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Abstract 
 

The classical theory of subnormal series, refinements and composition series 
in groups is extended to the class of partial groups which is known to be 
precisely the classes of Clifford semigroups, or equivalently semilattices of 
groups. The Jordan-Holder theorem concerning composition series which is 
known to hold in every abelian category is now extended to partial groups 
which are certainly a non-abelian category. Other results including 
decomposability and the Remak decomposition theorem of groups are 
extended as well to partial groups. 

 
 
1-Introduction  
In [1] a partial group is defined in terms of a set of (new) axioms and proved to satisfy 
a structure theorem of strong sort and a representation theorem. Formally; a partial 
group is precisely a strong semilattice of groups (also called in literature a Clifford 
semigroup), and every partial group is isomorphic to a certain partial group of partial 
mappings. Other kinds of “partial algebras” have been introduced and existed in 
literature, (e.g. partial rings in [4], and partial monoids in [5]). The principal aim of 
introducing a particular kind of a partial algebra has been show that it is the most 
convenient viewing as a “generalized algebra” from both the categorical and algebraic 
points of views [2], [3], [4]. Some interesting categorical and algebraic results 
concerning semigroup congruences on partial groups (semilattices of groups) whose 
arrows are epimorphisms have been developed in [6] and [7]. In the present work we 
establish for partial groups (new) generalization of two remarkable theorems in 
groups. The first of those theorems is the Jordan Holder Theorem of composition 
series which is known to hold in every abelian category (see, e.g. [8]). 
 We devote the second section of this paper for developing the theorem for the 
category of partial groups, which is certainly non abelian category. This has required 
generalizing all the needed definitions and results, such as Dedekind modular law, the 
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Schreir refinement and the second Neother isomorphism theorems. In the third section 
we develop the generalized Remak decomposition theorem for partial groups. 
 
 
2- Preliminaries 
In this section, we prepare the ground by the needed definitions and results 
concerning partial groups cited from [1], [2]. Our reference in groups is [10], and for 
semigroups in general we refere to [9]. Also, unless stated otherwise, S will denote an 
arbitrary semigroup and ܧ(ܵ) will be the set of all idempotents in S, that is all ߳ݔ ܵ 
such that  ݔଶ = ݔݔ =  .ݔ
 
Definition 2.1: Let ߳ݔ ܵ. An element ݁߳ ܵ is called a partial identity for ݔ if ݁݁ݔ = ݔ = ݔ´݁ and if ,ݔ  = ´݁ݔ = = ݁´݁ = ´݁ ݁ for some ݁´ ߳ ܵ, then ݔ   ݁. A partial 
identity of ݔ, when exist is unique and idempotent. It will be denoted by ݁௫. 
 
Definition 2.2: Let ߳ݔ ܵ and suppose that the partial identity ݁௫ of ݔ exists. An 
element yϵ S is called a partial inverse of ݔ if ݕ ݔ = ݔ ݕ = ݁௫ and ݕ ݁௫ =  ݁௫ ݕ= ݕ.A partial inverse of ߳ݔ ܵ, when exists, is unique and will be denoted by ିݔଵ. 
 
Proposition 2.1: S is a completely regular semigroup if and only if ݁௫ and ିݔଵ  exist 
for every ܵ߳ݔ. 
 
Definition 2.3: S is called a partial group if the following axioms hold. For all, ߳ݕ ܵ ;  

• (PG1) ݁௫ and ିݔଵexist,  
• (PG2) ݁௫௬  =  ݁௫݁௬ , that is, the mapping, ݁௦: ܵ ՜  ܵ, ↦ ݔ ݁௫, is a 

homomorphism (of semigroups),  
• (PG3) (ݕݔ)ିଵ = ܵ :ଵ, that is, the mapping, ݅௦ିݔ ଵିݕ  ՜ ܵ, ݔ ↦  ଵ, is an antiିݔ 

homomorphism. 
 
Proposition 2.2: Let S be a partial group. Then 

• Every idempotent in S is its own partial identity and partial inverse,  
• ݁௫ି ଵ =  ݁௫ = (݁௫)ିଵ for all ߳ݔ ܵ,  
ଵି(ଵିݔ) • =  .ܵ߳ݔ for all ݔ 

 
Definition 2.4: Let S be a partial group. A subset ܤ of S is a subpartial group of S 
written B ≤ S if B is a subsemigroup of S and ݁௫,  In .ܤ߳ݔ ଵ are in B for allିݔ
particular, S and E(S) are subpartial groups of S for every partial group S. 
 
Definition 2.5: Let ߳ݔ ܵ and T be partial groups. A mapping φ: S→T is a 
homomorphism (of partial groups) if it is a homomorphism as a mapping of 
semigroup. That is, if φ(xy)= φ(x)φ(y) for every ݔ,  ,Monomorphism .ܵ ߳ݕ
epimorphism, isomorphism, etc of partial groups are defined in the usual manner. In 
particular, if φ: S →T is a monomorphism of partial group, then it is called an 
empedding. If φ: S→T is an isomorphism then S and T are called isomorphic, written 
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S≃T. If φ: S→T is a homomorphism of partial groups, then image of φ, denoted by 
Imφ and defined by Imφ = {φ(x): xϵ S} is clearly a subpartial group of T and φ is 
epimorphism if and only if Imφ= T. 
 
