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Abstract 
 

In this paper, linear stochastic partial differential equations (denoted by 
SPDEs hereafter) in the 3 dimensional domain with derivative boundary value 
conditions are considered. We consider linear SPDEs in the domain with 
various differential boundary conditions.  
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1. Introduction 
The problem discussed in this paper is in the following form:  

 

⎩
⎪
⎨

⎪
⎧dݑ = ቂܽ௜௝ݑ௫೔௫ೕ + ௜ܾݑ௫೔ − ݑܿ + ݂ቃ dݐ + ௫೔ݑ௜௟ߪ] + ݑ௟ߥ + ݃௟] dݓ௧௟

in Ω × [0,ܶ] × ܩ ≡ Ω × ,்ܩ
,ݐ)ܤ డீ೅|ݑ(௫߲,ݔ ≡ ࢒ ⋅ ݑߘ + డீ೅|ݑ݇ = ℎ
on Ω × [0,ܶ] × ܩ߲ ≡ Ω × ்ܩ߲ ,
(ݔ,0)ݑ = on Ω (ݔ)଴ݑ × ,ܩ

 (1.1) 

where ܩ is a domain in ࡾ௡ under some conditions stated later, and all the coefficients 
and ݂,  ݃ = (݃௟)௟ୀଵ௡ ,  ℎ are functions depending on (߱, ,ݐ (ݔ ∈ Ω ×  in (1.1) the .்ܩ
Einstein rule is applied for the representation of the summasion. Note that we use both 
of the notations ߲௫೔ݑ and ݑ௫೔ for the derivative of ݑ with respect to ݔ௜. There exist a 
large amount of contibutions to linear SPDEs in the literature. Among them, Krylov 
and Rozovskii [9] is one of the most attractive results. They investigated the Cauchy 
problem of linear SPDEs in a weak sense, whose solution takes the value in Banach 
and Hilbert spaces. They have also shown the existence and uniqueness of the 
solution to the first boundary value problem [4]. Krylov [6] investigated the spacial 
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regularity of the solution to the first boundary value problem in the weighted Sobolev 
space, based on the preceding result [9] in the half space. After the result concerning 
the Dirichlet and differential boundary value problems of partial differential equations 
with measurable coefficients [5], Krylov investigated the first boundaryvalue problem 
of parabolic SPDEs on a half-plane in a modified weighted Sobolev spaces [7]. They 
also investigated the first boundary value problem in the Sobolev space with 
fractional derivatives [8]. In it, the solution satisfies the SPDE in a distribution sense, 
whose derivative is defined using Bessel potentials. However, as far as we know, 
there are few results concerning the boundary conditions with both tangential and 
normal derivatives. Shimizu [13] studied the following second boundary value 
problem based on the potential theory:  

⎩
⎪
⎨

⎪
⎧dݑ = ቂܽ௜௝ݑ௫೔௫ೕ − ݑܿ + ݂ቃ dݐ + ݑ௟ߥ] + ݃௟] dݓ௧௟ in Ω × ்ܩ ,
ݑ߲
߲݊ = 0 on Ω× ்ܩ߲ ,

(ݔ,0)ݑ = ×on Ω (ݔ)଴ݑ ,ܩ

 

where ࢔ = (݊ଵ, ݊ଶ,݊ଷ)୘ is the outer unit normal to ܩ, and ܿ, ݂, ߥ and ݃ depend only 
on ݐ, which is a restrictive assumption. In the present paper, we consider more general 
problem (1.1). One of the difficulties exists in setting the appropriate function space. 
Since the order of the derivative is necessarily higher than that of weight, the 
approach of Krylov [6] is not applicable. Another difficulty lies in the settings of 
functionspace that includes the lower derivative of the solution. Weighted Sobolev 
space is applied, which resolved these difficulties in this paper. The case of ݌ ≠ 2 and 
the nonlinear problems will be considered in the following papers.  
 
 
2. Function Spaces 
Let ܩ stands for a domain in ࡾ௡. By ଶܹ

௟(ܩ) we mean a space of functions ݔ,(ݔ)ݑ ∈
∥ equipped with the norm ,ܩ ݑ ∥ௐమ೗(ீ)

ଶ = ∑ |ఈ|ழ௟ ܦ∥
ఈݑ ∥௅మ(ீ)

ଶ +∥ ݑ ∥ௐ̇మ೗(ீ)
ଶ ,  

⎩
⎪
⎨

⎪
⎧∥ ݑ ∥ௐ̇మ೗(ீ)

ଶ = ෍
|ఈ|ୀ௟

ݑఈܦ∥ ∥௅మ(ீ)
ଶ if ݈ is an integer,

∥ ݑ ∥ௐ̇మ೗(ீ)
ଶ = ෍

|ఈ|ୀ[௟]

න න
−(ݔ)ݑఈܦ| ଶ|(ݕ)ݑఈܦ

ݔ| − ௡ାଶ{௟}|ݕ
ீீ

dݔdݕ

if ݈ is a non− integer,  ݈ = [݈] + {݈},  0 < {݈} < 1.

 

 
 Weighted Sobolev space with a positive integer ݎ and ߛ ∈ with 0 ࡾ < ݎ + ߛ −
1/2 <   :is defined as follows ݎ

ଶܹ,ట,ఊ
௥ (ܩ) ≡ ݑ} ∈ ݑఈܦఊ߰|(ܩ)ଶܮ ∈ |ߙ| ,(ܩ)ଶܮ =  ;{ݎ
ଶܹ,ట,ఊ
௥ (்ܩ) ≡ ݑ} ∈ ݑఈܦఊ߰|(்ܩ)ଶܮ ∈ |ߙ| ,(்ܩ)ଶܮ =  ;{ݎ

where ߰ =   :଴ߩ satisfies following conditions with positive constants ߯ and (ݔ)߰

 ቐ
߰ ∈ ,(ܩ)ଵܥ
߰ ≤ ߯ିଵ݀݅ݔ)ݐݏ, (ܩ߲,ݔ)ݐݏ݅݀ if (ܩ߲ ≤ ,଴ߩ
߰ ≥ ߯ if ݀݅ݔ)ݐݏ, (ܩ߲ > ,ܩ ଴ onߩ

 (2.1) 
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where ܩ is the closure set of ܩ, and ݀݅ݔ)ݐݏ,  is the distance in the normal sense (ܩ߲
from a point ݔ ∈ ܩ When .ܩ߲ ଷ andࡾ = ାଷࡾ = ݔ} ∈ ᇱݔ|ଷࡾ ∈ ,ଶࡾ ଷݔ > 0}, we take 
߰ = ෨߰(ݔ) ≡  ଷ. The norms of the functions spaces defined above are defined asݔ
follows, respectively:  

