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ABSTRACT

We prove that each function f in C (F, T) where, T is a closed interval in an
infinite Banach space with an unconditional Schauder basis and F is a closed
subspace of a Hausdorff topological space having a normal neighborhood has
a continuous extension on E to T. This way we obtain one answer to a
question by Laurent Schwartz, his book in general topology and functional
analysis that we quote in the references.
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INTRODUCTION

Following [3] Corollaire 2 to Théoreme (T.2, XXIl, 2;2) (pp. 347, 350)we have the
extension property (Rfin) Consider the extended real line [—oo,+o0]equipped with the
usual topology generated by the open intervals of R and the intervals [—o,b), (a,+]
(a, b reals) and, let T be a subspace of the form (I, U) where T is an interval and U is
the induced topology by the usual topology of the real line. Or let T stand for a finite
dimensional Banach space G. For f :F < E —-T a continuous function where, F is
a closed subspace of the Hausdorff topological space E having a normal, closed
neighborhood, there is a continuous extension of fon E to T. Laurent Schwartz

notices, Remarque 2. P. 352 in [3] that the corresponding result for T a closed ball in
an infinite dimensional Banach space X (or T = X) possibly holds, which we
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believe has remained as an open problem. We prove in Paragraph 3., Extension Result
that, we may take for X a Banach space with an unconditional Schauder basis. Also,
possibly a closed interval in X or a closed ball in X . In the Preliminaries, we set the
background. The scalars are assumed to be real.

PRELIMINARIES

Recall ([2]) that we say the infinite dimensional Banach space (X,H ||) has an
unconditional Schauder basis (a basis) (e,)if (e,)is a sequence of linearly
independent vectors in X such that, each vector xin the space has a representation

X = 2%% =lim, ZN;/Inen in the sense that X — (4,€, + 4,8, +...+ 4,€,) |40
=] n=

Here, the scalars A, are unique, depending on xand further it is required that the
series Zn Azm€xm = XTor each bijection 7:N — N.

Remark 2. 1. We may suppose that the basis (e,) is determined by norm 1 vectors
and has basis constant equal to one that is, the inequality
e + .+ ey [ S|+ + Ay | for each choice of reals A
1< n(1) £ n(2) holds. This follows from Theorem. 4.1.24, p. 358 in [2].

Also recall the Bounded Multiplier Test ([2], 4.2.8, p. 371) stating that the series
z/lnen = x converges if and only if each series Zanﬂnen is convergent, whatever be

n?'

the bounded sequence («,) €l,,. We may also find in [2], after the Author showing
that (Lemma 4.2.7) for x= Z/inen there is a constant M such that

Ae

sup,|lery g8y + .+ oy 4,8, [< M(@,) .|| where I(er,) .| =sup{ler,: n=1,2,... Y the

following

Lemma 2.2. Putting |Ae+.+A4g, +..|, =supfeie +. +ade, +..| | | <3 it
holds that the bmu-norm |4e, +..+ 4., +... |, is an equivalent norm to the

<o

bm
original norm of X . Thee is a constant C > Osuch that |x | <|x |

bmu

Proof: This follows from Theorem. 4.2.16, p. 373. See also Definition. 4. 1.12 and
Theorem. 4.1.14, p. 354.

Lemma 2.3. The bmu-norm satisfies that
|e +.+ e+ | <|we +..+ pe, +.. ||, whenever

bmu

A48y H ot Aoy o 148 ot 8 H o€ XA [ py |4, |£‘

iy |-
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Remark 2.4. In the above Lemma 2.3. we have that the convergence of
e +...+ u.e, +... implies the convergence of Ae +...+4.e, +...

Proof: WE find that |A,e,+..+ Ay |l Sltn + ot Loy oy —mpse ODY

Lemma 2.3. and the result follows.
Recall ([2]) the associate linear functionals <em*,z/1nen >= A which are

continuous. It turns out that for f : F < E — X a continuous function where Eis a
Hausdorff ~topological space we have f(u)=>) <e* f(u)>=> f (u)e,,

f, =e,*of :F cE > R.

Extension Result
Notation 1. Following [2], we put a<bfor a=> a,e,,b=>" Be meaning that

a, < B,n=12,..

Notation 2. Letting a < bas above, we put [a,b] :{Z/inen ra, <A, <p.,n=12..}

and we say that [a,b]is a closed interval in X .

Theorem 1. Let T =[a,b]be a closed interval in the infinite dimensional Banach
space X with the unconditional Schauder basis (e,) as in the Preliminaries. For each
continuous function f:F c E — T where Fis a closed subspace of Ehaving a

normal neighborhood, there is a continuous extension fiE>T.

Proof: WE let f(u)=) f, (u)e, (ueF) where f =e *of :F c E—[e,, 4]
k
f(u)=x)= Z/Ikek,ak <A LB, f (u)=4,(u)=4,. Following (Rfin) as inn the
k

Introduction, there is a continuous extension fk ‘E >, p]of f,. We find that
a, < fk (u) < B, .The series
Yol =2,y Be =b> o e =[a|>|B [ =|b [converge  (apply  the
k k k k

equivalent bmu-norm), |4, |<max{e, |5 [}. Apllying Remark 2.4., we see that

the series Z fk (e, = f(u) is convergent. Now we have obtained a continuous
k

function f:E —Tthat is an extension of f. In fact, it holds that
sup{/f. (u)|:u e E}y<max{le, |,

sup{fn(u)—fn(x)|35, we may find a neighborhood V of xsuch that

B, }—...0hence letting n>Nimply that
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sup{[f. (u) - f.(x) |:n=12,..} < ewhich implies that Hf(u)— f(x) |< &for all uin
V . The proof is complete
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