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Abstract

In this paper, the Adomian decomposition method (ADM) and Laplace
transform are used to construct the solution of a linear system of partial

differential equations.
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Introduction

Many problems are governed by partial differential equations, or by systems of partial
differential equations. It is difficult to find their exact solutions. In this paper, we use
the Laplace transform [9-11] and the Adomian decomposition method [1-8] permitted

us to find the exact solution of the problem (1).

About solution of linear system of partial differential equations (PDES)
Let us consider the following initial value problem of a linear system partial

differential equations Cauchy kind:

wzzu(x,t)—ﬁv(x,t);—w< X <40,t>0

(s): %:ﬁu(x,t)—m(x,t) (1)
u(x,0)=f(x)
v(x,0)=g(x)
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withO< B <<1 and 0< A <<1, where u(xt)and v(x,t)the unknown functions, f
and g are continu on [J.

The Adomian decomposition Method
General properties of the ADM and its applications can be found in [1-8]. Suppose
that we need to solve the following equation:

Au=f (2)

In a real Hilbert space H, where A:H — H is a linear or nonlinear operator,

f e Hand uis the unknown function. The principle of the ADM is based on the
decomposition of the nonlinear operator A in the following form:

A=L+R+N (3)
where L+Ris linear, N nonlinear, L invertible withL ™ as inverse. Using that
decomposition, equation (2) is equivalent to:

u=0+L"f-L"Ru-L"Nu (4)
where 0 verifies LO =0, (4) is called the Adomian fundamental equation or Adomian

+00
canonical form. We look for the solution of (2) in a series expansion form u = Zun
n=0

and we consider that Nu =ZA1, where A are special polynomials of variables
n=0

Ug Uy,..., U, called Adomian polynomials and defined by:

h - w(E ﬂ n=012..

where A is a parameter used by “convenience”. Thus (4) can be rewritten as follows:
2un=9+L-1f—L-lR(Zun]—L-1(2A1] (5)
n=0 n=0 n=0

We suppose that the series (2un] and (ZAJare convergent, and obtain by
n=0

n=0
identification the following Adomian algorithm:
u,=0+L"f

=-L*(Rup)-L"A,

(6)

a=-L"(Ru,)-L"A ; n>0
In practlce, it is often difficult to calculate all the terms of an Adomian series, so

we approach the series solution by the truncated series: u = Zui , Where the choice of
i=0
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ndepends on error requirements. If this series converges, the solution of (2) is:

According to the Adomian decomposition method, we suppose that the solution

(u,v) of (1) has the following form: u=>"u,and v=>"v,. From (1), we have:
i-0 i-0

u(x,t):u(x,0)+lju(x,s)ds—ﬂjv(x,s)ds
f N (7)
v(x,t):v(x,0)+ﬂ£u(x,s)ds—l!v(x,s)ds
And we obtain the following Adomian algorithm:
Ug (X,t)=u(x,0)
Vo (X,1)=V(x,0)
un(x,t):Ajun_l(x,s)ds—ﬂjvn_l(x,s)ds; n>1 (8)
vn(x,t):ﬁiun_l(x,s)ds—livn_l(x,s)ds ;n>1
Finally, we get:
Up (X,t) = f (x)
u,(et)=[ 21 (x)- g (x) ]
uz(x,t):(}f—ﬁz)f(x)%
uy(xt) = (22~ B2)[ 41 (x)- pa (x) % ©
, o\ £2n
Uy, (X,t) = (2% = B%) (X)(Zn)!
u2n+1(x,t):(12—ﬁ2)n[j,f(x)—ﬁg(x)](ztn+1)!
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Vo (X, 1) =9g(x)
v (x,t)=[Bf(x)-2g(x)]t

()= (28 )a (05

w(xt)= (2257 p 1 (0)- 28 (x)]5;

th
(2n)!

v, ()= (22-B%) g (x)

Let us put
HEAE Z Uy (X,1)
k=0

cof(x,t)=k21)u2k+l(x,t)
#(x0)= 2 v (x,1)
47 (00 = 2 Vi (1)

Thus

u(x,t)=lim gorf(x,t)+nlirp Pr(x1)

n—-+o0

v(x,t)= nlimw¢:(x’t)+nlirﬂo¢f (x.1)

Firstcase: 0< f<A<<1
From (9), (10) and (11), we get:

k

o (xt)=f (X)i%

o (2K)!
¢§(X,t):ﬁf(x)—lg(x) . (tm)zm

s 0= 87 D81 002009 gy

PARE Youssouf et al

(10)

(11)

(12)

(13)
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So we have:

2 2 f(x)- X
u(x,t)= f(x)ch(t 2B )J/‘ \(/1)2_[;?2( )
v(x,t):g(x)ch(t 12_ﬁ2)+ﬁf(x)_lg(x)sh(t Az_ﬂz)

llz_ﬁz

sh(t /12—[32)

Second case : 0< 4 < <<1
oi (x.1)= f(x)§<—1>k@
s o
# (00) - g(x)kz"o(—nk%
pr0)-r9(0 g (WP

JBE -7 S (2k +1)!