Proposition 2.3: Let φ: S→T be a homomorphism of partial groups. Then, for all, ߳ݔ ܵ, we have 

• φ(ex) = eφ(x),  
• φ(ିݔଵ) = (߮(ݔ))ିଵ. 

 By the well known Clifford theorem (see [9]) a Clifford semigroup (i.e. a regular 
semigroup with central idempotents)is precisely a strong semilattice of groups. Some 
other characterizations of a Clifford semigroup exist in literatures (e.g. a completely 
regular inverse semigroup, a semilattice of groups,...etc).In [1] the axioms PG1, PG2 
and PG3 allowed to characterize a partial group as a Clifford semigroup, or 
equivalently a strong semilattice of groups.If S is an arbitrary partial group, then S is a 
(disjoint) union of its (maximal) subgroups ܵ = ڂ  ܵ௫௫אௌ   is the maximal subgroup of 
S with identity ex. In essence we have ܵ௫ = ሼܵ߳ݕ ;  ݁௬ = ݁௫ሽ. It follows that Sx = Sy iff ݁௫ = ݁௬. In particular ܵ௫  =  ܵ௘ೣ  for all ܵ߳ݔ. 
 
Theorem 2.1: The following statements about a semigroup S are equivalent:  

• S is a partial group,  
• S is a completely regular inverse semigroup,  
• S is a Clifford semigroup,  
• S is a semilattice of groups,  
• S is a strong semilattice of groups. 

 According to the above structure theorem (of strong sort), a partial group S viewed 
as a strong semilattice of groups may be written in the form S =Ե[E(S); Sf, φf, g ] where 
E(S) is the semilattice of idempotents (partial identities) in S with the usual partial 
ordering, e ≤ f iff ef = fe = e, Sf is the maximal subgroup of S with identity f, and for f 
≥ g in E(S), φf, g is the homomorphism of groups ߮௙,௚: ௙ܵ ՜  ௚ܵ ݔ , ↦  The .ݔ݃
operation in S may be given by the structure mappings as follows. If, ߳ݕ ܵ, say ܵ߳ݔ௘  
and y = Sf. Then xy = φe, ef ݔ ⋅ φf, ef y. Throughout the rest of this section S denotes an 
arbitrary partial group and E(S) denotes the set of all partial identities (idempotentes) 
in S. 
 
Definition 2.6: A subpartial group B of S is called wide if E(S) ⊆ B and normal, 
written B⊲S, if it is wide and ିݔܤݔଵ⊆B for all ߳ݔ ܵ. Evidently, E(S)⊲ S, and we call 
E(S) the trivial normal subpartial group of S. 
 
Proposition 2.4: If K is a normal subpartial group of S, then ܭ௘ೣ  is a normal subgroup 
of ܵ௘ೣ  for all ߳ݔ ܵ. 
 
Definition 2.7: Let ߮: ܵ ՜ ܶ be a homomorphism of partial groups. Then k-kernel of 
φ, or simply k-kerφ, is the subset of S, k-kerφ= {ݔϵ S: φ(ݔ) = e for some eϵ E(T)}. 
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Proposition 2.5: If φ: S→T is a homomorphism of partial groups, we have 
• k-kerφ = {ݔϵ S: φ(ݔ) = φ(ex) = eφ(x) =ker(kerφ)},  
• k-kerφ is a normal subpartial group of S,  
• If φ is a monomorphism then k-kerφ = E(S),  
• If φ is a homomorphism of groups, then k-kerφ=kerφ is the usual group-

theoretic kernel of φ. 
 Here kerφ is the usual kernel of φ, that is kerφ = {(ݔ,  φ(y)}, which = (ݔ)ϵS×S: φ(ݕ
is a congruence on S.(cf[9]). On the other hand, the kernel of any congruence on (a 
semigroup) S is the subset of S; ker ρ= {ݔϵ S: x ρ e for some eϵE(S)} (cf.[9]). 
 
Proposition 2.6: If is a congruence on S, then S/ρ={ݔρ: xϵS} with the usual operation ݔρ⋅ yρ = ݕݔρ, is a partial group, called the quotient partial group induced by ߩ. 
Moreover, exρ = exρ and (ߩݔ)ିଵ =  .ܵ ߳ݔ for all ,ߩଵିݔ
 
Theorem 2.2: Let K be a normal subpartial group of S. Define ρk = {(ݔ,  ϵ S× S: ݁௫(ݕ
= ey and x -1 y ϵ K}.Then 

• ρk is an idempotent separating congruence on S and K =kerρk = k-ker(ߩ௞#), 
where ߩ௞#: S→S/ρ is the natural homomorphism,  

௘ೣܭݔ = ρkݔ • , for all ݔϵ S,  
• K = (E(S))ρk = ∪{ex ρk: exϵ E (S)}. 

 
Theorem 2.3: For every idempotent separating congruence ρ on S there exists a 
normal subpartial group K of S with K =kerρ = E(S)ρ and ρ= ρk. 
 If K is a normal subpartial group of S, we denote the quotient partial group S/ρk by 
S/K, where ρk is the unique idempotent separating congruence on S associated with K 
(Theorems 2.2, 2.3 above). We refer to S/K as the quotient of S by K. 
 
