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Abstract 
 

In this paper, an algorithm is given which is approximation, centralized, 
greedy and one-phase, to find a minimal total dominating set using the novel 
method of search of dynamic maximum weighted edge, with worst case time 
complexity O(nm2) or O(n3), where n and m are respectively the number of 
vertices and number of edges of the graph G. Existing algorithms by others 
have given the performance ratio to find the total dominating set of a general 
graph up to 1.5 + ln (Δ - 0.5). In this paper, the performance ratio of the 
proposed algorithm is proved to be at most 1 + ln Δ for finding the total 
dominating set in general graphs, where Δ is the maximum degree of G. 
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1. Introduction 
Some basic definitions from Slater et al. [1] are given below.  
 
Basic Definitions:  
The graphs considered in this paper are finite, simple, connected and undirected. For a 
graph G, let V(G) and E(G) denote its vertex (node) set and edge set respectively and 
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n and m denote the cardinality of those sets respectively. The degree of a vertex v in a 
graph G is denoted by degG(v). The maximum degree of the graph G is denoted by 
Δ(G). The length of any shortest path between any two vertices u and v of a connected 
graph G is called the distance between u and v and is denoted by dG(u, v). If there is 
no confusion, we simply use the notions deg(v) and d(u, v) to denote degree and 
distance respectively for the concerned graph. For v ∊ V(G), neighbors of v are the 
vertices adjacent to v in G. The neighborhood NG(v) of v is the set of all neighbors of v 
in G. It is also denoted by N1(v) or simply N(v). For an edge e = uv, u and v are said to 
be the end vertices of the edge e. An edge e is said to be adjacent to an edge f, if they 
have a common vertex. 
 We say that H is a sub graph of a graph G, denoted by H < G, if V(H) ⊆ V(G) and 
uv ∊ E(H) implies uv ∊ E(G). If a sub graph H satisfies the added property that for 
every pair u, v of vertices, uv ∊ E(H) if and only if uv ∊ E(G), then H is called an 
induced sub graph of G. The induced sub graph H of G with S = V(H) is called the sub 
graph induced by S and is denoted by <S|G> or simply <S>. 
 The concept of domination was introduced by Ore [2]. A set D ⊆ V(G) is called a 
dominating set if every vertex v in V is either an element of D or is adjacent to an 
element of D. A dominating set D is a minimal dominating set if D-{v} is not a 
dominating set for any v ∊ D. The domination number γ(G) of a graph G equals the 
minimum cardinality of a dominating set in G. The readers are also directed to refer 
Slater et al. [1] for further details of basic definitions, not given in this paper.  
 Total domination in graphs was introduced by Cockayne, Dawes, and Hedetniemi 
[3] and is now well studied in graph theory. The literature on this subject has been 
surveyed and detailed in the two books by Haynes, Hedetniemi, and Slater [1, 4].  
 A dominating set D ⊆ V is a total dominating set, abbreviated TDS, of G if every 
vertex in V is adjacent to a vertex in D. Every graph without isolated vertices has a 
TDS, since D = V is such a set. A total dominating set D is a minimal total dominating 
set if D-{v} is not a total dominating set for any v ∊ D. The total domination number 
of G denoted by γt (G) is the minimum cardinality of a TDS of G. We use T* to 
denote the minimum TDS for G (in theorems of this paper, this notation is used). This 
implies that γt (G) = |T*|.  
 The rest of the paper is organized as follows: Section 2 discusses about prior 
work. Section 3 contains an algorithm and some theorems for proving the correctness 
of that algorithm. Section 4 compares the algorithm with the other algorithms given 
by various authors and discusses the performance ratio. Section 5 concludes the paper. 
 
 
2. Prior Work 
NP-completeness of Min-TDS (minimum total dominating set) is discussed in Slater 
et al. [1, 4]. A survey work has been done related to the results on total domination 
number of graphs by Henning [5]. The readers are also directed to refer Slater et al. 
[1, 4] for details of TDS not given in this paper. An approximation, greedy algorithm 
is given by Zhu [6] for finding the total dominating set with the performance ratio 1.5 
+ ln (Δ - 0.5). This problem also arises in a number of distributed network 
applications, where the problem is to locate the smallest number of centers in the 
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networks such that every vertex is adjacent to at least one of the centers, and their 
center should also be adjacent to at least one of the other centers for its fault tolerance.  
 The purpose of this paper is to give an approximation algorithm, using a new 
approach as well as with better performance ratio for finding TDS in general graphs. 
 