2k+1

o, (x,1) =

2k+1

dr(x,t)=
So we have:

2_ 52 f(x)- X
u(x,t)= f(x)cos(t B* =2 )+j“ \(/ﬁ)z_[’;i( )
v(x,t):g(x)cog(t\/ﬁ)_'_ﬁf(2)2__3;12(X)Sin(t ﬁz—lz)

sin(t ﬁz—/lz)

Third case: 1=
From (1), we have:

u(x,t):u(x,0)+ﬁ£(u(x,s)—v(x,s))ds

t
v(x,t)=v(x,0)+ B[ (u(x5)-v(xs))ds

0
And we obtain the following Adomian algorithm:
Ug (X,t)=u(x,0)
Vo (X,1)=V(x,0)

un(x,t):ﬁj(un_l(x,s)—vn_l(x,s))ds ‘n>1

Ct— ~ o

v, (X,t) = B[ Uy (%,8) =V, (X,5))ds ; n=1
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(14)

(15)

(16)

(17)

(18)
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We get:
Up (X,t) = (x)
Vo (X,t)=g(x)
u (x,t)=pB[f(x)-g(x)]t (19)
w(x)=BL1 (0)-9(0)]
u,(x,t)=v,(xt)=0;n>2
Thus
{u(x,t):uo(x,t)+u1(x t)
V(X,t)=Vy (X, t)+v (x1)

(20)
v(x,t)=g(x)+B[ f(x)-g(x)]t
The Laplace transform
Let us consider the following partial differential equation:
Lu(x,t)+Ru(x,t)+Nu(x,t)=h(xt) 1)
u(x,0)=f(x)

Where L the first order differential operator iSng’ R the remaining linear

operator, Nu is a nonlinear differential operator and h(x,t) is source term. Applying
Laplace transform to (22), we obtain:

E(Lu(x.t))+£(Ru(x,t))+£(Nu(xt))=£(h(xt)) (22)
Using the differentiation property of Laplace transform we get:
pﬁ[u(x,t)]— f (x)+£[Ru(x,t)]+£[Nu(x,t)] :£[h(x,t)]
Eu(xt)]- f Eax) B E[h(px,t)] ) E[Ruéx,t)] ) E[Nuéx,t)]
Applying the inverse £ of £ to (23), we obtain:

U(X,t):f(X)E_l(%]+£_l[£[h<x,t>]]_£_1[£[Ru<x,t>]]_£_1[£[Nu<x,t>]] o0

P P P

(23)

From (1), we have:

E(Z—l:j:AE(u)—ﬁE(v)

g(%]:ﬁg(u)_z,g(v)
(25) <

(25)
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p+4 B

E(U)me(x)—mg(x)
p p- 2 )
E(V)me(x)—mg(x)
Firstcase: 0< f<A<<1
£(u)= 4 + b }f +[ ¢ + ¢ ]
v [p—ﬂz—ﬁz P+ A2~ ) P2 -F  pryi-f o 27)
E(v)= ¢ + f }f +[ g + h ]
Y [p—ﬂz—ﬁz Ao o) M P oo o
(27) < (28):
L l+\/f—ﬁ2=—z+\/f—ﬁ2}f J{ b, P ] }
Y/ o e 3 L WP o e
fyp L p p }f +£—l+«/f—ﬁ2+l+«/f—ﬁ2] }
X 22-F\\p~2-f o7 ¥ p—E-F  prE-f o0
Using £, we get:
u(xt) = At (X)—ﬁg(X){e‘W—e‘W Lt (X)[e‘W”Z +e‘W”2]
22— g2 2 2 29
CBE(x)=2g(x)[ e _gtEs ei-p7 | gtN2Pp?
v(x,t)= W [ 5 +g(x)[ 5
Finally, we get:
_Af(x)—ﬁg(x) 2 2 2 2
u(x,t)= N sh(ty/2% = 57 )+  (x)ch /27 - 57
(30)
v(x,t):ﬁf\(/%(x)sh(t 227 )+ g (x)e(ty2* - 57
Secondcase: 0< A< fB<<1
T E—E— A S
p2+( ﬁz_lz) p2+( B2 12)
()= 102900 I, (31)
() o]
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Using £, we get:

u(x,t)= “\(/Xﬁ)z__i%(x)sin(t BZ—A° )+ f (x)cos(t\/ﬁ2 —2,2)

v(x,t)= ﬁf\(/z)z_%;(x)sin(t B° - 27 )+g(x)cos(t\/ﬁ2 —2,2)

Third case: 1=
From (2.1), we have:

£(u)= 100+ A(1(1)-0() 2

£(V)=2(f () -9(x))+=g(x)

P~ p
Finally using £, we get:

{u(x,t) f(x)+A(f(x)-g(x))t
v(xt)=g(x)+A(f(x)-g(x))t

Example 1

(32)

If 1=p :%, f (x)=cosxand g(x)=sinx, then we get with the two methods the
following solution:

(u(x,t),v(x,t)) = (cosx+%(cosx—sin x)t,cosx+%(cosx—sin x)t]

Example 2
If 2 =%,ﬂ =%, f (x)=cosx and g (x) =sin x, then we get with the two methods the

following solution:

u(x,t):3COSX_4SInXsin ﬂt +C0S ﬂt CoS X
12 12

NG
V(X’t):4cosx—3smxsin ﬂt +C0S ﬂt sin
J7 12 12

Example 3
If 2 =%,ﬂ =%, f (x)=cosx and g(x)=sinx, then we get with the two methods the

following solution:
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u(x,t)=Wsh(§t]+ch[?t]cosx

v(x,t)= Msh(?t]+ch[?t]sin X

V3

Conclusion
In this paper, we showed that using the both method, we get the same solution.
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