Lemma 2.1: Let A and K be respectively wide and normal subpartial groups of S. 
Then 

• AK = KA and this is a wide subpartial group of S,  
• A and K are respectively wide and normal subpartial groups of AK,  
• If A is also normal, then AK = KA is normal subpartial group of S. 

 The following is a second Noether isomorphism theorem for partial groups. 
 
Theorem 2.4: Let A and K be respectively wide and normal subpartial groups of S. 
Then 

• The mapping γ: A→AK/K, a↦aܭ௘ೌ  is an epimorphism of partial groups with 
k-kerγ=A⋂K,  

• There exists a unique isomorphism α: A/A⋂K→AK/K of partial groups such 
that the following diagram commutes 
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3-Composition series and The Jordan-Holder theorem for partial group 
In this section we extend the definitions and the well-known results concerning 
refinements and composition series in Ω- groups to Ω-partial groups. 
 
Definition 3.1: A right operator partial group is a triple (S, Ω, α) consists of a partial 
group S, a set Ω the operator domain and a function α: S×Ω→S, (x, ω⟩)↦xω which is 
an endomorphism of S for each ωϵΩ. We then refer to S as an Ω-partial group.  
 An operator partial group is a generalization of a partial group, since any partial 
group can be regarded as an operator partial group with empty operator domain. 
 Concepts such as Ω-subgroups and homomorphisms of Ω-groups can be extended 
analogously to Ω-partial groups. In particular, if K is a normal Ω-subpartial group of 
an Ω-partial group S, then by Theorem 2.2 (ii), the quotient partial group S/K becomes 
an Ω-quotient partial group with (x )ω = xω . Some examples of Ω-groups can 
be extended to partial groups. For instance, if S is a partial group we may take the 
operator domain Ω the set of all endomorphisms of S acting on S in the obvious way. 
Similarly, we may take Ω the set of all automorphisms of S or the set of all inner 
automorphisms of S, where an inner automorphism of S induced by an element sϵ S is 
the mapping sτ: S→S, defined by sτ( ) =  s (this is the conjugate of  by s). In 
this last example, a subpartial group K of the Ω -partial group S is an Ω-subpartial 
group of S if and only if for all ϵ K and sϵ S, sτ( ) ϵ K, that is if and only if  sϵ 
K, if and only if K is a normal subpartial group of S. 
 In the following definitions and results, unless stated otherwise, S denotes an 
operator partial group with operator domain. When no confusion exists, we will 
denote E(S) by E. 
 
Definition 3.2(Ω-series): A chain of Ω- subpartial groups E = S0 ⊲S1 ⊲ ….⊲Sl = S is 
called an Ω-series in S. The Si are the terms of the series and the quotient partial 
groups Si+1 /Si are the factors of the series. If all the Si are distinct, the integer l is 
called the length of the series. A subpartial group which is a term of at least one Ω-
series is said to be Ω-subnormal in S.When Ω is empty; we shall simply speak of a 
series and a subnormal subpartial group. If, for instance, Ω =InnS (the set of all inner 
automorphisms of S), the terms of an Ω-series are normal in S and we shall speak of a 
normal series, etc. 
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Definition 3.3 (Refinements): In S there always exists at least one Ω-series, namely 
E ⊲S. If R and T are Ω-series of S, we call R a refinement of T if every term of T is 
also a term of R. If there is at least one term of R which is not a term of T, then R is a 
proper refinement of T. 
 We now extend the Dedekind modular law in groups (cf [10]) to partial groups. 
For Ω-partial groups, the proof is essentially the same. 
 
Lemma 3.1: Let B, C and L be wide subpartial groups of a partial group with C⊆ L. 
Then (B⋂L)C = (BC)L. 
 
Proof: That (B⋂L)C⊆ (BC)⋂L is clear. Let xϵ (BC) ⋂L, say x = bc for some bϵ B and 
cϵ C with bcϵ L Then bc = l, for some lϵ L and so we have bec = bcܿିଵ  = lܿିଵϵ LC⊆ 
L. Since B is wide, ec ϵ B, whence bec ϵ B⋂L: Thus ݔ = bc = b(ec c) = (bec)cϵ (B⋂L)C. 
Thus (BC) ⋂L⊆ (B⋂L)C. The result follows. 
 Before establishing the Zassenhaus Lemma for Ω-partial groups, we prepare the 
ground by some more technical lemmas. 
 
Lemma 3.2: Let A and B be wide Ω-subpartial groups of S such that A⊲B. Then for 
any wide Ω-subpartial group C of S, we have C⋂A⊲C⋂B. 
 
Proof: Clearly both C⋂A and C⋂B are wide Ω-subpartial groups of S and C⋂A is a 
wide Ω-subpartial group of C⋂B. Let yϵC⋂B and ݔϵC⋂A. We must show that ିݕݔݕଵ ϵ C⋂A. Since A⊲B, we have ିݕݔݕଵϵ A. Since x and y are in C and C≤ S, we have ିݕݔݕଵϵC. It follows that ିݕݔݕଵϵ C⋂A. Hence C⋂A⊲C⋂B. 
 Here we give a complete proof of Lemma 5.7, [2] for Ω-partial groups. 
 
