveal that the asymptotic solution which
is valid in the inner region has a different expansion from the asymptotic solution which
is valid in the outer region and they should be solved independently and then be matched
in an intermediate region. We are successful to find the matched asymptotic solution of
the flow field which is a globally valid expansion solution in the whole physical domain.
Further study and investigation on dendritic growth under the effect of convection in-
duced by external flow may proceed as our analytical result provides a basis to resolve the
yet unsolved problems of the selection of the tip velocity of dendrite and the formation
of pattern on the interface.
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