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Abstract

In this paper, linear stochastic partial differential equations (denoted by
SPDEs hereafter) in the 3 dimensional domain with derivative boundary value
conditions are considered. We consider linear SPDEs in the domain with
various differential boundary conditions.
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1. Introduction
The problem discussed in this paper is in the following form:

(du = [aijuxixj + by, — cu + f] dt + [o'uy, +viu + g'] dw;

IinQ><[O,T]><G =0 %Gy,

{B(t, x,0)ulag, = 1-Vu+kulae, =h (1.1)

|onQ><[O,T] x0G =0 x0dGr,

u(0,x) =uy(x) onQx4aG,

where G is a domain in R™ under some conditions stated later, and all the coefficients
and f, g = (g")%,, h are functions depending on (w,t,x) € Q % Gr. in (1.1) the
Einstein rule is applied for the representation of the summasion. Note that we use both
of the notations d,,u and u,, for the derivative of u with respect to x;. There exist a
large amount of contibutions to linear SPDEs in the literature. Among them, Krylov
and Rozovskii [9] is one of the most attractive results. They investigated the Cauchy
problem of linear SPDEs in a weak sense, whose solution takes the value in Banach

and Hilbert spaces. They have also shown the existence and uniqueness of the
solution to the first boundary value problem [4]. Krylov [6] investigated the spacial
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regularity of the solution to the first boundary value problem in the weighted Sobolev
space, based on the preceding result [9] in the half space. After the result concerning
the Dirichlet and differential boundary value problems of partial differential equations
with measurable coefficients [5], Krylov investigated the first boundaryvalue problem
of parabolic SPDEs on a half-plane in a modified weighted Sobolev spaces [7]. They
also investigated the first boundary value problem in the Sobolev space with
fractional derivatives [8]. In it, the solution satisfies the SPDE in a distribution sense,
whose derivative is defined using Bessel potentials. However, as far as we know,
there are few results concerning the boundary conditions with both tangential and
normal derivatives. Shimizu [13] studied the following second boundary value
problem based on the potential theory:

|{du = [aijuxixj —cu+ f] dt + [viu + g'1dw! inQxGr,

46”—0 O x a6
lon on n

ku(O,x) =uy(x) onQxa,

where n = (n;,n,,n3)7 is the outer unit normal to G, and c, f, v and g depend only
on t, which is a restrictive assumption. In the present paper, we consider more general
problem (1.1). One of the difficulties exists in setting the appropriate function space.
Since the order of the derivative is necessarily higher than that of weight, the
approach of Krylov [6] is not applicable. Another difficulty lies in the settings of
functionspace that includes the lower derivative of the solution. Weighted Sobolev
space is applied, which resolved these difficulties in this paper. The case of p # 2 and
the nonlinear problems will be considered in the following papers.

2. Function Spaces
Let G stands for a domain in R™. By W, (G) we mean a space of functions u(x),x €

G, equipped with the norm Il w 111 =% 1< 10w I,y +11 w 12,16,

( 2
u ||z =
2 1)

|la]=1

D%u(x) — D*u(y)|?
Il Bgp= . jj' 0 = DV ety
X9 Gy leds Xl

\if Lisanon —integer, [ =[I]+{l}, 0<{l} <1

Il D*u II}, ¢y if L is an integer,

Weighted Sobolev space with a positive integer r and y e R with 0 <r +y —
1/2 < r is defined as follows:
W,y (G) ={u € L(G)[Y" D u € L,(G), la| =T1};
Wy (Gr) ={u € Ly(Gr) WY Du € Ly(Gr), |a| =7}
where Y = Y (x) satisfies following conditions with positive constants y and p,:
¥ € C*(G),
Y < y Ydist(x,0G) ifdist(x,dG) < py, (2.1)
Y =y ifdist(x,0G) >p, onga,
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where G is the closure set of G, and dist(x, dG) is the distance in the normal sense
from a point x € R® and dG. When G = R3 = {x € R3|x’ € R? x5 > 0}, we take
Y = P(x) = x3. The norms of the functions spaces defined above are defined as
follows, respectively:

”lu”ltzpyrG = E[” u ”12/;,)/,7",6]1 ”lullltzpyrGT = E[” u ”12/;,)/,7",GT]1
where

Il u ||12p'y'T'GE|| u ||f2(6)+ Z I Y D%u IIfZ(G),

la|=r

02 By =0 Moy D NYD I, )

|la|=r

We also define the following spaces:

W20 (@) = UMMy g = E NS Wyt Y ENYYDS 1)< oo}

|la|=r

We also use the notation L,(Qx[0,T],P,W) = L,(Q7,P, W) ={u|E |l
u |17, orwy< o} with a function space W in general.