 
3. Main Results 
With each edge, we associate a color namely white, gray and black. With each vertex 
also, we associate a color namely white, gray and black. Initially all the edges and 
vertices are white in color. As the algorithm progresses, their colors keep on 
changing.  
 
3.1. Definitions for the Algorithm: 
Definition 1. White Degree of a vertex: A vertex u is called white neighbor of a 
vertex v, if u ∊ N(v) and u is white. White degree of a vertex is equal to the number of 
white neighbors of that vertex. White degree of the vertex u is denoted by WD(u), 
which is the number of white neighbors of u. 
 
Definition 2. Common White Degree of two Vertices: A vertex w is called a 
common neighbor of two vertices u and v, if w is adjacent to both u and v. The vertex 
w is called common white neighbor of u and v, if w is white and w ∊ N(u) ∩ N(v). 
Common White Degree of two vertices u and v is equal to the number of common 
white neighbors of u and v and it is denoted by CWD(u, v). 
 
Definition 3. An edge is said to be a white edge if the color of that edge is white. 
Similarly black edges and gray edges can be defined. A vertex or edge is said to be 
non-black, if it is not black in color, that is, it may be gray or white in color. 
 
3.2. Notation: 
  A(G) → Adjacency matrix of G. 
  D → The instant vertex subset of V(G) (instant set-the set at a particular iteration) 

consisting of black vertices chosen at that iteration using some processing. 
Initially, this set is empty. Finally this is the output TDS. 

  E1 → The instant edge subset of E(G) consisting of black edges chosen at that 
iteration using some processing. Initially this set is empty. 

  T → The instant sub graph (graph at a particular iteration) whose vertex set is D 
and edge set is E1. It may be connected or disconnected. T may be a tree or cycle 
at any iteration, that is, <D> may be a tree or cycle.  

  w → The weight function which associates a natural number to each edge of 
E(G). For each edge e = uv, the weight function is defined as w(e) = WD(u) + 
WD(v) - CWD(u, v) in run-time, that is, the weight function is calculated at each 
iteration of the algorithm. 

  Performance Ratio → |D| / |T*| (in this paper).  
 In general, Performance Ratio = |minimal set| / |minimum set|, where minimal and 

minimum set represent the minimal parameter. 
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3.3. Outline of the Algorithm: 
The proposed algorithm finds a TDS in a graph in which edges are weighted 
dynamically and maximum weighted edges are searched to obtain better optimal TDS. 
The new approach in this algorithm is that the edge weight is assigned dynamically as 
the sum of the white degrees of the end vertices of that edge minus common white 
neighbors of those end vertices of the same edge, in the run-time and then the edges 
are chosen randomly based on the dynamic maximum weight.  
 The algorithm is based on coloring mechanism. 
1. Initially, all the edges and vertices are colored white. 
2. Calculate the white degree of each vertex (gray and white) of V(G). 
3. For each edge (gray and white), the edge weight w is assigned as the sum of white 

degrees of the end vertices of that edge minus common white neighbors of those 
end vertices of the same edge. 

4. Sort the edges into non-increasing order by the weight w.  
5. An edge (gray or white) of maximum weight, is chosen. Then that edge together 

with its end vertices are colored black and are added to the instant sub graph T;  
6. The adjacent white edges of that black edge (chosen in the previous step), are 

colored gray, and their non-black end vertices are also colored gray.  
7. This whole process from 2 to 6 is continued until there exists no white vertex.  
8. The set of all black edges (black vertices) forms TDS. 
 
3.4. Approximation Algorithm for finding TDS of a given graph 
The single phase approximation algorithm for finding TDS is as follows: 
Input: The graph G (the adjacency matrix A(G)). 
Output: D, which is the TDS. 
 