ீ,ట,ఊ,௥|||ݑ|||
ଶ ≡ ∥]ܧ ݑ ∥ట,ఊ,௥,ீ

ଶ ట,ఊ,௥,ீ೅|||ݑ||| ,[
ଶ ≡ ∥]ܧ ݑ ∥ట,ఊ,௥,ீ೅

ଶ ], 
where  

∥ ݑ ∥ట,ఊ,௥,ீ
ଶ ≡∥ ݑ ∥௅మ(ீ)

ଶ + ෍ ∥
|ఈ|ୀ௥

߰ఊܦఈݑ ∥௅మ(ீ)
ଶ , 

∥ ݑ ∥ట,ఊ,௥,ீ೅
ଶ ≡∥ ݑ ∥௅మ(ீ೅)

ଶ + ෍ ∥
|ఈ|ୀ௥

߰ఊܦఈݑ ∥௅మ(ீ೅)
ଶ , 

 
 We also define the following spaces:  

෩ܹଶ,ట,ఊ,௥
௥ (࣡) ≡ {݂||||݂|||ట,ఊ,௥,࣡

∗ଶ ≡ ܧ ∥ ݂߰ ∥௅మ(࣡)
ଶ + ෍ ܧ

|ఈ|ୀ௥

∥ ߰ఊܦఈ݂ ∥௅మ(࣡)
ଶ < ∞}. 

 
 We also use the notation ܮଶ(Ω × [0,ܶ],࣪,ࣱ) ≡ ଶ(Ω்ܮ ,࣪,ࣱ) ≡ ܧ|ݑ} ∥
ݑ ∥௅మ([଴,்];ࣱ)

ଶ < ∞} with a function space ࣱ in general.  
 
 
3. Main Results 
Let (Ω,ℱ,࣪) be a probability space with a 3-dimensional Wiener process (ݓ௧ ,ℱ௧) 
defined on it for ݐ ≥ 0. Denote by ࣪ the ߪ-algebra of predictable sets on Ω × (0,∞) 
associated with ℱ௧. Let ࣡ be a domain in ࡾଷ with boundary ߲࣡ of ܥଵାఈ (0 < ߙ < 1), 
and ݉ ≥ 0 be a non-negative number. We impose following assumptions named 
conditions (A):  

ሜܣ .1 ≡ {ܽ௜௝}, ܾ = ( ௜ܾ), ܿ, ݂, ∑ ≡ ݃ and ߥ ,{௜௝ߪ} = (݃௟) are ࣪ measurable in 
the set of real 3 × 3 matrices, in ࡾଷ, in ࡾ, in ࡾ, in ࡾ, in the set of real 3 × 3 
matrices, in ࡾଷ and in ࡾଷ, respectively;  

ሜ and Σሜܣ .2  are defined on ሜ࣡, and are bounded and continuous both with respect to 
  ;in ሜ்࣡ ݔ and ݐ

3. There exist ߰, ߩ଴ and ߯ > 0 satisfying (2.1);  
଴ݑ ,଴ is ℱ଴ measurableݑ .4 ∈ ,࣪,ଶ(Ωܮ ଶܹ,ట,௠

௠ାଶ (࣡));  
ߥ ,ܾ .5 ∈ ௣(Ωܮ × ݌ ஶ(࣡)) withܮ,࣪,[ܶ,0] > 2;  
6. Either the following conditions holds:  

⎩
⎪
⎨

⎪
⎧߰

௠ି௜ܦఈܾ ∈ (((࣡)௤ܮ;[ܶ,0])௣ܮ;Ω)ஶܮ
for |ߙ| = ݉ + 1− ݅,  ݅ = 1, … ݌݉, > 2, ݍ  ≥ 6/5;
߰௠ି௜ାଵܦఈܾ ∈ (((࣡)ஶܮ;[ܶ,0])௣ܮ;Ω)ஶܮ
for |ߙ| = ݉ + 1− ݅,  ݅ = 1, … ݌݉, > 2;

 

 
7. The following conditions hold:  
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⎩
⎪
⎨

⎪
⎧߰

௠ି௜ܦఈܿ,  ߰௠ܦఉܿ ∈ (((࣡)௤ܮ;[ܶ,0])௣ܮ;Ω)ஶܮ
for |ߙ| = ݉ − ݅, |ߚ|  = ݉ + 1,  ݅ = 0, … ,݉, ݌  > 2, ݍ  ≥ 6/5;
߰௠ି௜ାଵܦఈߥ,  ߰௠ܦఉߥ ∈ ;ஶ(Ωܮ (((࣡)௤ܮ;[ܶ,0])௣ܮ
for |ߙ| = ݉ + 2 − ݅, |ߚ| = ݉ + 2,  ݅ = 1, … ,݉ + 1, ݌  > 2, ݍ  ≥ 6/5;

 

 
10. ݇, ݈௜ ∈ ,࣪,ஶ(Ωܮ ்߲࣡) (݅ = 1,2,3);  
11. ∑ ∑

∗
+ ܫ߯ ≤ 2ܽ ≤ ߯ିଵܫ, ; where ܫ is the unit matrix and ∑

∗
 means the 

transpose of the matrix ∑ ;  
࢒| .12 ⋅ |࢔ ≥ ߜ > 0, where ࢔ = (݊ଵ,݊ଶ,݊ଷ)୘ is an outer unit normal to ߲࣡;  
13. ݂ ∈ ଶ(Ω்ܮ ,࣪, ෩ܹଶ,ట,௠

௠ାଵ ାଷࡾ) )), ݃ ∈ ଶ(Ω்ܮ ,࣪, ଶܹ,ట෩ ,௠
௠ାଶ ାଷࡾ) )),  

 

 ℎ ∈ ଶ(Ω்ܮ ,࣪, ଶܹ

య
మ(ࡾଶ))⋂ܥ ([0,ܶ]; ଶܹ

భ
మ(ࡾଶ)) (a. s. ).  

 The next theorem is the main result of this paper.  
 
Theorem 1. For arbitrary ܶ > 0, under the conditions (A), problem (1.1) has a 
unique solution  

ݑ ∈ ଶ(Ω்ܮ ,࣪, ଶܹ,ట,௠
௠ାଷ (࣡))ሩܥ ([0,ܶ], ଶܹ,ట,௠

௠ାଶ (࣡)) (a. s. ) 
which satisfies  

ట,௠,௠ାଷ,࣡೅|||ݑ|||
ଶ + ܧ sup

௧∈[଴,்]
∥ (ݐ)ݑ ∥ట,௠,௠ାଶ,࣡

ଶ  

≤ ట,௠,௠ାଵ,࣡೅|||݂|||]ܥ
∗ଶ + |||݃|||ట,௠,௠ାଶ,࣡೅

ଶ + ܧ ∥ ℎ ∥
௅మ([଴,்],࣪,ௐమ

య
మ(డ࣡))

ଶ  

ܧ+ sup
௧∈[଴,்]

∥ ℎ(ݐ) ∥
ௐమ
భ
మ(డ࣡)

ଶ + ࣡,଴|||ట,௠,௠ାଶݑ|||
ଶ ]. 