3. Main Results

Let (Q,F,P) be a probability space with a 3-dimensional Wiener process (w;, F;)
defined on it for t > 0. Denote by P the g-algebra of predictable sets on Q % (0, =)
associated with F,. Let G be a domain in R® with boundary aG of C** (0 < a < 1),
and m > 0 be a non-negative number. We impose following assumptions named
conditions (A):

1. A={d9}, b=(b), c, f, Y ={c¥}, vand g=(g') are P measurable in
the set of real 3 x 3 matrices, in R3, in R, in R, in R, in the set of real 3 x 3
matrices, in R3 and in R3, respectively;

2. Aand X are defined on G, and are bounded and continuous both with respect to

tand x in Gr;

There exist , p, and y > 0 satisfying (2.1);

u, is Fo measurable, ug € L,(Q, P, W)2 (G));

b,v € L,(Q % [0,T],P, L& (G)) withp > 2;

Either the following conditions holds:
(W"“D“b € Lo (Q; Ly ([0, TT; Lg(9)))
4f0r|a| =m+1—-ii=1..,mp>2 q=6/5
| W™ Db € Leo(Q; Lyp([0,T]; Leo(6)))
\forja]=m+1—i i=1,.. mp>2

o Uk~ w

7. The following conditions hold:
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(W™ 'D%, P™DFc € Lo (2 Lyp([0,T]; Lg(6)))

4f0r|a| =m-—1i |f|=m+1,i=0,..,m p=>2 q=6/5

| Y™ D%y, Yy™mDPY € Lo, (Q; L,([0,T1; L4(G)))
\forja|=m+2—i,|f|=m+2 i=1..,m+1 p>2 q=6/5

10. k, I; € Lo, (O, P, 0G7) (i = 1,2,3);

1. X + yI <2a < y~I,; where I is the unit matrix and means the
transpose of the matrix ), ;

12. |- n| = § > 0, where n = (n,,n,,n3)7T is an outer unit normal to 9g;

13. f € L,(Q7, P m+1 ‘m(RY)), g € L,(Qr, P Wznll;yzn(R ),

3 1
h € Ly(Qr, P, W2 (R?)) N C ([0, T]; W;2(R?)) (a.s.).
The next theorem is the main result of this paper.

Theorem 1. For arbitrary T > 0, under the conditions (A), problem (1.1) has a
unique solution

we Ly, P Wy @) [ )¢ (0.1 WA G) @s.)
which satisfies
R vz + B SUP NGO Wz
< UMM mssr + NN mmsry +E VAT
L ([0.T].2,W2(26))

+E sup Ilh(t)I?: + |||u0|”12/},m,m+2,g]'
te[o,T] W2 (96)

Hereafter C denotes a positive constant which does not depend on u.

4. Model Problem in a half space

In this section, we consider the problem which contains only the principal terms,
constant coefficients in the half space R3 ={y= (y',y;)|y’' € R?, y; > 0}.
Coordinate system in (4.1) below is denoted by y to distinguish it from the one in the
original problem (1.1).

(du = [a) Uy,y,; + flde + [od'u,, + g'] dw}

in Q x[0,T] % R3,

1o Vuly, o = h(t,y") (4.1)
onQ x R? x [0,T] = Q x R3,

\u(0,y) =u, onQxR3,

where {a_ 3121, {088 =1 and 1= (l19, 50, 130) " are constants with I3, # 0.
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Theorem 1. Assume f € L,(Qr, P, W35 (R ), g€

L,(Qp, P, Wznll;rzn(R ). he€L,(QrP, WZ(RZ)) NC ([0, T], W,? (RZ)) (a.s.), and
Uy € L,(Q, P, Wz’f:p“ (R%)) with an interger m > 0.

