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Abstract

A quantum algorithm for the minimum multiprocessor scheduling problem by
a numbering method and its example are reported. When # tasks are parted by
m processors, and a sum of length of each task in the k-th processor [0 <k <m
— 1. k is an integer.] is #, it is decided whether # is a finish time D or less or
not. A computational complexity of a classical computation is m". The
computational complexity becomes about 3(log, m)n by the quantum
algorithm that uses quantum phase inversion gates, quantum inversion about
mean gates and the numbering method. Therefore, a polynomial time process
becomes possible.
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1. Introduction

The methods for the very first steps towards building a quantum computer were
developed by Haroche and Wineland [1]. Deutsch-Jozsa’s algorithm for the rapid
solution [2—4], Shor’s algorithm for the factorization [3—5], Grover’s algorithms for
the database search [3, 6, 7] and so on are known. A quantum algorithm for the
traveling salesman problem by a numbering method has recently been reported by
Fujimura [8]. Its computational complexity becomes a polynomial time. The



164 Toru Fujimura

minimum multiprocessor scheduling problem [9, 10] is examined by the numbering
method this time. Therefore, its result is reported.

2. Minimum Multiprocessor Scheduling Problem

When n tasks are parted by m processors, and a sum of length of each task in the 4-th
processor [0 <k <m — 1. k is an integer.] is #, it is decided whether # is a finish time
D or less or not.

3. Quantum Algorithm

It is assumed that n tasks are xo, x1, ***, x, » and x,, | that are lengths, and when they are
parted by m processors [1 <m < n. m is an integer.] and a sum of length of each task
in the k-th processor [0 < k < m — 1. k is the integer.] is #, it is decided whether #; is
the finish time D or less or not. When the number of the # times repeated permutation
of 0,1, ,m—2andm— Lism", apm"" +aym" >+ + a1 m" =Y o pr arm™"7
= U is the numbering datum from 0 to m" — 1 [The 0-th datum is 0, 0, --*, 0 and 0. The
(m" — 1)-th datum is (m — 1), (m — 1), ***, (m — 1) and (m — 1).]. This method is named
the numbering method for this problem. g is the minimum integer that follows m"/m!
<48 = 22g, because a number of combinations of an answer is at least m!.

First of all, quantum registers |ap>, |a1>, ***, |a,—1>, |b1>, |b2>, |co>, |c1>, ", |em—1>,
|d>, |e;> and |e;> are prepared. When P is the minimum integer that is log, m or more,
each of |a/> that fis an integer from 0 to n—1 is consisted of P quantum bits [= qubits].
States of |ap>, |bi>, |b>, |ci>, |d>, |er> and |e;> are ay, b1, by, c1, ¢k, d, e and ey,
respectively.

Step 1: Each qubit of |a2>, |bi>, |by>, |cx>, |d>, |e> and |ex> is set |0>.

Step 2: The Hadamard gate [H| [3, 4] acts on each qubit of |a/. It changes them for
entangled states. The total states are (27)".

Step 3: It is assumed that a quantum gate (4) changes |b;> for [1> in ar< m, or it
changes |h;> for |0> in the others of ay, it changes |b,> for |b, + afm"_l_f> at |ap>, and it
changes |c;> for |cx + x> at ar = k. As a target state for |b> is 1, quantum phase
inversion gates (P/) and quantum inversion about mean gates (/M) [3, 6, 7] act on
|bi>. When Q is the minimum even integer that is (2° /m)"? or more, the total number
that (PI) and (IM) act on |b;> is Q because they are a couple. Next, an observation
gate (OB) observes |b;>. These actions are repeated sequentially from |ap> to |a,-1>.
Therefore, each state of |a> 1s 0, 1, **, m — 2 and m — 1, and the total states become
m" [:Wo].

Step 4: It is assumed that a quantum gate (B) changes |@> for |d + 1> in ¢, (=t;) < D, or
it doesn’t change |@> in the others of ¢;. These actions are repeated sequentially from
|C()> to |Cm71>.
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Step 5: It is assumed that a quantum gate (C) changes |e;> for |e; + 0> at d = m, or it
changes |e;> for |e; + 1 + b>> in the others of d.

Step 6: It is assumed that a quantum gate (D) changes |e>> for |1>1in 0 < e; < (m"/4) —
m!, or it changes |e,> for |0> in the others of e;. As the target state for |e;> is 1, (P])
and (IM) act on |e;>. The number of the data that is included in 0 < e; < (m"/4) — m! is
W, ~ m"/4. When R, is the minimum even integer that is (Wo/W1)"* = (m"/(m"/4))""* or
more, the total number that (P/) and (/M) act on |e;> is R} = 2. Next, (OB) observes
le>, and the data of W remain. Similarly, (D)) [2 <j < g — 1./ is an integer.] changes
le> for |1> in 0 < e; < (m"/4) — m!, or it changes |e;> for |0> in the others of e;. As
the target state for |e,> is 1, (PI) and (IM) act on |e;>. The number of the data that is
included in 0 < e; < (m"/4) — m! is W; = m"/4. When R; is the minimum even integer
that is (W-1/W;)""? = ((m"/14~")/(m"/4))""* or more, the total number that (P/) and (IM)
act on |e;> is R; = 2. Next, (OB) observes |e;>, and the data of W; remain. These
actions are repeated sequentially from 2 to g — 1 atj. (D) changes |e;> for |1> at e; =
0, or it changes |e;> for |0> in the others of e;. As the target state for |e;> is 1, (PI) and
(IM) act on |e>>. The number of the data that is included at e; = 0 is W, ~ m! ~ m"/4%.
When R, is the minimum even integer that is (W, —1/W, )"* = ((m"/4%")/(m"/4%))"* or
more, the total number that (P/) and (IM) act on |ex> is Ry = 2. Next, (OB) observes
lap>, |b1>, |bo>, |ci>, |d>, |er> and |e>>, and one of the data of W, remains. Therefore,
one example of combinations that are ¢; < D is obtained.