 
 Hereafter ܥ denotes a positive constant which does not depend on ݑ.  
 
 
4. Model Problem in a half space 
In this section, we consider the problem which contains only the principal terms, 
constant coefficients in the half space ࡾାଷ = ݕ} = ᇱݕ|(ଷݕ,ᇱݕ) ∈ ,ଶࡾ ଷݕ  > 0}. 
Coordinate system in (4.1) below is denoted by ݕ to distinguish it from the one in the 
original problem (1.1).  

 

⎩
⎪
⎨

⎪
⎧dݑ = [ܽ଴

௜௝ݑ௬೔௬ೕ + ݂]dݐ + ௬೔ݑ଴௜௟ߪ] + ݃௟] dݓ௧௟

in Ω × [0,ܶ] × ାଷࡾ ,
଴࢒ ⋅ ௬యୀ଴|ݑߘ = ℎ(ݐ, (ᇱݕ
on Ω × ଶࡾ × [0,ܶ] ≡ Ω × ்ࡾ

ଶ ,
(ݕ,0)ݑ = ଴ on Ωݑ × ାଷࡾ ,

 (4.1) 

where {ܽ଴
௜௝}௜,௝ୀଵଷ ௜,௝ୀଵଷ{଴௜௟ߪ} ,  and ࢒ = (݈ଵ଴, ݈ଶ଴, ݈ଷ଴)୘ are constants with ݈ଷ଴ ≠ 0.  
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Theorem 1. Assume ݂ ∈ ଶ(Ω்ܮ ,࣪, ෩ܹଶ,ట,௠
௠ାଵ ାଷࡾ) ), ݃ ∈  

ଶ(Ω்ܮ  ,࣪, ଶܹ,ట෩ ,௠
௠ାଶ ାଷࡾ) )),ℎ ∈ ଶ(Ω்ܮ ,࣪, ଶܹ

య
మ(ࡾଶ))⋂ܥ ([0,ܶ]; ଶܹ

భ
మ(ࡾଶ)) (a. s. ), and   

଴ݑ  ∈ ,࣪,ଶ(Ωܮ ଶܹ,ట෩ ,௠
௠ାଶ ାଷࡾ) )) with an interger ݉ ≥ 0.   

 Then, there exists a unique solution to (4.1)  
ݑ ∈ ଶ(Ω்ܮ ,࣪, ଶܹ,ట෩ ,௠

௠ାଷ ାଷࡾ) ))ሩܮଶ (Ω் ,࣪, ଶܹ
ଵ(ࡾାଷ ))  

ሩܥ ([0,ܶ]; ଶܹ,ట෩ ,௠
௠ାଶ ାଷࡾ) )) (a. s. ) 

 
satisfying the following estimates:  

ట෩|||ݑ||| ,௠,௠ାଷ,[଴,்]×ࡾశయ
ଶ + ܧ sup

௧∈[଴,்]
| ట෩|||(ݐ)ݑ|| ,௠,௠ାଶ,[଴,்]×ࡾశయ

ଶ  

≤ ట෩|||݂|||]ܥ ,௠,௠ାଵ,[଴,்]×ࡾశయ
∗ଶ + |||݃|||ట෩ ,௠,௠ାଶ,[଴,்]×ࡾశయ

ଶ  
+|||ℎ|||

௅మ(଴,்;ௐమ

య
మ(ࡾమ))

ଶ + ܧ sup
௧∈[଴,்]

∥ ℎ(ݐ) ∥
ௐమ

భ
మ(ࡾమ)

ଶ + ଴|||ట෩ݑ||| ,௠,௠ାଶ,ࡾశయ
ଶ ], 

ట෩|||ݑ||| ,଴,ଵ,[଴,்]×ࡾశయ
ଶ + ܧ sup

௧∈[଴,்]
| శయࡾ)௅మ|||(ݐ)ݑ|| )

ଶ  

≤ ట෩|||݂|||]ܥ ,௠,௠ାଵ,[଴,்]×ࡾశయ
∗ଶ + |||݃|||ట෩ ,௠,௠ାଶ,[଴,்]×ࡾశయ

ଶ  
శయࡾ,଴|||ట,௠,௠ାଶݑ|||+

ଶ + |||ℎ|||
௅మ(଴,்;ௐమ

భ
మ(ࡾమ))

ଶ + ܧ sup
௧∈[଴,்]

∥ ℎ(ݐ) ∥
ௐమ

భ
మ(ࡾమ)

ଶ ]. 

 
 To prove Theorem 4.1, we consider the following problems:  

  

⎩
⎪
⎨

⎪
⎧dݑଵ = ቂܽ଴

௜௝ݑଵ௬೔௬ೕ + ݂ቃ dݐ + ଵ௬೔ݑ଴௜௟ߪ] + ݃௟]dݓ௧௟

in Ω × [0,ܶ] × ାଷࡾ ,
ଵ|௬యୀ଴ݑ = 0 on Ω ,ଶࡾ×
,ଵ(0ݑ (ݕ = ଴ on Ωݑ × ାଷࡾ ,

 (4.2) 

 

  ൞
dݑଶ = ܽ଴

௜௝ݑଶ௬೔௬ೕdݐ in Ω × [0,ܶ] ାଷࡾ× ,
଴࢒ ⋅ ଶ|௬యୀ଴ݑߘ = ℎ − ଴࢒ ⋅ ଵ|௬యୀ଴ on Ωݑߘ × ்ࡾ

ଶ ,
(ݕ,0)ଶݑ = 0 on Ω× ାଷࡾ ,

 (4.3) 

 
where {ܽ଴

௜௝}௜,௝ୀଵଷ ௜,௝ୀଵଷ{଴௜௟ߪ} ,  and ࢒ = (݈ଵ଴, ݈ଶ଴, ݈ଷ଴)୘ are constants with ݈ଷ଴ ≠ 0. 
Theorem ..11 results from Lemmas 4.1 and 4.2 below.  
 