Then, there exists a unique solution to (4.1)
we Ly, P W5 (RO L2 (@r 2, W3 (RD))
(e ao w2 @) @)

satisfying the following estimates:
2 2
G s o e, * E S4B TGO s o1z

2
< CON MG s oyt + MG oz poycns
HIRIP s +E sup TR 171 +][llulll, s 1,

L(0,T; WZ(RZ)) te[o,T] W2(R?) P,mm+2,.R

2
W1l 0.1 o7z *+E sup NN, ay)

2
< ClIllf IIII,,m,,lH[0 s T NG mme2011xR3
+[[uol115 2 + || |A]]|? 1 +Esup lh(®) 172 ]
wmm+ 2Ry L2(0.T;W2(R?)) te[0.T] W2(R?)

To prove Theorem 4.1, we consider the following problems:
Ifdul [aojuly v+ f] dt + [od'uyy, + g'ldw}

in Q x[0,T] % R3, (4.2)
|Uily,=0 =0 onQxR?,

u;(0,y) =u, onQxR3,

du, aé’uzy v, dt inQx[0,T] = R3,
Lo Viylyz0 = h — Ly - Vuyly,—o 0N QX R, (4.3)
u,(0,y) =0 onQxR3,

where {a}/ i1 {08¥ =1 and 1= (l30,120,130)" are constants with I3, # 0.
Theorem .1 results from Lemmas 4.1 and 4.2 below.

Lemma 1. For arbitrary T > 0 with the same assumptions as in Theorem .1, there
exists a unique solution u; to problem (4.2) such that

wy € Ly(Qr, P, W53 (RD) [ Lz (07, P WA (RY))
(e o w52 ') @9)

satisfying the following estimates for an integer m > 0O:
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sl s oy, + E SUR 1 O
2 2
< CONFNZ mmssgorper * NGB sz oz * H1toll13 sz gz ]

eall13, 01 po.rpers * E Sup ||Iu1(t)llli2(Rs

< C[E ” wf "L ([0T]><R ) ”lgl”Lz(QT?Lz(R ) + |||u0”|1pmm+2R3]

In additon, problem (4.3) has a unique solution

u, € L@, P W5 RD) [ |12 @7, P WE(RY)

(e @ wz@) @s)

satisfying the following estimates:
12 orrpea, * E S0P NItz oz

< Il s +E sup Ih() %,
Lz (QrP WE(R?)) te[0,T] WZ(R?)

| usllly 1 mss forixrz + E Sup. Hlus (O s p2 ]

2 2
2113 0.1 o<z + Etgml | 2 (O, (r3)

< C[II1AllI? i +E sup Ih(t) 1?1
Lz (QrP WE(R?)) te[o,T] WZ(R?)
+E sup llu,(t) I?
tE[OF;"] 1( ) Wm+2 (R3)]

Due to the lack of the space, the detail of the proof is omitted. We merely refer to
making use of the embedding theorem for weighted Sobolev spaces WJ%?“(R ) c

3, .
WZZH(RZ) (i = 0,1) by Nikol’skii [11] in the proof.

5. Problem in the Original Domain
Now we consider (1.1) based on the regularizer method [10], which requires some
assumptions on the domain.

1. The Original Domain

First, it is assumed that there exists a number d > 0 such that, in a sphere of radius d
with center at any point ¢ € 3G, dG is provided in a local coordinate system by the
equation z; = F(z') = F(z1,2,), where F is a function with enough regularity,
satisfying F(0) = VF(0) = 0. Under the asumption 0G € C1** (0 <a<1) in a
neighborhood of &, we have the inequality |0F/0z,| < c|z'|*. Further, we assume
that it is possible to construct in G for any A > 0, a finite or countable number of
subdomains w® and D®) possessing the following properties:

1. w®ecDp®cg Ugw®=y,D® =g;
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2. For any point x € G, there exists w®) such that x € w®) and the distance
from x to D™ \ w®) is not less than dA;

3. There exists a positive number N, not depending on A such that the
intersection of any N, + 1 distinct of D) is empty;

4. »® and D™ that are seperated from aG by a positive distance larger than p,
(we denote the set of their indices k by M) are 3-dimensional cubes with
common center £) € G whose linear dimensions are equal to A and 24
(24 < py) respectively, while those adjacent to dG (the set of their indices k
by V) are defined in local coordinates at £) € 9G by the inequalities:

A
0 ={z € ||z < 5 (1=12); 0 <z — F(z') < 4},
D® ={z e R3||z]| <A (i=12); 0<z3—F(z') <21}

5. The change of variables y' =z', y; =z3 — F(z'), which we denote by
y = ®(z), takes a domain D (k € V") into the cube Z;1(D®) = {y €
Ri|ly;l <A(i=12)0<y; <21}, where the inverse of the composed
transform ®(C® (x —&®)) in DX, with ¢ an orthogonal matrix to
transform the coordinate system into the local one around £, is represented
by Z;;. Then we have functions ¢ (x) satisfying
C
0<¢(® <1 |D¥¢®] < M—‘;‘l (la] =01, ...)
(B(x)=1forx e w®, (K =0forx e G\ D®,
and c, >0 independent on k. By virtue of property (iii) of the domains D),

. 0
1< %,.(29(x))* < Ny, and the functions 7 (x) = ——

Z(T)())Z have the foIIowing
j X

properties:
(1 (x) = 0inG\ D®, [DUy®(x)| <

kz n® (x)7® (x) = 1.

k

Ial’

Now Let us define a linear operetor R®). For k € M, it associates with
(f ¥, g®) € Ly(Qr, P, Wy (DX)) X Ly (Qr, P, W5 (D))

the solution u® € L,(Q., P, Wy 2 (D®)) N € ([0,7]; W77 (DM)) (a.s.) of the
problem
(du(k) = [aij|(t 2)=(0,6 N U J(cka)c + f(k)]dt
+[0 |(tx) =(0, g(k)) ( ) + g(k)l]dw in D,§~k),
W®l =0 (K.

For k € V', we define a mappig R that associates with (£, g(®) p()) €

LZ('Q‘L":P1 W2%+1 (R )) x LZ('Q‘L":P Wznllp-l-yzn(R ))
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3 1
% (L0, P W2 (R[] € (0.7 W (RY) (a5.)

the solution u(® € L,(Q,, P, W, (R1) N C (Q; W, (RD)) (as.) of the
problem
y ,

(du® = [a] ;)= 00U 5,3), + F(0]dt

+[o (=050 Uy uy; ) +g®dw; inRYx[0T],
k
3(/3)|Y3=0 =h( on Rz’
u®|,.o =0 onR3,

| u

which exists uniquely due to Lemma 4.1. Then, define a bounded operator R acting
from

B(1) = Ly(Qr, P, W3ym (6)) X LZ(Q‘U W, pm(9))

% (L2(Q, P, WZ(GQ)) ﬂ ¢ ([0.7]; sz(ag))) (as.)
into A(7) = Lo(Qr, P W5 (@) N C ([0, 7] W7 () (as.) and  for any
}[E(f,g,h)eBanduecfl
ARH =H +TH, RAu=u+ Wu. (5.1
A = (L,B) shall be defined later. T and W are bounded operators in B and A
respectively, the norms of which are less than 1 if 7 is small enough. Then (I + T)™?!
and (I + R)™? exist,
RU+T)*=Q+W)'R=4"

holds. In addition, we have | A”* IS max{ Il +T) MR, I I+W) LRI
}, where |I-]| stands for the norm of the operators.

Taking 7 small enough so that || T I< 1/2 holds, then we have || A~ |I<|| (I +
T) LI R IS 2 Il R IIl. Hence the problem is reduced to constructing the operator R
and the estimates of | R Il, I T |l and || W |I. In the function spaces A and B, let us
introduce the norms

Il 1y = Wl mmesgr + E up, HIuGmms2g:

I (f.9.0) 13y = NG mmerge + GG mmez2gr

+E|||h|[]? s +E sup Ih() 1%,
Lo(Qr,P W2 (R2)) te[0,T] W2 (R?)

Define RH = ¥, n® (x)u®™(t, x), where
(k) g (k)
2w (2, x) = RV f fork e M,
' Z RWZ1¢W(f g, h) f
X X ,g,h) forke.

Now we proceed to the proof of Theorem 3.1.
Proof of Theorem 3.1
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Proof.. Let us define a map L, = Ly(t, x, d,.) by
Lo(t,x,0,): Lo(0, P, WG ] € 10,11 WIE(©)) (as.)