Lemma 3.3: Let A and K be respectively wide and normal Ω-subpartial groups of S. 
Then AK = KA and this is a wide Ω-subpartial group of S. 

• A is a wide Ω-subpartial group of AK and K is a normal Ω-subpartial group of 
AK. 

• If A is also normal, then AK = KA is a normal subpartial group of S. 
 
Proof: (i) Clearly E(S) ⊆ AK⋂KA. By normality, sK = Ks for all sϵK. Let ݔ, yϵ AK 
say ݔ = a1k1, y = a2k2 for some a1, a2 ϵ A and k1, k2 ϵ K. We have ݔy = a1k1a2k2 = 
a1a2k3k2 = a1a2k4 ϵ AK (k3, k4 ϵ K). Since E(S)⊆ A⋂K, we have E(S) = E(S)E(S)⊆ AK. 
For any aϵ A, kϵ K, we have(ܽ݇)ିଵ= ݇ ିଵܽ ିଵ  = ܽ ିଵ k1 ϵ AK (k1ϵ K). Thus AK is a 
wide subpartial group of S Since A and K are Ω-subpartial groups of S, we have for 
aϵA, kϵ K and ωϵΩ, (ak)ω = aωkω ϵ AK. Hence AK is also an Ω-subpartial group of S. 
Let ݔ =  ܽ݇ϵ ܭܣ. Since K⊲S, we have ak = k1aϵ KA. Hence AK⊆ KA. Similarly, 
KA⊆AK. Thus AK = KA and (i) follows. 
(ii) Since E(S) ⊆K, we have A⊆ AK and so A is a wide Ω-subpartial group of AK. 
Similarly, K is a wide Ω-subpartial group of AK. For any akϵK (aϵ A, k ϵK), k1 ϵK, 
and by the normality of K, we have (ak)k1 (ܽ݇)ିଵ  = akk1 (݇ ିଵܽ ିଵ) = ak (k1݇ ିଵ) ܽ ିଵ= ak (݇ ିଵk2) ܽ ିଵ= ak݇ ିଵ݇ଶܽ ିଵ  = ak2ܽ ିଵ = aܽ ିଵk3 = eak3 ϵK (k2, k3 ϵK and K is 
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wide). This proves that K is a normal Ω-subpartial group of AK. The last assertion of 
(ii) follows similarly. 
 
Lemma 3.4: Let B and C be wide Ω-subpartial groups of S such that B⊲C. Then BK⊲ 
CK for every normal Ω-subpartial group K of S.  
 
Proof: By lemma 3.3 (i), BK = KB and CK = KC are wide Ω-subpartial groups of S. 
Whence BK is a wide Ω-subpartial group of CK. To show that BK is normal in CK, let ݔ = bk1ϵBK and y = ck2 ϵCK (for some bϵB, cϵC, k1, k2 ϵK). We have ିݕݔݕଵ= ck2 (bk1) ݇ଶି ଵܿିଵ = ck2 (bk1݇ଶି ଵ) ܿିଵ = c(k2bk3) ܿିଵ= c(k2b) k3ܿିଵ= c(b1k4)k3ܿିଵ=c(b1k4k3) ܿିଵ 
=cb1 (k5ܿିଵ) = (cb1ܿିଵ)k6 ϵ Bk6 ⊆ BK (since B⊲C, k3 = k1݇ଶି ଵϵ K, k4, k5, k6ϵK, 
b1ϵB).This proves that BK is normal in CK. 
 We now give a version of the Noether second isomorphism theorem (cf. 
Theorem2.4) in terms of Ω-partial groups and Ω-homomorphisms which is needed for 
the proof of Zassenhauss lemma of Ω-partial groups. 
 We begin by some technicalities. 
 
Lemma 3.5: Let S be an Ω-partial group. Then for all ωϵΩ and ݔϵS, we have 

• (݁௫)ఠ = ݁௫ഘ,  
ఠ(ଵିݔ) • =  .ଵି(ఠݔ)

 
Proof: (i) We have ݔఠ(݁௫)ఠ = ఠ(௫݁ݔ) = ఠݔఠ, similarly(݁௫)ఠݔ =  ఠ. Supposeݔ
thatݔݕఠ = ݕఠݔ = ఠ(௫݁)ݕఠ, for some yϵS.Thenݔ = ఠ(ଵିݔݔ)ݕ = ఠ(ଵିݔ)ఠݔݕ ఠ(ଵିݔ)ఠݔ= = ఠ(ଵିݔݔ) = (݁௫)ఠ. Similarly, (݁௫)ఠݕ = (݁௫)ఠ. Whence, (݁௫)ఠ = ݁௫ഘ. 
(ii) We have ݔఠ(ିݔଵ)ఠ = ఠ(ଵିݔݔ) = (݁௫)ఠ = ݁௫ഘ. Similarly, (ିݔଵ)ఠݔఠ = ݁௫ഘ. 
Also, ݁௫ഘ(ିݔଵ)ఠ  = (݁௫)ఠ(ିݔଵ)ఠ = (݁௫ିݔଵ)ఠ = ఠ݁௫ഘ(ଵିݔ) ,ఠ. Similarly(ଵିݔ) ଵି(ఠݔ) ఠ. Hence(ଵିݔ)= =  .ఠ(ଵିݔ)
 
Lemma 3.6: Let K be a normal Ω-subpartial group of an Ω-partial group S. Then the 
natural homomorphism(epimorphism) ߩ௞#: S→S/K, ݔ ↦ -௘ೣ, is an Ωܭݔ
homomorphism. 
 