Lemma 1. For arbitrary ܶ > 0 with the same assumptions as in Theorem ..11, there 
exists a unique solution ݑଵ to problem (4.2) such that  

ଵݑ ∈ ଶ(Ω்ܮ ,࣪, ଶܹ,ట෩ ,௠
௠ାଷ ାଷࡾ) ))ሩܮଶ (Ω் ,࣪, ଶܹ

ଵ(ࡾାଷ )) 

ሩܥ ([0,ܶ], ଶܹ,ట෩ ,௠
௠ାଶ ାଷࡾ) )) (a. s) 

 
satisfying the following estimates for an integer ݉ ≥ 0:  
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ଵ|||ట෩ݑ||| ,௠,௠ାଷ,[଴,்]×ࡾశయ
ଶ + ܧ sup

௧∈[଴,்]
| ట෩|||(ݐ)ଵݑ|| ,௠,௠ାଶ,ࡾశయ

ଶ  

≤ ట෩|||݂|||]ܥ ,௠,௠ାଵ,[଴,்]×ࡾశయ
∗ଶ + |||݃|||ట෩ ,௠,௠ାଶ,[଴,்]×ࡾశయ

ଶ + ଴|||ట෩ݑ||| ,௠,௠ାଶ,ࡾశయ
ଶ ], 

ଵ|||ట෩ݑ||| ,଴,ଵ,[଴,்]×ࡾశయ
ଶ + ܧ sup

௧∈[଴,்]
| శయࡾ)௅మ|||(ݐ)ଵݑ|| )

ଶ  

≤ ܧ]ܥ ∥ ݂߰ ∥௅మ([଴,்]×ࡾశయ )
ଶ + |||݃|||௅మ(Ω೅,࣪,௅మ(ࡾశయ ))

ଶ + ଴|||ట෩ݑ||| ,௠,௠ାଶ,ࡾశయ
ଶ ]. 

 
 In additon, problem (4.3) has a unique solution  

ଶݑ ∈ ଶ(Ω்ܮ ,࣪, ଶܹ,ట෩ ,௠
௠ାଷ ାଷࡾ) ))ሩܮଶ (Ω் ,࣪, ଶܹ

ଵ(ࡾାଷ )) 

ሩܥ (Ω் , ଶܹ,ట෩ ,௠
௠ାଶ ାଷࡾ) )) (a. s. ) 

 
satisfying the following estimates:  

ଶ|||ట෩ݑ||| ,௠,௠ାଷ,[଴,்]×ࡾశయ
ଶ + ܧ sup

௧∈[଴,்]
| ట෩|||(ݐ)ଶݑ|| ,௠,௠ାଶ,ࡾశయ

ଶ  

≤ |||ℎ|||]ܥ
௅మ(Ω೅,࣪,ௐమ

య
మ(ࡾమ))

ଶ + ܧ sup
௧∈[଴,்]

∥ ℎ(ݐ) ∥
ௐమ

భ
మ(ࡾమ)

ଶ  

ଵ|||ట෩ݑ|||+ ,௠,௠ାଷ,[଴,்]×ࡾశయ
ଶ + ܧ sup

௧∈[଴,்]
| ట෩|||(ݐ)ଵݑ|| ,௠,௠ାଶ,ࡾశయ

ଶ ], 

ଶ|||ట෩ݑ||| ,଴,ଵ,[଴,்]×ࡾశయ
ଶ + ܧ sup

௧∈[଴,்]
| శయࡾ)௅మ|||(ݐ)ଶݑ|| )

ଶ  

≤ |||ℎ|||]ܥ
௅మ(Ω೅,࣪,ௐమ

భ
మ(ࡾమ))

ଶ + ܧ sup
௧∈[଴,்]

∥ ℎ(ݐ) ∥
ௐమ

భ
మ(ࡾమ)

ଶ  

ܧ+ sup
௧∈[଴,்]

∥ (ݐ)ଵݑ ∥ௐమ,ഗ෩ ,೘
೘శమ శయࡾ) )

ଶ ]. 

 
 Due to the lack of the space, the detail of the proof is omitted. We merely refer to 
making use of the embedding theorem for weighted Sobolev spaces ଶܹ,ట෩ ,௥

௥ାଶା௜(ࡾାଷ ) ⊂

ଶܹ

య
మା௜(ࡾଶ) (݅ = 0,1) by Nikol’skiĭ [11] in the proof.  

 
 
5. Problem in the Original Domain 
Now we consider (1.1) based on the regularizer method [10], which requires some 
assumptions on the domain.  
 
1. The Original Domain 
First, it is assumed that there exists a number ݀ > 0 such that, in a sphere of radius ݀ 
with center at any point ߦ ∈ ߲࣡, ߲࣡ is provided in a local coordinate system by the 
equation ݖଷ = (ᇱݖ)ܨ = ,ଵݖ)ܨ  ,is a function with enough regularity ܨ ଶ), whereݖ
satisfying (0)ܨ = (0)ܨߘ = 0. Under the asumption ߲࣡ ∈ ଵାఈ (0ܥ < ߙ < 1) in a 
neighborhood of ߦ, we have the inequality |߲ݖ߲/ܨ௞| ≤  ᇱ|ఈ. Further, we assumeݖ|ܿ
that it is possible to construct in ࣡ for any ߣ > 0, a finite or countable number of 
subdomains ߱(௞) and ܦ(௞) possessing the following properties:  

1. ߱(௞) ⊂ (௞)ܦ ⊂ ࣡,  ⋃ ߱(௞)
௞ = ⋃ (௞)ܦ

௞ = ࣡;  
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2. For any point ݔ ∈ ࣡, there exists ߱(௞) such that ݔ ∈ ߱(௞) and the distance 
from ݔ to ܦ(௞) ∖ ߱(௞) is not less than ݀ߣ;  

3. There exists a positive number ଴ܰ not depending on ߣ such that the 
intersection of any ଴ܰ + 1 distinct of ܦ(௞) is empty;  

4. ߱(௞) and ܦ(௞) that are seperated from ߲࣡ by a positive distance larger than ߩ଴ 
(we denote the set of their indices ݇ by ℳ) are 3-dimensional cubes with 
common center ߦ(௞) ∈ ࣡ whose linear dimensions are equal to ߣ and 2ߣ 
ߣ2) <  ݇ ଴) respectively, while those adjacent to ߲࣡ (the set of their indicesߩ
by ࣨ) are defined in local coordinates at ߦ(௞) ∈ ߲࣡ by the inequalities:  

߱(௞) = ݖ} ∈ |௜ݖ||ଷࡾ <
ߣ
2 (݅ = 1,2);  0 < ଷݖ − (ᇱݖ)ܨ <  ,{ߣ

(௞)ܦ = ݖ} ∈ |௜ݖ||ଷࡾ < ݅) ߣ = 1,2);  0 < ଷݖ − (ᇱݖ)ܨ <  .{ߣ2
 

5. The change of variables ݕᇱ = ଷݕ ,ᇱݖ = ଷݖ −  which we denote by ,(ᇱݖ)ܨ
ݕ = Φ(ݖ), takes a domain ܦ(௞) (݇ ∈ ࣨ) into the cube ܼ௞ିଵ(ܦ(௞)) = ݕ}  ∈
ାଷࡾ |௜ݕ|| < ݅) ߣ = 1,2),0 < ଷݕ <  where the inverse of the composed ,{ߣ2
transform Φ(ܥ(௞)(ݔ −  an orthogonal matrix to (௞)ܥ with ,(௞)ܦ in (((௞)ߦ
transform the coordinate system into the local one around ߦ(௞), is represented 
by ܼ௞ିଵ. Then we have functions ߞ(௞)(ݔ) satisfying  