4. Numerical Computation
It is assumed that there are n =6, x0 =5, x1 =3, =8, x3=7,x4=6,x5=1,m=3, D
=11,g=4,0<f<5[fis the integer.] and 0 < k < 2 [k is the integer.].

First of all, |ap, |bi>, |by>, |ci>, |d>, |ei> and |e;> are prepared. When P is the
minimum integer that is log, 3 = 1.6 <2 = P, each of |a/> that f'is the integer from 0 to
5 1s consisted of 2 qubits. States of |a@, |bi>, |b2>, |ci>, |d>, |e1> and |e>> are ay, by, by,
¢, d, e1, and ey, respectively.

Step 1: Each qubit of |ap>, |b1>, |b2>, |ci>, |d>, |er> and |ex> is set |0>.

Step 2: [H] acts on each qubit of |a/. It changes them for entangled states. The total
states are (2°)°.

Step 3: (4) changes |b;> for |1> in ay < 3, or it changes |b;> for |0> in the others of ay,
it changes |b,> for |b, + ar 3°7> at la>, and it changes |c;> for |c; + x> at ar= k. As
the target state for |b;> is 1, (PI) and (IM) act on |b;>. When Q is the minimum even
integer that is (2%/3)"? ~ 1.2 <2 = Q, the total number that (PI) and (IM) act on |b;> is
0O = 2. Next, (OB) observes |b;>. These actions are repeated sequentially from |ap> to
las>. Therefore, each state of |a> is 0, 1 or 2, and the total states become 36 [= Wo].
Step 4: (B) changes |d> for |d + 1> in ¢; (=t;) < 11, or it doesn’t change |d@> in the
others of ¢;. These actions are repeated sequentially from |co> to |c>.
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Step 5: (C) changes |e;> for |e; + 0> at d = 5, or it changes |e;> for |e; + 1 + b,> in the
others of d.

Step 6: (D)) changes |e;> for |[1> in 0 < e; < (3°/4) — 3!, or it changes |e>> for [0> in
the others of e;. As the target state for |e;> is 1, (PI) and (/M) act on |e;>. The number
of the data that is included in 0 < e; < (3%4) — 3! is W, = 3%4. When R, is the
minimum even integer that is (Wo/Wy)"? = (3%/(3%4))"* = 2 < 2 = R,, the total number
that (P) and (IM) act on |e;> is R; = 2. Next, (OB) observes |e;>, and the data of W,
remain. Similarly, (D;) [2 <j < 3. j is the integer.] changes |e;> for [1>in 0 < e; <
(3%/4) — 31, or it changes |e,> for [0> in the others of ;. As the target state for |e,> is
1, (PI) and (IM) act on |e;>. The number of the data that is included in 0 < e, < (3%/4)
— 3! is W; = 3%4. When R; is the minimum even integer that is (Wy/W))"* =
((3%471/(3%4/))'* = 2 < 2 = R;, the total number that (PI) and (IM) act on |e;> is R; =
2. Next, (OB) observes |e;>, and the data of ; remain. These actions are repeated
sequentially from 2 to 3 at j. (Ds) changes |e;> for |1> at e; = 0, or it changes |e;> for
|0> in the others of e;. As the target state for |e;> is 1, (PI) and (IM) act on |e;>. The
number of the data that is included at e; = 0 is Wy = 3! = 3%/4*. When R4 is the
minimum even integer that is (Ws/ W4)1/2 = ((36/43)/(36/44))1/2 ~ 2 <2 = Ry, the total
number that (P/) and (/M) act on |e;> is R4 = 2. Next, (OB) observes |az>, |bi>, |by>,
lci>, |d>, |e;> and |e,>, and one of the data of W4 remains. For example, when ay, a;,
ay, as, da, as, by, by, co, c1, ¢, d, ey and ey are 0, 1,2, 1,0, 2, 1, 146, 11, 10, 9, 3, 0 and
1, respectively, it is obtained that 3 combinations are (5, 6), (3, 7) and (8, 1).

5. Discussion and Summary

The computational complexity of this quantum algorithm [= §] becomes the
following. In the order of the actions by the gates, the number of them is Prn at , n at
(4), On = 2n at (PI) and (IM), n at (OB), m at (B), 2 at (C), gat (D)) [1 <j<g.jis the
integer.], Y j-1-¢ R; = 2g at (PI) and (IM), and g at (OB). Therefore, S becomes (P +
4Hhn + m + 2 + 4g. In the example of the section 4, S is 57. The computational
complexity of the classical computation [= Z] is m" = 3° = 729. After all, S/Z becomes
about 1/13. When n is large enough, S becomes about 3(/og, m)n, where P is about
log, m, g is about (1/2)log, (m"/m!) =~ (n/2)log, m, and m! is about m"e "(2m)"*
[Stirling’s formula]. And then, S/Z is about 3(log, m)n/m" = n/m". For example, as for
n=100 and m = 5, S/Z is about 100/5'* = 1/10°".

Therefore, the polynomial time process becomes possible.
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