Proof: For every ωϵΩ and ݔϵS, we have, by using Lemma 3.5 (i), (ߩ௞#ݔ)ఠ ఠ(௘ೣܭݔ)= = ഘ(௘ೣ)ܭఠݔ = ௘ೣഘܭఠݔ =  .ఠ. The result followsݔ#௞ߩ
 The proof of the following theorem follows immediately by using Lemma 3.6. 
 
Theorem 3.1: [Second Noethor Isomorphism Theorem for Ω-Partial Groups] 
 Let A and K be respectively wide and normal Ω-subpartial groups of an Ω-partial 
group S. Then 

• The mapping γ: A→AK/K, a↦aܭ௘ೌ  is an Ω-epimorphism of Ω-partial groups 
with k-ker γ= A⋂K,  

• There exists a unique Ω-isomorphism  
 α: A/A⋂K →AK/K of Ω-partial groups such that the following diagram commutes. 



120  M. El-Ghali M. Abdallah and Marwa. A. El-lithy 
 

 

 
 
 

Theorem 3.2: [Zassenhaus’s Lemma for Ω-Partial Groups] 
Let A1, A2, B1 and B2 be wide Ω-subpartial groups of an Ω-partial group S such that A1 ⊲A2 and B1 ⊲B2. Let Dij = Ai ⋂Bj. Then 

• A1D21 ⊲A1D22, and B1D12 ⊲B1D22. 
• The partial groups A1D22/A1D21 and B1D22/B1D12 are Ω-isomorphic.  

 
Proof: (i) We have B1 ⊲B2 implies by lemma 3.2, that 
 A2⋂B1⊲A2⋂B2   (1) 
 Similarly 
 A1⋂B2⊲A2⋂B2    (2) 
 Applying lemma 3.4 with S = A2 and K = A1, we obtain by (1) 
A1(A2⋂B1)⊲A1(A2⋂B2), similarly B1(A1⋂B2) ⊲B1(A2⋂B2). That is A1D21 ⊲ A1D22, and 
B1D12 ⊲B1D22. 
(ii) Applying the second Noether isomorphism theorem of Ω-partial groups (Theorem 
3.1) with S = A1D22, A= D22 and K = A1D21 noticing by (i) above that K=A1D21⊲A1D22 
= S, we obtain at once the following Ω- isomorphism of Ω-partial groups 
D22/D22⋂A1D21≃ΩD22A1D21/A1D21. By Lemma 3.3 (i) we have AK = KA = A1D21D22 = 
A1D22 and by using the modular law for Ω-partial groups (Lemma 3.1), we can easily 
obtain K⋂A = D12D21 whence the abave isomorphism gives,  
 D22/D12D21≃Ω A1D22/A1D21  (3) 
 Applying again the second isomorphism theorem (Theorem 3.1) with S = B1D22, A 
= D22 and K = B1D21, we can obtain the following isomorphism 
 D22/D12D21 ≃Ω B1D22/B1D12  (4) 
 From (3) and (4) we obtain the desired isomorphism and the proof is complete. 
 
Definition 3.4 (Isomorphic Series): Two Ω-series R and T of an Ω-partial group S 
are said to be Ω-isomorphic if there is a bijection from the set of factors of R to the set 
of factors of T such that corresponding factors are Ω-isomorphic. 
 We can now use Zassenhaus’s Lemma for Ω-partial groups (Theorem 3.2) to 
establish the partial group analogue of the fundamental Schreier Refinement Theorem 
in groups ([10], 3.1.2). 
 
Theorem 3.3: [ The Schreier Refinement Theorem for Ω-Partial Groups] 
 Any two Ω-series of an Ω-partial group possess Ω- isomorphic refinements. 
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Proof: Let E(S) = H0 ⊲H1 ⊲….⊲Hl = S and E(S) = K0 ⊲K1 ⊲…..⊲Km = S be two Ω-
series of S. Define Hij = Hi(Hi+1 ⋂Kj), i = 0, 1, …., l-1, j = 0, …., m and 
Kij=Ki(Hi⋂Kj+1), i=0, 1, …., l, j=0, ….., m-1. Applying Theorem 3.2 with A1 = Hi, A2 = 
Hi+1, B1 = Kj, and B2 = Kj+1, we obtain, A1 (A2 ⋂B1) ⊲ A1 (A2 ⋂B2) and 
B1(A1⋂B2)⊲B1(A2⋂B2). That is Hi(Hi+1⋂Kj)⊲Hi(Hi+1⋂Kj+1) and 
Kj(Hi⋂Kj+1)⊲Kj(Hi+1⋂Kj+1). That is Hij⊲Hij+1, Kij⊲Ki+1j and 
A1(A2⋂B2)/A1(A2⋂B1)≃ΩB1(A2⋂B2)/B1(A1⋂B2). 
 That is Hij+1/Hij≃ΩKi+1j/Kij. Hence the series {Hij/ i=0, 1, …., l-1, j=0, ….., m} and 
{Kij/i=0, 1, ….l, j= 0, …., m-1} are Ω-isomorphic refinements of {Hi / i=0, 1, …., l} 
and {Kj/ j=0, …., m} respectively. 
 Throughout the rest of this section unless stated otherwise S stands for an arbitrary 
Ω-partial group. 
 