0 ≤ (௞)ߞ ≤ |(௞)ߞఈܦ| ,1 ≤
ܿఈ
|ఈ|ߣ , |ߙ|)  = 0,1, … ) 

(ݔ)(௞)ߞ = 1 for ݔ ∈ ߱(௞), (௞)ߞ  = 0 for ݔ ∈ ࣡ ∖  ,(௞)ܦ
and ܿఈ > 0 independent on ݇. By virtue of property (iii) of the domains ܦ(௞), 
1 ≤ ∑ ൫ߞ(௞)(ݔ)൯

ଶ
௞ ≤ ଴ܰ, and the functions ߟ(௞)(ݔ) ≡ ఍(ೖ)(௫)

∑ ൫఍(ೕ)(௫)൯
మ

ೕ
 have the following 

properties:  

⎩
⎨

(ݔ)(௞)ߟ⎧ = 0 in ࣡ ∖ ,(௞)ܦ |(ݔ)(௞)ߟఈܦ|  ≤
ܿఈ
|ఈ|ߣ ,

෍ߟ(௞)

௞

(ݔ)(௞)ߞ(ݔ) = 1.
 

 
 Now Let us define a linear operetor ܴ(௞). For ݇ ∈ ℳ, it associates with  

(݂(௞),݃(௞)) ∈ ଶ(Ωఛܮ ,࣪, ෩ܹଶ,ట,௠
௠ାଵ (((௞)ܦ) × ଶ(Ωఛܮ ,࣪, ଶܹ,ట,௠

௠ାଶ  (((௞)ܦ)
 
the solution ݑ(௞) ∈ ଶ(Ωఛܮ ,࣪, ଶܹ,ట,௠

௠ାଷ ܥ⋂(((௞)ܦ) ([0,߬]; ଶܹ,ట,௠
௠ାଶ .a) (((௞)ܦ) s. ) of the 

problem  

⎩
⎨

⎧dݑ(௞) = [ܽ௜௝|(௧,௫)ୀ(଴,క(ೖ))ݑ௫೔௫ೕ
(௞) + ݂(௞)]dݐ

௫೔ݑ௜௟|(௧,௫)ୀ(଴,క(ೖ))ߪ]+
(௞) + ݃(௞)௟]dݓ௧௟ in ்ܦ

(௞),
௧ୀ଴|(௞)ݑ = 0 (k).

 

 
 For ݇ ∈ ࣨ, we define a mappig ܴ(௞) that associates with (݂(௞),݃(௞),ℎ(௞)) ∈  

ଶ(Ωఛܮ ,࣪, ෩ܹଶ,ట෩ ,௠
௠ାଵ ାଷࡾ) )) × ଶ(Ωఛܮ ,࣪, ଶܹ,ట෩ ,௠

௠ାଶ ାଷࡾ) )) 
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× ଶ(Ωఛܮ) ,࣪, ଶܹ

ଷ
ଶ(ࡾଶ))ሩܥ ([0,߬]; ଶܹ

ଵ
ଶ(ࡾଶ)) (a. s. ) 

 
the solution ݑ(௞) ∈ ଶ(Ωఛܮ ,࣪, ଶܹ,ట෩ ,௠

௠ାଷ ାଷࡾ) ܥ⋂(( (Ωఛ; ଶܹ,ట෩ ,௠
௠ାଶ ାଷࡾ) )) (a. s. ) of the 

problem  

⎩
⎪
⎨

⎪
⎧dݑ(௞) = [ܽ௜௝|(௧,௫)ୀ(଴,క(ೖ))ݑ௬೔௬ೕ

(௞) + ݂(௞)]dݐ

௬೔ݑ௜௟|(௧,௫)ୀ(଴,క(ೖ))ߪ]+
(௞) + ݃(௞)௟] dݓ௧௟ in ࡾାଷ × [0,ܶ],

௬యݑ
(௞)|௬యୀ଴ = ℎ(௞) on ࡾଶ,
௧ୀ଴|(௞)ݑ = 0 on ࡾାଷ ,

 

 
which exists uniquely due to Lemma 4.1. Then, define a bounded operator ܴ acting 
from  

ℬ(߬) ≡ ଶ(Ωఛܮ ,࣪, ෩ܹଶ,ట,௠
௠ାଵ (࣡)) × ଶ(Ωఛܮ ,࣪, ଶܹ,ట,௠

௠ାଶ (࣡)) 

× ଶ(Ωఛܮ) ,࣪, ଶܹ

ଷ
ଶ(߲࣡))ሩܥ ([0, ߬]; ଶܹ

ଵ
ଶ(߲࣡))) (a. s. ) 

into ࣛ(߬) ≡ ଶ(Ωఛܮ ,࣪, ଶܹ,ట,௠
௠ାଷ ܥ⋂((࣡) ([0, ߬]; ଶܹ,ట,௠

௠ାଶ (࣡)) (a. s. ) and for any 
ℋ ≡ (݂,݃, ℎ) ∈ ℬ and ݑ ∈ ࣛ  
ℋܴܣ  = ℋ + ܶℋ, ܴݑܣ = ݑ +  (5.1) .ݑܹ
ܣ =  ࣛ shall be defined later. ܶ and ܹ are bounded operators in ℬ and (ܤ,ܮ)
respectively, the norms of which are less than 1 if ߬ is small enough. Then (ܫ + ܶ)ିଵ 
and (ܫ + ܴ)ିଵ exist,  

ܫ)ܴ + ܶ)ିଵ = (1 + ܹ)ିଵܴ =  ଵିܣ
 
holds. In addition, we have ∥ ଵିܣ ∥≤ max { ∥ ܫ) + ܶ)ିଵ ∥∥ ܴ ∥,  ∥ ܫ) + ܹ)ିଵ ∥∥ ܴ ∥
}, where ∥⋅∥ stands for the norm of the operators.  
 Taking ߬ small enough so that ∥ ܶ ∥≤ 1/2 holds, then we have ∥ ଵିܣ ∥≤∥ ܫ) +
ܶ)ିଵ ∥∥ ܴ ∥≤ 2 ∥ ܴ ∥. Hence the problem is reduced to constructing the operator ܴ 
and the estimates of ∥ ܴ ∥, ∥ ܶ ∥ and ∥ ܹ ∥. In the function spaces ࣛ and ℬ, let us 
introduce the norms  

∥ ݑ ∥ࣛ(்)
ଶ ≡ ట,௠,௠ାଷ,࣡೅|||ݑ|||

ଶ + ܧ sup
௧∈[଴,்]

| ࣡,ట,௠,௠ାଶ|||(ݐ)ݑ||
ଶ , 

∥ (݂,݃,ℎ) ∥ℬ(்)
ଶ ≡ |||݂|||ట,௠,௠ାଵ,࣡೅

∗ଶ + |||݃|||ట,௠,௠ାଶ,࣡೅
ଶ  

|||ℎ|||ܧ+
௅మ(Ω೅,࣪,ௐమ

య
మ(ࡾమ))

ଶ + ܧ sup
௧∈[଴,்]

∥ ℎ(ݐ) ∥
ௐమ

భ
మ(ࡾమ)

ଶ . 

