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ABSTRACT 
 

We prove that each function f in C (F, T) where, T is a closed interval in an 
infinite Banach space with an unconditional Schauder basis and F is a closed 
subspace of a Hausdorff topological space having a normal neighborhood has 
a continuous extension on E to T. This way we obtain one answer to a 
question by Laurent Schwartz, his book in general topology and functional 
analysis that we quote in the references.  
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INTRODUCTION 
Following [3] Corollaire 2 to Théorème (T.2, XXII, 2;2) (pp. 347, 350)we have the 
extension property (Rfin) Consider the extended real line ],[ +∞−∞ equipped with the 
usual topology generated by the open intervals of R and the intervals ),[ b−∞ , ],( +∞a  
(a, b reals) and, let T be a subspace of the form (I, U) where Ι is an interval and U is 
the induced topology by the usual topology of the real line. Or let T  stand for a finite 
dimensional Banach space G. For TEFf →⊂: a continuous function where, F is 
a closed subspace of the Hausdorff topological space E having a normal, closed 
neighborhood, there is a continuous extension of f on E to T . Laurent Schwartz 
notices, Remarque 2. P. 352 in [3] that the corresponding result for T a closed ball in 
an infinite dimensional Banach space X  (or XT = ) possibly holds, which we 
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believe has remained as an open problem. We prove in Paragraph 3., Extension Result 
that, we may take for X a Banach space with an unconditional Schauder basis. Also, 
possibly a closed interval in X or a closed ball in X . In the Preliminaries, we set the 
background. The scalars are assumed to be real. 
 
 
PRELIMINARIES 
Recall ([2]) that we say the infinite dimensional Banach space ),(X has an 

unconditional Schauder basis (a basis) )( ne if )( ne is a sequence of linearly 
independent vectors in X such that, each vector x in the space has a representation 
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lim λλ in the sense that 0)...( 2211 ∞→→+++− nnneeex λλλ . 

Here, the scalars nλ are unique, depending on x and further it is required that the 
series xe nn n =∑ )()( ππλ for each bijection Ν→Ν:π . 
 
Remark 2. 1. We may suppose that the basis )( ne is determined by norm 1 vectors 
and has basis constant equal to one that is, the inequality 

)2()2(11)1()1(11 ...... nnnn eeee λλλλ ++≤++  for each choice of reals nλ , 
)2()1(1 nn ≤≤ holds. This follows from Theorem. 4.1.24, p. 358 in [2]. 

 Also recall the Bounded Multiplier Test ([2], 4.2.8, p. 371) stating that the series 
xen

n
n =∑λ converges if and only if each series nn

n
n eλα∑ is convergent, whatever be 

the bounded sequence ∞∈ ln )(α . We may also find in [2], after the Author showing 
that (Lemma 4.2.7) for n

n
nex ∑= λ there is a constant M such that 

∞≤++ )(...sup 111 nnnnn Mee αλαλα where ,...}2,1:sup{)( ==∞ nnn αα the 
following 
 
Lemma 2.2. Putting }1(:......sup{...... 11111 ≤+++=+++

∞nnnnbmunn eeee αλαλαλλ  it 

holds that the bmu-norm 
bmunnee ......11 +++ λλ is an equivalent norm to the 

original norm of X . Thee is a constant 0fC such that xCxx
bmu

≤≤ . 
 
Proof: This follows from Theorem. 4.2.16, p. 373. See also Definition. 4. 1.12 and 
Theorem. 4.1.14, p. 354. 
 
Lemma 2.3. The bmu-norm satisfies that 

bmunnbmunn eeee ............ 1111 +++≤+++ μμλλ whenever 

,...,...,,.........,... 111111 nnnnnn Xeeee μλμλμμλλ ≤≤∈++++++  
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Remark 2.4. In the above Lemma 2.3. we have that the convergence of 
......11 +++ nnee μμ  implies the convergence of ......11 +++ nnee λλ  

Proof: WE find that 0...... , ∞→++ →++≤++ pmbmupmmbmupmmm e μμλλ by 
Lemma 2.3. and the result follows. 
 Recall ([2]) the associate linear functionals mn

n
nm ee λλ >=< ∑*,  which are 

continuous. It turns out that for XEFf →⊂: a continuous function where E is a 
Hausdorff topological space we have n

n
n

n
n eufufeuf )()(*,)( ∑∑ >=<= , 

REFofef nn →⊂= :* . 
 
 
Extension Result 
Notation 1. Following [2], we put ba ≤ for n

n
nn

n
n ebea ∑∑ == βα , meaning that 

,...2,1, =≤ nnn βα  
 
Notation 2. Letting ba ≤ as above, we put ,...}2,1,:{],[ =≤≤= ∑ neba nnnn

n
n βλαλ

and we say that ],[ ba is a closed interval in X .  
 
Theorem 1. Let ],[ baT = be a closed interval in the infinite dimensional Banach 
space X with the unconditional Schauder basis )( ne as in the Preliminaries. For each 
continuous function TEFf →⊂: where F is a closed subspace of E having a 
normal neighborhood, there is a continuous extension TEf →:ˆ . 
 
Proof: WE let k

k
k eufuf )()( ∑=  )( Fu∈  where ],[:* kkkk EFofef βα→⊂= , 

kkkkkkk
k

k uufeuxuf λλβλαλ ==≤≤== ∑ )()(,,)()( . Following (Rfin) as inn the 

Introduction, there is a continuous extension ],[:ˆ
kkk Ef βα→ of kf . We find that 

kkk uf βα ≤≤ )(ˆ .The series 

beaebeae k
k

kk
k

kk
k

kk
k

k ==== ∑∑∑∑ βαβα ,,, converge (apply the 

equivalent bmu-norm), },max{ kkk βαλ ≤ . Apllying Remark 2.4., we see that 

the series )(ˆ)(ˆ ufeuf k
k

k =∑ is convergent. Now we have obtained a continuous 

function TEf →:ˆ that is an extension of f . In fact, it holds that 

0},max{}:)(ˆsup{ ∞→→≤∈ nnnn Euuf βα hence letting Nn ≥ imply that 

ε≤− )(ˆ)(ˆsup{ xfuf nn , we may find a neighborhood V of x such that 
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ε≤=− ,...}2,1:)(ˆ)(ˆsup{ nxfuf nn which implies that ε≤− )(ˆ)(ˆ xfuf for all u in 

V . The proof is complete 
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