Definition 3.5: An Ω-series in S which has no proper refinements is called an Ω-
composition series. If ܵ is empty, we speak of a composition series in a partial group. 
 As it is known, not every group has a composition series. An example is the group 
of integer Ժ, since every non trivial subgroup of Ժ is infinite cyclic. More formally if 
0⊲H1⊲…..⊲ Ժ is a series in Ժ. Then H1 (may be Ժ itself)is infinite cyclic with a 
generator, say m. Thus H1 =<m>= m Ժ. Whence for any n(്0) in Ժ, <nm>= nm Ժ = H 
is a proper infinite cyclic subgroup of m Ժ = H1, and we obtain a proper refinement 
0⊲H⊲H1 ⊲….⊲ Ժ of the given series. 
 Analogously, we may construct partial groups which are not groups with no 
composition series. Here is a simple example. 
 
Example 3.1: Let S be the partial group with maximal subgroups Se, Sf, that is S = Se ∪Sf, E(S) = {e, f} is the semilattice e>f, where Se and Sf are (disjoint) copies of Ժ, with 
the homomorphism φe;f: Se →Sf be the natural isomorphism. Let E(S) ⊲S1 ⊲….⊲Sm=S 
be a series in S. Clearly {e}⊲ (S1)e ⊲(S2)e ⊲…..⊲(Sm)e=Se and {f}⊲(S1)f⊲(S2)f⊲….⊲ 
(Sm)f = Sf are series in Se and Sf respectively. By the above discussion since Se and Sf are 
isomorphic to Ժ, we may find(assuming that (S1)e and (S1)f are nontrivial infinite 
cyclic) the following two proper refinements of Se and Sf respectively 
{e}⊲He⊲(S1)e⊲(S2)e⊲….⊲(Sm)e=Se, {f}⊲Hf⊲(S1)f⊲(S2)f⊲….⊲(Sm)f = Sf such that He and 
Hf are infinite cyclic and isomorphic. Let H = He ∪Hf be the partial group with E(H) = 
{e;f: e>f}. Thus H is clearly a subpartial group of S and E(S)⊲H⊲S1⊲….⊲Sm=S is a 
proper refinement of the given series of S. Whence S has no composition series. In 
general, we may conclude that any partial group S whose maximal subgroups are 
isomorphic copies of Ժ with the connecting maps the natural isomorphisms has no 
composition series. 
 
Definition 3.6: A non trivial Ω-partial group S (that is S ് E(S)) is said to be Ω-
simple if it has no proper non trivial normal Ω-subpartial groups. 
 By Propositions 2.3 and 4.1 in [2], [ see also, section 2, Theorem 2.2 (ii) in this 
paper], it follows immediately that if K is a normal subpartial group of a partial group 
S, then every subpartial group of the quotient partial group S/K must be a quotient 
partial group H/K for some subpartial group H of S with K⊲H. These remaks hold as 
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well for Ω-partial groups. We can now establish the Ω-partial group analouge of 3.13 
in [10]. Again S stands for an arbitrary Ω -partial group. 
 
Lemma 3.7: An Ω-series in S is an Ω-composition series if and only if all its factors 
are Ω-simple. 
 
Proof: Let E(S)⊲S1⊲….⊲ Sm = S be an Ω-series in S and suppose that not all its factors 
are Ω-simple. Whence there is a factor say Sj+1/Sj (for some j) which is not Ω-simple. 
Thus there is a non trivial normal subpartial group K of Sj+1/Sj. By the above remaks, 
we have K = H/Sj for some proper Ω-subpartial group H of Sj+1 with Sj ⊲ஷH ≨ Sj+1. 
Since K = H/Sj is normal in Sj+1/Sj, we must have H is also normal in Sj+1. Then Sj ⊲ஷH ⊲ஷSj+1. It follows that the given series has a proper refinement E(S)⊲S1⊲…..⊲Sj ⊲H⊲Sj+1⊲…..⊲Sm = S and so the series is not an Ω-composition series. This proves the 
only if part. Conversely, let an Ω-series in S be not a composition series. Then it has a 
proper refinement. Whence for some consecutive terms K⊲L in the series there exists 
a proper normal Ω-subpartial group H of L with K⊲H and K ്H. It follows that H/K 
is a proper non trivial normal Ω-subpartial group of L/K. Thus the factor L/K is not Ω-
simple and the proof is complete. 
 Here we give our main result in this section, namely a Jordan-Holder Theorem for 
Ω-partial groups. 
 
