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Abstract 
 

A quantum algorithm for the minimum multiprocessor scheduling problem by 
a numbering method and its example are reported. When n tasks are parted by 
m processors, and a sum of length of each task in the k-th processor [0 ≤ k ≤ m 
− 1. k is an integer.] is tk, it is decided whether tk is a finish time D or less or 
not. A computational complexity of a classical computation is mn. The 
computational complexity becomes about 3(log2 m)n by the quantum 
algorithm that uses quantum phase inversion gates, quantum inversion about 
mean gates and the numbering method. Therefore, a polynomial time process 
becomes possible. 
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1. Introduction 
The methods for the very first steps towards building a quantum computer were 
developed by Haroche and Wineland [1]. Deutsch-Jozsa’s algorithm for the rapid 
solution [2−4], Shor’s algorithm for the factorization [3−5], Grover’s algorithms for 
the database search [3, 6, 7] and so on are known. A quantum algorithm for the 
traveling salesman problem by a numbering method has recently been reported by 
Fujimura [8]. Its computational complexity becomes a polynomial time. The 
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minimum multiprocessor scheduling problem [9, 10] is examined by the numbering 
method this time. Therefore, its result is reported. 
 
 
2. Minimum Multiprocessor Scheduling Problem 
When n tasks are parted by m processors, and a sum of length of each task in the k-th 
processor [0 ≤ k ≤ m − 1. k is an integer.] is tk, it is decided whether tk is a finish time 
D or less or not. 
 
 
3. Quantum Algorithm 
It is assumed that n tasks are x0, x1, ···, xn−2 and xn−1 that are lengths, and when they are 
parted by m processors [1 ≤ m ≤ n. m is an integer.] and a sum of length of each task 
in the k-th processor [0 ≤ k ≤ m − 1. k is the integer.] is tk, it is decided whether tk is 
the finish time D or less or not. When the number of the n times repeated permutation 
of 0, 1, ···, m − 2 and m − 1 is mn, a0 mn−1 + a1 mn−2 + ··· + an−1 m0 = ∑f=0→n−1 af mn−1−f 
= U is the numbering datum from 0 to mn − 1 [The 0-th datum is 0, 0, ···, 0 and 0. The 
(mn − 1)-th datum is (m − 1), (m − 1), ···, (m − 1) and (m − 1).]. This method is named 
the numbering method for this problem. g is the minimum integer that follows mn/m! 
≤ 4g = 22g, because a number of combinations of an answer is at least m!. 
 First of all, quantum registers |a0>, |a1>, ···, |an−1>, |b1>, |b2>, |c0>, |c1>, ···, |cm−1>, 
|d>, |e1> and |e2> are prepared. When P is the minimum integer that is log2 m or more, 
each of |af> that f is an integer from 0 to n−1 is consisted of P quantum bits [= qubits]. 
States of |af>, |b1>, |b2>, |ck>, |d>, |e1> and |e2> are af, b1, b2, c1, ck, d, e1 and e2, 
respectively. 