 
 Define ܴℋ ≡ ∑ (௞)ߟ

௞   where ,(ݔ,ݐ)(௞)ݑ(ݔ)

,ݐ)(௞)ݑ (ݔ = ቊ
ܴ(௞)ߞ(௞)݂ for ݇ ∈ ℳ,
ܼ௞ܴ(௞)ܼ௞ିଵߞ(௞)(݂,݃, ℎ) for ݇ ∈ ࣨ.

 

 
 Now we proceed to the proof of Theorem 3.1.  
 Proof of Theorem 3.1  
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Proof.. Let us define a map ܮ଴ = ,ݐ)଴ܮ   ௫) by߲,ݔ
,ݔ,ݐ)଴ܮ ߲௫):ܮଶ(Ωఛ ,࣪, ଶܹ,ట,௠

௠ାଷ (࣡))ሩܥ ([0, ߬], ଶܹ,ట,௠
௠ାଶ (࣡)) (a. s. ) 

→ ;ଶ(Ωఛܮ ෩ܹଶ,ట,௠
௠ାଵ (࣡)) × ;ଶ(Ωఛܮ ଶܹ,ట,௠

௠ାଶ (࣡)) 
mapping (݂,݃) ≡ ,ଵ(ݑ଴ܮ)) (ଶ(ݑ଴ܮ) ∈ ;ଶ(Ωఛܮ ෩ܹଶ,ట,௠

௠ାଵ (࣡)) ×  
;ଶ(Ωఛܮ ଶܹ,ట,௠

௠ାଶ (࣡)), which satisfies  
dݑ = [ܽ௜௝(ݐ, ௫೔௫ೕݑ(ݔ + ݂]dݐ + ௫೔ݑ(ݔ,ݐ)௜௟ߪ] + ݃௟] dݓ௧௟in ࣡ 

to ݑ ∈ ଶ(Ωఛܮ ,࣪, ଶܹ,ట,௠
௠ାଷ ܥ⋂((࣡) ([0, ߬], ଶܹ,ట,௠

௠ାଶ (࣡)) (a. s. ), and a map ܮ = ,ݐ)ܮ ,ݔ ߲௫) 
by  

ଶ(Ωఛܮ ,࣪, ଶܹ,ట,௠
௠ାଷ (࣡))ሩܥ ([0,߬], ଶܹ,ట,௠

௠ାଶ (࣡)) (a. s. ) 

→ ଶ(Ωఛܮ ,࣪, ෩ܹଶ,ట,௠
௠ାଵ (࣡)) × ଶ(Ωఛܮ ,࣪, ଶܹ,ట,௠

௠ାଶ (࣡)), 
mapping (݂,݃) ∈ ଶ(Ωఛܮ ,࣪, ෩ܹଶ,ట,௠

௠ାଵ (࣡)) × ଶ(Ωఛܮ ,࣪, ଶܹ,ట,௠
௠ାଶ (࣡)) which satisfies  

dݑ = [ܽ௜௝(ݐ, ௫೔௫ೕݑ(ݔ + ௫೔ݑܾ − ݑܿ + ݂] dݐ 
௫೔ݑ(ݔ,ݐ)௜௟ߪ]+ + ݑ௟ߥ + ݃௟] dݓ௧௟ in ࣡, 

to ݑ ∈ ଶ(Ωఛܮ ,࣪, ଶܹ,ట,௠
௠ାଷ ܥ⋂((࣡) ([0, ߬], ଶܹ,ట,௠

௠ାଶ (࣡)) (a. s. ).  
Let ܮ଴

(௞) = ଴ܮ
(௞)(ݐ, ,ݖ ௭߲) be the operator ܮ଴ in the local coordinate at the point ߦ(௞), 

mapping  
(݂(௞),݃(௞)) ≡ ଴ܮ))

(௞)ݑ)ଵ, ଴ܮ)
(௞)ݑ)ଶ) 

∈ ଶ(Ωఛܮ ,࣪, ෩ܹଶ,ట෩ ,௠
௠ାଵ ାଷࡾ) )) × ଶ(Ωఛܮ ,࣪, ଶܹ,ట෩ ,௠

௠ାଶ ାଷࡾ) )) 
which satisfies  

dݑ(௞) = [ܽ(௞)௜௝ݑ௭೔௭ೕ
(௞) + ݂(௞)] dݐ + ௭೔ݑ௜௟(௞)ߪ]

(௞) + ݃(௞)௟] dݓ௧௟ in ࡾାଷ , 
to ݑ(௞) ∈ ଶ(Ωఛܮ ,࣪, ଶܹ,ట෩ ,௠

௠ାଷ ାଷࡾ) ܥ⋂(( ([0,߬], ଶܹ,ట෩ ,௠
௠ାଶ ାଷࡾ) )) (a. s. ), where ݃(௞)௟ =

௟, and ܽ(௞)௜௝݃(௞)ߞ  (݅, ݆, = ௜௟(௞)ߪ ,(1,2,3  (݅, ݈, = 1,2,3) are the components of the 
matrices ܥ(௞)்ܣሜܥ(௞), ܥ(௞)் ∑   ,respectively. We also define maps ,(௞)ܥ

ଵܮ ≡ ܮ − ,ݔ,ݐ)଴ܤ ,଴ܮ ߲௫)ݑ = ࢒ ⋅ డ࣡೅|ݑߘ ,

଴ܤ
(௞)(ݕ,ݐ, ߲௬)ݑ = (ݕ)ሚ࢒ ⋅ ݑଵܤ ,௬యୀ଴|(ݕ)෤ݑ௬ߘ = ,ݐ)݇ డ࣡೅|ݑ(ݔ ,

 

where ࢒ሚ(ݕ) = ,ݐ)௞ܼ)࢒ ࢒ with ࢒(௞)ܥ and is the components of ((ݔ = (݈ଵ, ݈ଶ, ݈ଷ). It is 
easy to show  

଴ܴℋܮ = ෍(
௞

−((௞)ݑ(௞)ߟ)଴ܮ  ((௞)ݑ଴ܮ(௞)ߟ

+෍ߟ(௞)

௞

,ݐ)଴ܮ] ,ݔ ߲௫)− ,଴(0ܮ  (௞)ݑ[(௫߲,(௞)ߦ

 +෍ߟ(௞)

௞

,଴(0ܮ  (5.2) .(௞)ݑ(௫߲,(௞)ߦ

Each term in (5.2) can be calculated explicitly. For the first term, for example,  
((௞)ݑ(௞)ߟ)଴ܮ − (௞)ݑ଴ܮ(௞)ߟ = (−ܽ௜௝(ߟ௫೔௫ೕ

(௞) (௞)ݑ + ௫೔ߟ2
(௞)ݑ௫ೕ

(௞)), −ߪ௜௟ߟ௫೔
(௞)ݑ(௞)). 