Theorem 3.4: If R is an Ω-composition series and T is any Ω-series of the Ω-partial 
group S, then T has a refinement which is a composition series and is Ω-isomorphic 
with R. In particular, if T is a composition series it is Ω-isomorphic with R. 
 
Proof: According to Theorem 3.3, there exist Ω-isomorphic refinements, say, ܴᇱand ܶᇱ of R and T respectively. Since, by definition, R has no proper refinement, we must 
have R = ܴᇱ, and so ܶᇱ is Ω-isomorphic to R. It follows that any factor of ܶᇱ is Ω-
isomorphic to the corresponding factor of R. Whence, by Lemma 3.7, all factors of ܶᇱ 
are Ω-simple and again by Lemma 3.7, ܶᇱ is an Ω-composition series isomorphic to R. 
In particular, if T is a composition series, then its refinement ܶᇱ which is isomorphic 
to R is itself T. The result obtains. 
 Recall that a partially ordered set is a pair (P, ≤) (or simply P), where P is a set 
and ≤ is a binary relation in P which is: reflexive (a≤ a for all a ϵP), antisymmetric 
(a≤ b and b ≤a ֜a= b) and transitive (a≤ b and b≤ c ֜ a≤ c). If A⊆ P, then an 
element m ϵA is a maximal element of A, if aϵ A and m≤ a implies m = a. The 
partially ordered set R is said to satisfy the maximal condition if each nonempty 
subset A of P has a maximal element. Also we say that P satisfies the ascending chain 
condition if there does not exist an infinite properly ascending chain p1<p2 <…. in P. 
Evidently these two properties of P are identical. The minimal condition and the 
descending chain condition can be defined dually. Maximal and minimal conditions 
can be considered on any family of sets viewing as a partially ordered set by set 
theoretic inclusion (⊆). In particular we consider these conditions on the family of all 
subnormal Ω-subpartial groups of an Ω-partial group S. As in groups, the maximal 
and minimal conditions on that family may be denoted by max-Ωs and min-Ωs 
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respectively. It is known that in an Ω-group G, max-Ωs and min-Ωs are equivalent to 
the existence of an Ω-composition series [cf.[10], 3.1.5]. We conclude this section by 
extending that result to Ω-partial groups. 
 
Theorem 3.5: An Ω-partial group S has an Ω- composition series if and only if it 
satisfies max-Ωs and min-Ωs. 
 
Proof: Let S have an Ω-composition series of length l, and suppose, however that 
there exists an infinite properly ascending chain K1 <K2 <… of subnormal subpartial 
groups of S. Considering the chain E ≤ K1 < K2 <….<Kl+1, every Ki, being Ω-
subnormal in S, is also Ω-subnormal in Ki+1 (by Lemma 3.2). Again by Lemma 3.2, 
the given chain can be made into an Ω-series of S by inserting terms of a suitable Ω-
series between Ki and Ki+1 and between Ki+1 and S. Obviously, the length of the 
resulting series, and hence of any of its refinements is at least l+1, and so a refinement 
of this series isomorphic to our composition series cannot exist. A contradiction with 
Theorem 3.4. Thus S must have max-Ωs. Similarly, S has min-Ωs. Conversely, 
suppose that G has max-Ωs and min-Ωs but does not have an Ω-composition series. 
Hence S ് E(S), and we may apply max-Ωs to the set of proper subnormal Ω-
subpartial groups of S and obtain maximal member, say S1. By maximality, S1 is 
normal in S and S/S1 is Ω-simple. Since S has no Ω-composition series, the set of 
proper subnormal Ω-subpartial groups of S1 is non empty, otherwise E(S)⊲S1⊲S2=S 
would be a composition series, contradicting our assumption. Whence we may apply 
again max-Ωs to this set and obtain a maximal proper member, say S2. Again S2 is 
normal in S1, S1/S2 is Ω-simple and S2 ്E(S). As this process cannot terminate, we 
obtain an infinite descending chain of Ω-subnormal subpartial groups …<S2 <S1 <S0 = 
S, a contradiction to min-Ωs. 
 
 
4-Some Decompositions of Partial Groups 
In this section we introduce the notion of decomposability of Ω-partial groups in a 
way that allows to extend the direct decomposition of Ω-groups known as Remak 
decomposition to Ω-partial groups. The (Remak) theorem on Ω- groups that relates 
the existence of a Remak decomposition to the minimal condition on Ω-direct factors 
is generalized to Ω-partial groups. Our reference on direct decomposition and Remak 
decomposition of Ω-groups is [10]. 
 
Lemma 4.1: Let S be an Ω-partial group and let H and K be wide Ω-subpartial groups 
of S. Let ܪ ⊙  eϵE He ×Ke where He ×Ke is the usual product of the (maximal)∪ = ܭ
groups He and Ke. Then ܪ ⊙  is an Ω-partial group with a semilattice of ܭ
idempotents ܧ ⊙  ,and structure maps; for (e, e) ≥ (f, f) (i.e. e≥f) φ(e {eϵE :(e, e)} = ܧ 

e), (f, f): He× Ke →Hf ×Kf, (h, k)↦(φe, efh, φe, ef k) = (hf, kf). Moreover ܪ ⊙  eϵE∪ = ܧ 
He×{e} and ܧ ⊙ ⊙ ܪ eϵE {e}×Ke are normal Ω-subpartial groups of∪ = ܭ   .ܭ
 
Proof: It is easy to show that H⊙ K, so defined, is actually a partial group with the 
desired semilattice of idempotents and structure mappings. That H⊙ K is also an Ω-
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partial group follows at once uppon defining for (h, k) ϵH⊙ K, ωϵΩ, (h, k)ω = (hω, 
kω). The proof of the other assertions is straight forward. 
 