Algorithm: 
TDSDMWE(A(G)) 
1. Color all the edges of E(G) and the vertices of V(G) white. 
 Initialize D ← ∅ and E1 ← ∅.  
2. while there exists a white vertex  
 { 

a) for each non-black vertex x ∊ V(G), calculate WD(x).  
b) for each edge e = uv of E(G) - E1, assign the edge weight as  

w(e) = WD(u) + WD(v) - CWD(u, v). 
c) Sort the edges of E(G) - E1 into non increasing order by weight w. 
d) Choose an (gray or white) edge e = uv from E(G) - E1 of maximum weight w. // 

E1 is subtracted from E(G) to avoid revisiting those edges of E1. 
e) Color e black and all its adjacent white edges gray. Color the vertices u and v 

black and all the non-black adjacent vertices of u and v, gray. 
f) D ← D ∪ {u, v} and E1 ← E1 ∪ {e}.  
} 

3. Print D and stop. 
Note 1. Black edges have end vertices which will be only black vertices; gray edges 
have end vertices which may be black or gray (or both) vertices; the white edges have 
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end vertices which may be gray or white (or both) vertices.  
Note 2. In the above algorithm, ties in edge weights can be broken arbitrarily. But a 
special case has to be noted. Consider Figure 1. 

 

 
 

Figure 1: Special Case 
 
 
 Suppose a gray edge av and a white edge vb are adjacent and have same edge 
weight, say w1. It means that v is a gray vertex. Suppose WD(v) = w1 and WD(b)= 0. If 
the gray edge is chosen to be added to the instant sub graph T, then v alone is added to 
T (as a is already in T). If the white edge is chosen to be added to T, then two vertices 
b and v have to be added to T, thus leading to an increase in |D|. Hence in this case, tie 
can be broken by choosing the gray edge than the white edge. Refer Figure 1.  
 
3.5. Illustration for the Algorithm: 
Let us consider the graph G as in Figure 2. 

 

 
 

Figure 2: Illustration Figure 
 



182  T.N.Janakiraman and Lakshmi Prabha S 
 

 

 Initially, the edge weights are w(e2) = w(e4) = w(e11) = 7, w(e1) = w(e3) = w(e5) = 
6, w(e7) = w(e10) = 5 and w(e6) = w(e8) = w(e9) = 4. 
 In the first iteration, let us choose the edge e4. Then the edge e4 and its end 
vertices are colored black; the edges e5, e11, e3, e9 and e10 are colored gray and their 
end vertices, v1, v2, v3, v9 and v10 are colored gray. 
 In the second iteration, w(e1) = w(e2) = 2, w(e3) = w(e5) = w(e6) = w(e7) = w(e8) = 
w(e11) = 1, and w(e9) = w(e10) = 0. Let us choose e2, the edge together with its end 
vertices are colored black; the edges e1, e7 and e8, together with their end vertices are 
colored gray. 
 In the third iteration, w(e1) = w(e5) = w(e6) = 1 and the remaining edges have 
weight 0. By Note 2, we can choose either e1 or e5. Let us choose e1. The edge 
together with its end vertices are colored black; The edge e6 is colored gray and its 
end vertices are colored gray. Now, there exists no white vertex in G.  
 Thus, E1 = E(T) = {e4, e2, e1}, D = V(T) = {v4, v5, v2, v3, v1} and |D| = 5, which is 
the cardinality of minimal TDS of G.  
 
3.6. Correctness of the Algorithm TDSDMWE 
The following theorem gives the correctness of the algorithm for TDS. 
 
Theorem 1. D is a minimal total dominating set.  
 
Proof. D consists of the set of all black vertices of T. The vertices of D either 
dominate V(G) or avoid isolated vertices in <D>. Among the end vertices of the edge, 
chosen to be added to D, if it is a white vertex with at least one white neighbor, then it 
is a dominating vertex. If it is a white vertex with gray neighbor, then either it is 
chosen for dominating itself or for avoiding isolated vertices in <D>. As in each 
iteration, edges are chosen, no vertex is isolated in <D>. The above discussion implies 
that D-{v}, for any v ∊ V(G), is not TDS for G. Thus, D forms a minimal total 
dominating set for G.  □ 
 Next, we compute the worst case time complexity of the algorithm. 
 