Step 1: Each qubit of |af>, |b1>, |b2>, |ck>, |d>, |e1> and |e2> is set |0>. 
Step 2: The Hadamard gate H [3, 4] acts on each qubit of |af>. It changes them for 
entangled states. The total states are (2P)n. 
Step 3: It is assumed that a quantum gate (A) changes |b1> for |1> in af < m, or it 
changes |b1> for |0> in the others of af, it changes |b2> for |b2 + af mn−1−f> at |af>, and it 
changes |ck> for |ck + xf > at af = k. As a target state for |b1> is 1, quantum phase 
inversion gates (PI) and quantum inversion about mean gates (IM) [3, 6, 7] act on 
|b1>. When Q is the minimum even integer that is (2P/m)1/2 or more, the total number 
that (PI) and (IM) act on |b1> is Q because they are a couple. Next, an observation 
gate (OB) observes |b1>. These actions are repeated sequentially from |a0> to |an−1>. 
Therefore, each state of |af> is 0, 1, ···, m − 2 and m − 1, and the total states become 
mn [=W0]. 
Step 4: It is assumed that a quantum gate (B) changes |d> for |d + 1> in ck (=tk) ≤ D, or 
it doesn’t change |d> in the others of ck. These actions are repeated sequentially from 
|c0> to |cm−1>. 
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Step 5: It is assumed that a quantum gate (C) changes |e1> for |e1 + 0> at d = m, or it 
changes |e1> for |e1 + 1 + b2> in the others of d. 
Step 6: It is assumed that a quantum gate (D1) changes |e2> for |1> in 0 ≤ e1 ≤ (mn/4) − 
m!, or it changes |e2> for |0> in the others of e1. As the target state for |e2> is 1, (PI) 
and (IM) act on |e2>. The number of the data that is included in 0 ≤ e1 ≤ (mn/4) − m! is 
W1 ≈ mn/4. When R1 is the minimum even integer that is (W0/W1)1/2 ≈ (mn/(mn/4))1/2 or 
more, the total number that (PI) and (IM) act on |e2> is R1 ≈ 2. Next, (OB) observes 
|e2>, and the data of W1 remain. Similarly, (Dj) [2 ≤ j ≤ g − 1. j is an integer.] changes 
|e2> for |1> in 0 ≤ e1 ≤ (mn/4j) − m!, or it changes |e2> for |0> in the others of e1. As 
the target state for |e2> is 1, (PI) and (IM) act on |e2>. The number of the data that is 
included in 0 ≤ e1 ≤ (mn/4j) − m! is Wj ≈ mn/4j. When Rj is the minimum even integer 
that is (Wj−1/Wj)1/2 ≈ ((mn/4j−1)/(mn/4j))1/2 or more, the total number that (PI) and (IM) 
act on |e2> is Rj ≈ 2. Next, (OB) observes |e2>, and the data of Wj remain. These 
actions are repeated sequentially from 2 to g − 1 at j. (Dg) changes |e2> for |1> at e1 = 
0, or it changes |e2> for |0> in the others of e1. As the target state for |e2> is 1, (PI) and 
(IM) act on |e2>. The number of the data that is included at e1 = 0 is Wg ≈ m! ≈ mn/4g. 
When Rg is the minimum even integer that is (Wg −1/Wg )1/2 ≈ ((mn/4g−1)/(mn/4g))1/2 or 
more, the total number that (PI) and (IM) act on |e2> is Rg ≈ 2. Next, (OB) observes 
|af>, |b1>, |b2>, |ck>, |d>, |e1> and |e2>, and one of the data of Wg remains. Therefore, 
one example of combinations that are ck ≤ D is obtained. 
 
