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Introduction 
Many problems are governed by partial differential equations, or by systems of partial 
differential equations. It is difficult to find their exact solutions. In this paper, we use 
the Laplace transform [9-11] and the Adomian decomposition method [1-8] permitted 
us to find the exact solution of the problem (1). 
 
 
About solution of linear system of partial differential equations (PDEs)  
Let us consider the following initial value problem of a linear system partial 
differential equations Cauchy kind: 
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with 0 1   and 0 1  , where  ,u x t and  ,v x t the unknown  functions,  f
and g are continu on .�  
 
The Adomian decomposition Method 
General properties of the ADM and its applications can be found in [1-8]. Suppose 
that we need to solve the following equation:  
 Au f    (2) 
 In a real Hilbert space H , where :A H H is a linear or nonlinear operator, 
f H and u is the unknown function. The principle of the ADM is based on the 

decomposition of the nonlinear operator A  in the following form: 
 A L R N     (3) 
where L R is linear, N  nonlinear, L  invertible with 1L as inverse. Using that 
decomposition, equation (2) is equivalent to: 

 
1 1 1u L f L Ru L Nu         (4) 

where  verifies 0L  , (4) is called the Adomian fundamental equation or Adomian 

canonical form. We look for the solution of (2) in a series expansion form 
0
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where  is a parameter used by “convenience”. Thus (4) can be rewritten as follows: 
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identification the following Adomian algorithm: 
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 In practice, it is often difficult to calculate all the terms of an Adomian series, so 

we approach the series solution by the truncated series: 
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n depends on error requirements. If this series converges, the solution of (2) is:  

 0
lim

n

in i
u u
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   

 According to the Adomian decomposition method, we suppose that the solution 

 ,u v  of (1) has the following form: 
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 . From (1), we have: 
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 And we obtain the following Adomian algorithm: 
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 Finally, we get: 
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 Let us put  
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 Thus  
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First case : 0 1     
From (9), (10) and (11), we get: 
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 So we have: 
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Second case : 0 1     
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 So we have: 
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Third case:    
From (1), we have: 
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 And we obtain the following Adomian algorithm: 
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 We get: 
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 Finally, we get: 
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 The Laplace transform 
 Let us consider the following partial differential equation: 
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 Where L the first order differential operator is ,  L R
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 the remaining linear 

operator, Nu  is a nonlinear differential operator and  ,h x t  is source term. Applying 
Laplace transform to (22), we obtain: 
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 Using the differentiation property of Laplace transform we get: 
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 Applying the inverse 1£  of £ to (23), we obtain:  
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First case : 0 1     
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p p p p

       

       

    
       

               


   
                       

 (27) 

 (27) (28): 

 

     

     

2 2 2 2

2 2 2 2 2 2 2 2 2 2

2 2 2 2

2 2 2 2 2 2 2 2 2 2

1£          
2

1£
2

u f x g x
p p p p

v f x g x
p p p p

       

         

      

         

                  
                  


                                    

 

Using 1£ ,  we get: 

 

       

       

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 2

2 2

,
2 2

,
2 2

t t t t

t t t t

f x g x e e e eu x t f x

f x g x e e e ev x t g x

       

       

 

 

 

 

     

     

           
        


                    

 (29) 

 Finally, we get: 

 

           
           

2 2 2 2

2 2

2 2 2 2

2 2

,

,

f x g x
u x t sh t f x ch t

f x g x
v x t sh t g x ch t

 
   

 

 
   

 


   




       

 (30) 

 
Second case : 0 1     

 

 
 

     

 
     

   
 

2 2
2 2 2 2 2 2

2 2
2 2 2 2 2 2

£

£

f x g xpu f x
p p

f x g x pv g x
p p

 

   

 

   


 

    


  
   

 (31) 
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 Using 1£ ,  we get: 

 

           
           

2 2 2 2

2 2

2 2 2 2

2 2

, sin cos

, sin cos

f x g x
u x t t f x t

f x g x
v x t t g x t

 
   

 

 
   

 


   




       

 (32) 

 
Third case:    
From (2.1), we have: 

 

        

        

2

2

1 1£

1 1£

u f x f x g x
p p

v f x g x g x
p p





   

   


 

 Finally using 1£ ,  we get: 

 

        
        

,

,

u x t f x f x g x t

v x t g x f x g x t





   


  
 

 
Example 1 

If    1 ,  cos  and sin
2

f x x g x x     , then we get with the two methods the 

following solution: 

 
        1 1, , , cos cos sin ,cos cos sin

2 2
u x t v x t x x x t x x x t      

   
 
Example 2 

If    1 1, ,  cos  and sin
4 3

f x x g x x     , then we get with the two methods the 

following solution:  

 

 

 

3cos 4sin 7 7, sin cos cos
12 127

4cos 3sin 7 7, sin cos sin
12 127

x xu x t t t x

x xv x t t t x

    
            


            
   

 

 
Example 3 

If    1 1, ,  cos  and sin
2 4

f x x g x x     , then we get with the two methods the 

following solution:  
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 

 

2cos sin 3 3, cos
4 43

cos 2sin 3 3, sin
4 43

x xu x t sh t ch t x

x xv x t sh t ch t x

    
            


            
   

 

 
 
Conclusion  
In this paper, we showed that using the both method, we get the same solution. 
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