3.7. Time Complexity: 
The running time of the algorithm TDSDMWE depends on step 2 of the algorithm. In 
Step 2, at each iteration of the algorithm, we execute two processes mainly on 
which the time complexity is dependent. We  

(i) Calculate the white degree of each vertex of the graph and  
(ii) Sort the edges (in non-increasing order). 

 
 In one iteration, for calculating the white degree of each vertex of G, we visit 
every element in A(G). In worst case, finding A(G) takes O(n2), so calculating the 
white degree of each vertex will take O(n2). Sorting the edges takes O(m lg m) in the 
worst case, where lg denotes binary logarithm. As m lg m < m2, let us assume that 
sorting takes O(m2) in the worst case.  
 As these two processes are executed until there exists no white vertex in G, these 
two steps will be executed at most |V(G)| = n times in the worst case. Hence the time 
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taken for the process (i), for all iterations, in the worst case is O(n3) and the time taken 
for the process (ii), for all iterations, in the worst case is O(nm2). Thus, the worst case 
time complexity of the algorithm is either O(n3), if n > m or O(nm2), if m > n, where n 
is the number of vertices in G and m is the number of edges in G. 
 
 
4. Comparison with the Other Algorithms 
The advantage of our algorithm is that at each iteration, the edge is chosen based on 
dynamic maximum weight. Thus, at each iteration, large numbers of white vertices 
are absorbed, that is, large numbers of vertices are dominated at each iteration, thus 
paving way for the faster convergence towards the solution.  
 Next theorem provides the performance ratio of the algorithm for finding TDS. 
 
Theorem 2. For any graph G, the performance ratio of the Algorithm TDSDMWE for 
finding TDS is at most 1 + ln Δ.  
 
Proof. A piece is defined as either a white vertex or a black connected component (a 
black component is a connected component formed by black vertices and gray 
vertices). An iteration is defined as executing the while statement (step 2) once in the 
algorithm TDSDMWE. Let a0 denote the number of pieces left after 0th iteration 
(initial stage). Then, a0 = n, where n is the number of vertices in G. It is to be noted 
that, at any intermediate iteration, there will be at least one black component and at 
least one white vertex. If there is no white vertex, it means that the process is 
completed and there will be only one black component. Let ai denote the number of 
pieces left after the ith iteration. Hence by the definition of piece and ai, ai ≥ 2 until 
there exists at least one white vertex. Also,  
                                                            ai = 1    (1) 
 
if all the white vertices are exhausted.  
 Let k be the total number of iterations. Then, k ≤ |D| (because in each iteration, we 
choose at least one vertex or two vertices and add them to D). Consider the (i+1)th 
iteration. The optimal solution can connect ai pieces, that is, |T*| nodes can connect ai 
pieces. Hence the greedy procedure is guaranteed to pick up a node, which connects at 
least  ⌈ai / |T*| ⌉ components. Thus, the recurrence relation is:  
ai+1 ≤ ai - ⌈ai / |T*|⌉ ≤ ai - ai / |T*| (since ⌈x⌉ ≥ x). Once ai reaches 1, the algorithm is 
stopped and further ai s, (that is, ai+1, ai+2, and so on) are assumed to be 1 as there 
will be only one connected component thereafter, (by equation 1). 
 This implies that ak = ak+1 =... = 1 (since k denotes the total number of iterations) 
and hence a|D| = 1 (since k ≤ |D|).  
 Now, we have,  
        ai ≤ ai-1 (1 - 1 / |T*|) ≤ … ≤ a0 (1 - 1 / |T*|)i ≤ n exp(-i / |T*|)  (2)  
since 1+x ≤ exp(x), for x > -1.  
 As ai ≤ ai-1  - 1, we have ai ≤ ai-1  - 1 ≤ ai-2  - 2 ≤ … ≤ ai-|T*|  - |T*|, which implies,  
a|D|-|T*| ≥ |T*| + 1 as a|D| = 1. 
 Substituting i = |D| - |T*| in equation 2, we get,  
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 |T*| + 1 ≤ n exp(-i / |T*|),  
which implies i ≤ |T*| ln (n / (|T*|+1)),  
which in turn implies, i ≤ |T*| ln Δ, since (n / |T*|) ≤ Δ+1. 
 Thus, |D| = i + |T*| ≤ (1 + ln Δ) |T*|.  □ 
 