 
4. Numerical Computation 
It is assumed that there are n = 6, x0 = 5, x1 = 3, x2 = 8, x3 = 7, x4 = 6, x5 = 1, m = 3, D 
= 11, g = 4, 0 ≤ f ≤ 5 [f is the integer.] and 0 ≤ k ≤ 2 [k is the integer.]. 
 First of all, |af>, |b1>, |b2>, |ck>, |d>, |e1> and |e2> are prepared. When P is the 
minimum integer that is log2 3 ≈ 1.6 ≤ 2 = P, each of |af> that f is the integer from 0 to 
5 is consisted of 2 qubits. States of |af>, |b1>, |b2>, |ck>, |d>, |e1> and |e2> are af, b1, b2, 
ck, d, e1, and e2, respectively. 
Step 1: Each qubit of |af>, |b1>, |b2>, |ck>, |d>, |e1> and |e2> is set |0>. 
Step 2: H acts on each qubit of |af>. It changes them for entangled states. The total 
states are (22)6. 
Step 3: (A) changes |b1> for |1> in af < 3, or it changes |b1> for |0> in the others of af, 
it changes |b2> for |b2 + af 35−f> at |af>, and it changes |ck> for |ck + xf > at af = k. As 
the target state for |b1> is 1, (PI) and (IM) act on |b1>. When Q is the minimum even 
integer that is (22/3)1/2 ≈ 1.2 ≤ 2 = Q, the total number that (PI) and (IM) act on |b1> is 
Q ≈ 2. Next, (OB) observes |b1>. These actions are repeated sequentially from |a0> to 
|a5>. Therefore, each state of |af> is 0, 1 or 2, and the total states become 36 [= W0]. 
Step 4: (B) changes |d> for |d + 1> in ck (=tk) ≤ 11, or it doesn’t change |d> in the 
others of ck. These actions are repeated sequentially from |c0> to |c2>. 
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Step 5: (C) changes |e1> for |e1 + 0> at d = 5, or it changes |e1> for |e1 + 1 + b2> in the 
others of d. 
Step 6: (D1) changes |e2> for |1> in 0 ≤ e1 ≤ (36/4) − 3!, or it changes |e2> for |0> in 
the others of e1. As the target state for |e2> is 1, (PI) and (IM) act on |e2>. The number 
of the data that is included in 0 ≤ e1 ≤ (36/4) − 3! is W1 ≈ 36/4. When R1 is the 
minimum even integer that is (W0/W1)1/2 ≈ (36/(36/4))1/2 ≈ 2 ≤ 2 = R1, the total number 
that (PI) and (IM) act on |e2> is R1 ≈ 2. Next, (OB) observes |e2>, and the data of W1 
remain. Similarly, (Dj) [2 ≤ j ≤ 3. j is the integer.] changes |e2> for |1> in 0 ≤ e1 ≤ 
(36/4j) − 3!, or it changes |e2> for |0> in the others of e1. As the target state for |e2> is 
1, (PI) and (IM) act on |e2>. The number of the data that is included in 0 ≤ e1 ≤ (36/4j) 
− 3! is Wj ≈ 36/4j. When Rj is the minimum even integer that is (Wj−1/Wj)1/2 ≈ 
((36/4j−1)/(36/4j))1/2 ≈ 2 ≤ 2 = Rj, the total number that (PI) and (IM) act on |e2> is Rj ≈ 
2. Next, (OB) observes |e2>, and the data of Wj remain. These actions are repeated 
sequentially from 2 to 3 at j. (D4) changes |e2> for |1> at e1 = 0, or it changes |e2> for 
|0> in the others of e1. As the target state for |e2> is 1, (PI) and (IM) act on |e2>. The 
number of the data that is included at e1 = 0 is W4 ≈ 3! ≈ 36/44. When R4 is the 
minimum even integer that is (W3/W4)1/2 ≈ ((36/43)/(36/44))1/2 ≈ 2 ≤ 2 = R4, the total 
number that (PI) and (IM) act on |e2> is R4 ≈ 2. Next, (OB) observes |af>, |b1>, |b2>, 
|ck>, |d>, |e1> and |e2>, and one of the data of W4 remains. For example, when a0, a1, 
a2, a3, a4, a5, b1, b2, c0, c1, c2, d, e1 and e2 are 0, 1, 2, 1, 0, 2, 1, 146, 11, 10, 9, 3, 0 and 
1, respectively, it is obtained that 3 combinations are (5, 6), (3, 7) and (8, 1). 
 
 
5. Discussion and Summary 
The computational complexity of this quantum algorithm [= S] becomes the 
following. In the order of the actions by the gates, the number of them is Pn at H, n at 
(A), Qn ≈ 2n at (PI) and (IM), n at (OB), m at (B), 2 at (C), g at (Dj) [1 ≤ j ≤ g. j is the 
integer.], ∑ j=1→g Rj ≈ 2g at (PI) and (IM), and g at (OB). Therefore, S becomes (P + 
4)n + m + 2 + 4g. In the example of the section 4, S is 57. The computational 
complexity of the classical computation [= Z] is mn = 36 = 729. After all, S/Z becomes 
about 1/13. When n is large enough, S becomes about 3(log2 m)n, where P is about 
log2 m, g is about (1/2)log2 (mn/m!) ≈ (n/2)log2 m, and m! is about mme−m(2m)1/2 
[Stirling’s formula]. And then, S/Z is about 3(log2 m)n/mn ≈ n/mn. For example, as for 
n = 100 and m = 5, S/Z is about 100/5100 ≈ 1/1068. 
 Therefore, the polynomial time process becomes possible. 
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