Then, we represent ܶℋ in (5.1) explicitly. Since ∑ (௞)ߟ
௞ (௞)ߞ = 1, we have ܮ(ܴℋ) =

ℋ + ( ଵܶℋ, ଶܶℋ), where  
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( ଵܶℋ, ଶܶℋ) = ଵܴℋܮ + ෍(
௞

(௞)ݑ(௞)ߟ଴ܮ −  ((௞)ݑ଴ܮ(௞)ߟ

+෍ߟ(௞)

௞

,ݐ)଴ܮ] (௫߲,ݔ − ,଴(0ܮ ,(௞)ߦ ߲௫)]ݑ(௞) 

+ ෍ (௞)ߟ

௞∈ࣨ

ܼ௞[ܮ଴
(௞)(0,0,߲௬ − (௬య߲ܨߘ − ଴ܮ

(௞)(0,0,߲௬)] 

ܴ(௞)ܼ௞ିଵߞ(௞)(݂,݃, ℎ). 
Analogously we have ܴܤℋ|డ࣡೅ = ℋ + ଷܶℋ, where  

ଷܶℋ = ଵܴℋ|డ࣡೅ܤ + ෍ (
௞∈ࣨ

(௞)ݑ(௞)ߟ଴ܤ − డ࣡೅|((௞)ݑ଴ܤ(௞)ߟ  

+෍ߟ(௞)

௞

,ݐ)଴ܤ] (௫߲,ݔ − ,଴(0ܤ ,(௞)ߦ ߲௫)]ݑ(௞) 

+ ෍ (௞)ߟ

௞∈ࣨ

ܼ௞[ܤ଴
(௞)(0,0,߲௬ − (௬య߲ܨߘ − ଴ܤ

(௞)(0,0,߲௬)] 

ܴ(௞)ܼ௞ିଵߞ(௞)(݂,݃, ℎ). 
 
 Thus ܴܣℋ = ൫ܴܮℋ,ܴܤℋ|డ࣡ഓ൯ = (݂,݃, ℎ) + ( ଵܶℋ, ଶܶℋ, ଷܶℋ) = ℋ + ܶℋ. 
Explicit representation of ܹݑ in (5.1) is obtained similarly. By virtue of Lemma 5.4 
introduced later,  
 ∥ ܶℋ ∥ℬ≤ ,߬)ଵߟܿ (ߣ ∥ ℋ ∥ℬ , (5.3) 
 ∥ ݑܹ ∥ࣛ≤ (ߣ,߬)ଶߟܿ ∥ ݑ ∥ࣛ , (5.4) 
hold with ߟ௜(߬, (ߣ → 0 (݅ = 1,2) as ߬ and ߣ goes to 0, and monotonically increasing 
with ߬ and ߣ. Taking (߬, ∥ in (5.3)–(5.4) small enough makes (ߣ ܶ ∥ and ∥ ܹ ∥ 
arbitrarily small. Next, we consider the same problem in a cylindrical domain whose 
lower base lies in the plane ݐ = ଴ݐ < ܶ. The height of the cylinder in which the 
existence of the solution is guaranteed can be taken to be the same for any ݐ଴. Thus 
we have the desired result.  � 
 
2. Auxiliary Lemmas 
In the preceding subsection, we have proved Theorem 3.1 based on (5.3)–(5.4), which 
we finally prove.  
 
Lemma 1. If a function ݑ satisfies ݑ ∈ ଶܹ,ట෩ ,௥ା௝

௥ା௟ା௝ ାଷࡾ) ) and ݕ)ݑᇱ, (ଷݕ = ݕ}݊݋ 0 ∈
ାଷࡾ ଷݕ| ≥ ݎ the following estimate holds with ,ܯ with a positive constant {ܯ > −1/2 
and ݆, ݈ ≥ 0:  

ฮ ෨߰௥ܦ௬
ఈభݑฮ

௅మ(ࡾశయ )
≤ ฮܥ ෨߰௥ା௝ܦ௬

ఈమݑฮ
௅మ(ࡾశయ )

, 
where |ߙଵ| = ݎ + |ଶߙ| ,݈ = ݎ + ݈ + ݆, and ܥ is a positive constant depending on ݎ ,ܯ, 
݆ and ݈.  
Lemma 5.1 follows from Lemma 2.1(a) in [6] directly, and we omit the proof. Next, a 
similar estimate holds in the original domain with the aid of Lemma 5.1.  
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Lemma 2. Assume (2.1), and let a function ݂ ∈ ଶܹ,ట෩ ,௥ା௝
௥ା௟ା௝ (ݔ)ఈ݂ܦ satisfies ((௞)ܦ) ≡ 0 

for |ߙ| = ݎ + ݈ on the region  

ቊ{ݔ ∈ ଷݔ|(௞)ܦ = ଷߦ
(௞) ± ݇ for{ߣ ∈ ℳ,

ݖ} = ݔ)(௞)ܥ − ݔ,((௞)ߦ ∈ ଷݖ|(௞)ܦ = (ᇱݖ)ܨ + ݇ for {ߣ2 ∈ ࣨ,
 

where ߦଷ
(௞) is the 3rd component of ߦ(௞). Then,  

‖߰௥ܦఈభ݂‖௅మ(஽(ೖ)) ≤  ఈమ݂ฮ௅మ(஽(ೖ))ܦฮ߰௥ା௝ܥ

 for ݇ ∈ ℳራࣨ , ݎ  > −1/2,  ݆, ݈ ≥ 0, 
where |ߙଵ| = ݎ + |ଶߙ| ,݈ = ݎ + ݈ + ݆, and ܥ is a positive constant depending on ݎ ,ܯ, 
݆ and ݈.  
 The following lemma is substantial in proving the main theorem.  
 