4.1. Similarity and Difference: 
The following remarks provide the similarity and difference in calculation of 
performance ratio of our algorithm over other algorithms. Here, we compare our 
algorithm with the algorithms, given by Guha et al. [7] and Du et al. [8], for finding 
connected dominating set. 
 
Remark 1. Comparison between our algorithm and the algorithm of Du et al. [8]: 
 
Similarity: Proof technique procedure (proof of Theorem 2 in this paper resembles 
the Theorem 3.4 in [8]). 
 
Difference: 
1. Definition of ai ; 
2. Recurrence relation (because of the definition of ai); 
3. Equation differing in our proof and their [8] proof.  

 Theirs: a|C_G| = 2 (because of the definition of ai).  
 Ours: a|D| = 1, (C_G is D according to our notation). 

4. Inequalities differing in our proof and their [8] proof. 
 Theirs: As a|C_G| = 2, they got a|C_G|-2|C*| ≥ 2|C*| + 2.  
 Ours: As a|D| = 1, we got a|D|-|T*| ≥ |T*| + 1. 
 The other inequalities following the above one in their proof are also different 

from those in our proof. 

Remark 2. Comparison between our algorithm and the algorithm of Guha et al. [7]: 
 
Similarity: Definition of piece. 
 
Difference:  
1. Proof technique; 
2. Recurrence relation. 

 Theirs: ai ≤ ai-1 (1 - 1 / |C*|) + 1  
 Ours: ai ≤ ai-1 (1 - 1 / |T*|) 

Explanation: 
Their recurrence relation needs ‘plus one’. But, we do not need that ‘plus one’ factor, 
because, we color two vertices black in many iterations (this is possible because of 
our new approach of algorithm) and also as explained in the Theorem 2, “ai ≥ 2 until 
there exists at least one white vertex. Also, ai = 1 once if all the white vertices are 
exhausted”.  
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5. Conclusion 
In this paper, an approximation, centralized, greedy, one-phase algorithm is given 
using a new approach for constructing TDS. The performance ratio of the algorithm 
for finding TDS is proved to be at most 1 + ln Δ, for general graphs, which is better 
than the available related algorithms in the literature. Also, the worst case time 
complexity of the algorithm has been analyzed and proved to be O(nm2) or O(n3), 
where Δ, n and m are respectively, the maximum degree, the number of vertices and 
the number of edges of the given graph G.  
 Generally the existing algorithms use the basic common methodology given by 
Johnson [9], Lovasz [10] and Slavík [11]: “As long as there are uncovered nodes, the 
greedy algorithm picks up a node which covers the maximum number of uncovered 
nodes and puts it into the set” to find dominating set (set cover). We have also used it 
but slightly modified this basic and common methodology in this paper, that our 
greedy procedure picks up an edge which covers the maximum number of uncovered 
nodes, to find total dominating set. This paved way for faster convergence towards 
the solution. 
 
 
6. Future Directions 
We hope that the performance ratio of the algorithm can be further reduced by using 
some other methodology. But Guha and Khuller [7] has proved that there does not 
exist a polynomial-time approximation for finding connected dominating set 
(applicable for TDS also) with performance ratio ρ H(Δ) for 0 < ρ < 1 unless NP ⊆ 
TIME (nO(log log n)), where Δ is the maximum degree in the input graph. So, the 
performance ratio cannot be reduced lesser than ln Δ, but it can be reduced from 1 + 
ln Δ to c + ln Δ, where 0 ≤ c <1 using some other procedure.  
 Also, the algorithm is observed to perform much better practically. So, the 
algorithm can be implemented to find out the minimum possible performance ratio. 
Any reduction in the performance ratio is useful in the practical situations because the 
algorithm can be applied to solve practical problems which arise in a number of 
network applications.  
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