= Ly (Qe; W3 1 (9)) % La(Qr; Wzr,'fp:rzn(g))
mapping (f, g) = ((Low):, (Low);) € Lo (Qr; W5y 1 (6)) <
L, (Qr; W37 (G)), which satisfies
du = [a¥(t, XUy, + fldE + [0 (t, x)uy, + g1 dwfing
to u € Ly(Qq, P, W3y () N C ([0,7], W57 (G)) (as.), and a map L = L(t, x, 0y)
by
L@ P W) [ € (0.1 WE(G)) @:5)
= Ly(Qe, P W3 (9)) % La(Qr, P WHE (G)),
mapping (f, g) € Ly(Qr, P, W35 5 (6)) % Lo(Q, P, W72 () which satisfies
du = [a¥(t, XUy, + DUy, — cu+ f]dt
+[o!(t, X)u,, + viu + g'ldwi ing,
tou € Ly(Qr, P, W55 (6)) N C ([0, 7], W7 (9)) (as.).
Let Lgk) = Lgk)(t, z,0,) be the operator L, in the local coordinate at the point &,
mapping
(F®,9®) = (LG w1, (LGw),)
€ LZ('Q‘L":P1 Wzrv%-ljyln(Ri)) x LZ('Q‘L":P1 Wzrvr{l/j-lv-yzn(Ri))
which satisfies
du® = [a®iuf) + FO] de + [o®tl) + g® dw! in R,
to u® eL,(Q,,P, Wz’fg;(Ri)) N ¢ ([0,7], WZ%f;(Ri)) (a.s.), where gl =
(®gt and a®¥ (i,j,=1,23), o®i (i,I,=1,273) are the components of the
matrices CKTAC®), cTY ¢k respectively. We also define maps,
Ly =L—Ly Bo(t,x,0)u =1 Vulsg,,
C BP2y,0)u=10) - BaO)ly,=0.  Bru = k(t x)ulag,.
where 1(y) = 1(Z,(t,x)) and is the components of C®1 with I = (I;,1,,13). It is
easy to show

LoRH = Z(Lo(n(")u(")) —n®Lu®)
k
+ Z n® [Lo(t, %, 0x) — Lo(0,§™), 0,)Ju®
k

£ 1 L(0,60,8,)u®. (52)
k
Each term in (5.2) can be calculated explicitly. For the first term, for example,
ii k k k i k
Lo(®u®) — n®Lgu® = (—a¥ () u® + 20 0ul?), —olingdu®).

Then, we represent TH in (5.1) explicitly. Since ¥, n® ¢ = 1, we have L(RH) =
H + (T, H, T,H), where
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(T3, T,3) = LRI + Z( Lon®uld — (oL, 4,60y
k
+ Z N [Lo(t, x,0x) — Lo (0,89, 0,)Jul®
k

+ ) 1 Z[18°(00,0, - 7F,,) - 1§°(00,0,)]

KEN
RWZID(f, g, h).
Analogously we have BRH |55, = H + T3H, where

TS0 = ByRH|og, + Y (Bon®ut) = ®Bu)|pg,

keN
+ Z n®) [Bo(t, x,0x) — Bo(0,§™), 9,)Ju®
k
+ ) 1 Z,[B§°(00,0, - VFa,,) - B (00,,)]
keN

ROZFEW(f, g, b).

Thus  ARH = (LRH,BRH|sg.) = (f, g, h) + (T, H, T, 3, TsH) = H + TH.
Explicit representation of Wu in (5.1) is obtained similarly. By virtue of Lemma 5.4
introduced later,

| TH llz< cni(T,A) | H g, (5.3)

| Wu ll 4< cn,(T,A) 1 u ll 4, (5.4)
hold with n;(tr,1) - 0 (i = 1,2) as t and A goes to 0, and monotonically increasing
with T and A. Taking (z,4) in (5.3)-(5.4) small enough makes I T Il and || W ||
arbitrarily small. Next, we consider the same problem in a cylindrical domain whose
lower base lies in the plane t =t, <T. The height of the cylinder in which the
existence of the solution is guaranteed can be taken to be the same for any t,. Thus
we have the desired result. [J

2. Auxiliary Lemmas
In the preceding subsection, we have proved Theorem 3.1 based on (5.3)-(5.4), which
we finally prove.