Lemma 3. The estimates  

∥ ܴℋ ∥ࣛ≤ ܿ ∥ ℋ ∥ℬ , ∥ ݑଵܤ ∥ℬ≤ ,߬)ଷߟ (ߣ ∥ ݑ ∥ࣛ , 
∥ ݑଵܮ ∥ℬ≤ (߬)ସߟ ∥ ݑ ∥ࣛ  

 
hold with a non-decreasing functions ߟଷ(߬,ߣ) and ߟସ(߬) which go to 0 as their 
arguments go to 0.  
 
Proof.. We only show the estimate of ∥ ܴℋ ∥ࣛ . First, the following inequality is 
readily seen.  

∥ ܴℋ ∥ࣛ≤ ]෍ܥ
௞

∥ (௞)ݑ(௞)ߟ ∥௅మ(Ωഓ;ௐమ,ഗ,೘
೘శయ (஽(ೖ))) 

ܧ+ sup
௧∈[଴,ఛ]

∥ (ݐ)(௞)ݑ(௞)ߟ ∥ௐమ,ഗ,೘
೘శమ (஽(ೖ)))]. 

 
 For ݇ ∈ ℳ, we make use of the result of Cauchy problem of the linear SPDEs [4], 
while for ݇ ∈ ࣨ,  

௅మ(Ωഓ,࣪,ௐమ,ഗ,೘|||(௞)ݑ(௞)ߟ|||
೘శయ (஽(ೖ)))

ଶ + ܧ sup
௧∈[଴,ఛ]

| ௐమ,ഗ,೘|||(ݐ)(௞)ݑ(௞)ߟ||
೘శమ (஽(ೖ))

ଶ  

≤ ܥ

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ ∥ (௞)ݑ ∥௅మ(Ωഓ,࣪,௅మ(஽(ೖ)))

ଶ + ܧ sup
௧∈[଴,ఛ]

∥ (ݐ)(௞)ݑ ∥௅మ(஽(ೖ))
ଶ

+ቯ߰௠ ෍ ෍ ఈభܦ

|ఈభ|ୀ௠ାଷି௜,|ఈమ|ୀ௜

௠ାଷ

௜ୀ଴

(௞)ߟ ⋅ ቯ(௞)ݑఈమܦ

௅మ(Ωഓ,࣪,௅మ(஽(ೖ)))

ଶ

ܧ+ sup
௧∈[଴,ఛ]

ቯ߰௠ ෍ ෍ ఉభܦ

|ఉభ|ୀ௠ାଶି௜,|ఉమ|ୀ௜

௠ାଶ

௜ୀ଴

(௞)ߟ ⋅ ቯ(ݐ)(௞)ݑఉమܦ

௅మ(஽(ೖ))

ଶ

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

, 

 
by virtue of Lemma 4.1. Now we show the estimate of the third term as an example. 
Due to the inequality  
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ቛݑ௫೔௫ೕ
(௞) ቛ

௅మ(Ωഓ,࣪,௅మ(஽(ೖ)))

ଶ
≤ ܧ߬ sup

௧∈[଴,ఛ]
ቛݑ௫೔௫ೕ

(௞) ቛ
௅మ(஽(ೖ))

ଶ
 (݅, ݆ = 1,2, … ) 

 
and Lemma 4.1, we have  

ቯ߰௠ ෍ ෍ ఈభܦ

|ఈభ|ୀ௠ାଷି௜,|ఈమ|ୀ௜

௠ାଷ

௜ୀ଴

(௞)ߟ ⋅ ቯ(௞)ݑఈమܦ

௅మ(Ωഓ,࣪,௅మ(஽(ೖ)))

ଶ

 

≤ ෍ ෍ ฮ߰௜ିଷܦఈమݑ(௞)ฮ
௅మ(Ωഓ,࣪,௅మ(஽(ೖ)))
ଶ

|ఈభ|ୀ௠ାଷି௜,|ఈమ|ୀ௜

௠ାଷ

௜ୀଷ

ฮ߰௠ି௜ାଷܦఈభߟ(௞)ฮ
௅ಮ(஽(ೖ))
ଶ

 

+෍ ෍ ∥
|ఉభ|ஸଷ

ଷ

௜ୀଵ

(௞)ݑଷି௜ߘఉభܦ ∥௅మ(Ωഓ,࣪,௅మ(஽(ೖ)))
ଶ ∥ ߰௠ߘ௠ା௜ߟ(௞) ∥௅ಮ(஽(ೖ))

ଶ  

≤ ∥]ܥ ݂(௞)ߞ ∥
ట,௠,௠ାଵ,஽ഓ

(ೖ)
∗ଶ +∥ ݃(௞)ߞ ∥

ట,௠,௠ାଶ,஽ഓ
(ೖ)

ଶ +∥ ଴ݑ(௞)ߞ ∥ట,௠,௠ାଶ,஽(ೖ)
ଶ  

+∥ ℎ(௞)ߞ ∥
௅మ(Ωഓ,࣪,ௐమ

య
మ(ࡾమ))

ଶ + ܧ sup
௧∈[଴,ఛ]

∥ (ݐ)ℎ(௞)ߞ ∥
௅మ([଴,ఛ],࣪,ௐమ

భ
మ(ࡾమ)

]. 

 
 For the estimate of ∥ ݑଵܮ ∥ℬ, we use the inequality  

∥ ݑ ∥௅೜ᇲ (஽(ೖ))≤ ܥ ∥ ݑߘ ∥௅మ(஽(ೖ))
ఈ ∥ ݑ ∥௅మ(஽(ೖ))

ଵିఈ  
 
with ߙ = ݑ for for ݍ/3 ∈ ଶܮ⋂((௞)ܦ)௤ᇲܮ  in general, Young’s and Poincaré ((௞)ܦ)
inequalities. Due to Lemma 5.2 and the inequality  

෍ ∥
௞∈ℳ⋃ࣨ

ݑ(௞)ߞ(௞)ߟ ∥ࣛ≤ ܿ ∥ ݑ ∥ࣛ , 

 
we have the desired result. Other terms can be estimated similarly.  � 
 Finally, we verify estimates (5.3) and (5.4). Together with Lemma 5.3, let us 
make use of the following facts:  
 For (ݔ,ݐ) ∈ [0, ߬] × ,ݐ)௜௝ܽ| ,(௞)ܦ (ݔ − ܽ௜௝(0, |((௞)ߦ ≤ ,߬)ହߟ  ହߟ holds with (ߣ
having the same property with ߟଵ(߬, |(ݔ)ܨߘ| ;(ߣ ≤ ఈߣܥ  on ܼ௞(ܦ(௞)).  
 Thus, we obtain (5.3). Making use of Lemmas 5.2 and 5.3 and the facts listed 
above, we also have (5.4). This completes all parts of the proof of the main theorem.  
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