Lemma 1. If a function u satisfies u € W;;:jj(Ri) and u(y’,ys) = 0onfy €

R3|y; = M} with a positive constant M, the following estimate holds with r > —1/2
and j,1 > 0:
% T r+jpn%2
197Dyl gy = CIPTDy"ull, gy
where |a,| =7 + [, |a,| =r + 1 +j, and C is a positive constant depending on M, r,
jand L.

Lemma 5.1 follows from Lemma 2.1(a) in [6] directly, and we omit the proof. Next, a
similar estimate holds in the original domain with the aid of Lemma 5.1.
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Lemma 2. Assume (2.1), and let a function f € WZT;;"].(D(")) satisfies D*f(x) = 0
for |a| = r + [ on the region
{{x e D®|x; = & + 2¥for k € M,
{z=CW(x - W), x e DW|z; = F(z')+ 21} fork e NV,
where 5§"> is the 3rd component of £, Then,
W™D fll, o0y < CllW™ DL, ooy

for keMUN,r>—1/2,j,lzo,

where |a,| =7+, |a,| =r + 1 +j, and C is a positive constant depending on M, r,
jand L.
The following lemma is substantial in proving the main theorem.

Lemma 3. The estimates
Il RHE s<cllH g, Il Biullg<ns(t,A) lluly,
I Liu lg< na(z) lull 4

hold with a non-decreasing functions n;(z,A) and n,(t) which go to O as their
arguments go to O.

Proof.. We only show the estimate of || RH |l 4. First, the following inequality is
readily seen.

1 RIC 14 € ) TIm®ul ly s o,

k
+E sup In®u® @) |1, me2 o -
80,10 ]

For k € M, we make use of the result of Cauchy problem of the linear SPDEs [4],
while for k € WV,

R 112 (F) 1, () 2
|||77 u ”lLZ(QTv?vW?J%(D(k))) +E til[*(l)et] | ”77 u (t)lllwz%f;(p(k))

k) 112 k 2
1T, 01 otop + B SUR IO T, 00,
m+3 2
+ [ly™ Z Z D% (k) . D@2y (k)
<C =0 |a|=m+3-i|a,|=i Ly(Q; P L, (DY) |

m+2 2
+E sup ll)m Z Z DB T[(k) . D,Bzu(k)(t)

telo, - . .
[07] i=0 |By|=m+2=i|Bs|=i

Ly (D)) ]

by virtue of Lemma 4.1. Now we show the estimate of the third term as an example.
Due to the inequality
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and Lemma 4.1, we have
m+3

Ym Z Z Do T[(k) . D2y (k)

i=0 |aq|=m+3-i|az|=i

2 2

(k)
uXin

()

Xin

< tE sup
Ly (., P.L2 (D)) te[0,7]

Gj=12..)

L,(p®)

Ly(QP.L, (D))
m+3

< Z Z [i-3De2u®||

i=3 |aq|=m+3—-i|az|=i

3
'FZS 25 IDPTUONE o 51, o0op I W™V I 00,
=1 |fiTes

S C[” ((k)f ”j/Jz,m,m+1,D§k) +” ((k)g lltzp,m,m+2,D§k) +” ((k)uo lllzp,m,m+2,D(k)

+ (R |2 3 +E sup I1{®n) Il 1 :
Ly (0P WE(R?)  tEl07] Lo ([0.7].P W (R?)

2
Ly (2, P.L, (D))

2

||¢m—i+3Da1r,(k) ||L°°(D(k))

For the estimate of || L,u Ilz, we use the inequality
Il lly ooy < C VU ooyl 1 o,
with @ = 3/q for for u € L/(D®) N L, (D®) in general, Young’s and Poincaré
inequalities. Due to Lemma 5.2 and the inequality

Inc®y < cllully,
KEM UN

we have the desired result. Other terms can be estimated similarly. [J

Finally, we verify estimates (5.3) and (5.4). Together with Lemma 5.3, let us
make use of the following facts:

For (t,x) €[0,7] x D), |a¥(t,x) —a¥(0,§M)| < ns(r,1) holds with 7
having the same property with n, (t, 1); |VF (x)| < CA% on Z, (D).

Thus, we obtain (5.3). Making use of Lemmas 5.2 and 5.3 and the facts listed
above, we also have (5.4). This completes all parts of the proof of the main theorem.
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