Definition 4.1: The Ω-partial group ܪ ⊙  constructed in Lemma 4.1 is called the ܭ 
(external) direct product of the Ω-partial groups H and K. 
 
Lemma 4.2: Let H and K be normal Ω-subpartial groups of the Ω-partial group S. 
Suppose that there exists an Ω-isomorphism ψ: S →H⊙ K. Then we have:  

ᇱܪ •  = ߰ିଵ (ܪ ⊙ ܧ) ᇱ = ߰ିଵܭ and (ܧ ⊙  are normal Ω-subpartial groups of (ܭ 
S,  

  ,ᇱ = Eܭ⋂ᇱܪ •
• Every element ݔϵS, can be uniquely expressed as a product ݔ = hk with hϵܪ௘ೣᇱ

 

and kϵܭ௘ᇱೣ ,  
• For each eϵE, Se is the (internal) direct product of the Ω-subgroups ܪ௘ᇱ  and ܭ௘ᇱ  

That is Se = ܪ௘ᇱ  .௘ᇱ for every eϵEܭ× 
 
Proof: Part (i) follows from the hypothesis and Lemma 4.1. Likewise, ψ is an 
isomorphism gives ܪᇱ⋂ܭᇱ= ߰ିଵ(H⊙E)⋂߰ିଵ(E⊙K) =߰ିଵ((H⊙ E)⋂(E⊙K))= ߰ିଵ(E⊙ E) = E, which proves (ii). Let xϵS, there exist eϵE, hϵHe, kϵKe such that ψ(ݔ) 
= (h, k), ex = ߰ିଵ(e, e). We have (h, e) ϵ H⊙E and (e, k) ϵ E⊙ K and so ψ-1(h, e) ϵ ܪ௘ೣᇱ

 and ߰ିଵ(e, k) ϵ ܭ௘ᇱೣ . Setting ݄ᇱ = ψ-1(h, e) and ݇ᇱ=߰ିଵ(e, k), we obtain ݔ=߰ିଵ(h, 
k) = ߰ିଵ((h, e)⊙ (e, k)) = ߰ିଵ(h, e) ߰ିଵ(e, k) = ݄ᇱ݇ᇱ. On the other hand, suppose 
that h1k1 = h2k2 for some h1, h2 ϵܪ௘ᇱ  and k1, k2 ϵܭ௘ᇱ, for some eϵE. Thus h1

1h1k1 = h1 
1h2k2, which gives k1 = hk2, where h = ݄ଵି ଵh2 ϵܪᇱ. Again, k1݇ଶି ଵ= hk2݇ଶି ଵ. Thus k = h, 
where k = k1݇ଶି ଵ ϵ ܭᇱ. It follows that h=kϵܪᇱ⋂ܭᇱ=E and so h = k = e. Thus e = ݄ଵି ଵh2 
that is h1 =h2 Similarly, k1 = k2. Thus (iii) follows. The proof of (iv) follows 
immediately from (i), (ii) and (iii), since for any subpartial group K of S, we have 
K⊲S implies Ke ⊲Se for every eϵ E (cf. Proposition 2.4). 
 
Definition 4.2: If H and K are normal Ω-subpartial groups of S, satisfying (ii) and (iii) 
(and hence (iv) in Lemma 4.2) we say that S is the (internal) direct product of H and 
K. 
 The converse of the Lemma 4.2 is also true. That is if the Ω-partial group S is the 
internal direct product of the normal Ω-subpartial groups H and K, then S is 
isomorphic to the direct product H⊙ K. Formally, we have 
 
Theorem 4.1: Suppose that S is an Ω-partial group and H and K are normal Ω-
subpartial groups of S such that the conditions (ii) and (iii) (and hence (iv)) of Lemma 
4.2 hold. Then S is Ω-isomorphic to the direct product H⊙ K. 
 
Proof: For each eϵ E, Se is the internal direct product of the normal Ω-subgroups He 
and Ke. Hence Se is Ω-isomorphic to the direct product He× Ke. Since He×Ke = 
(H⊙K)e and the mapping E→E⊙E, e↦(e, e) is (Ω-) isomorphism of semilattices, it 
follows by Lemma 4.2.[6] that S and H⊙K are (Ω-) isomorphic. 
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 Actually, we may construct a proof of Theorem 4.1 that does not depend on 
Lemma 4.2 [6], by defining explicitly the desired isomorphism. Formally, we may 
define a mapping ψ: S→H⊙K as follows, for each ݔϵS, there exist unique hϵܪ௘ೣ  and 
k ϵܭ௘ೣ  with ݔ = hk. Define ψ(ݔ)=(h, k). To show that ψ is (Ω-) homomorphism, let ݔ, 
yϵS have the unique products ݔ = h1k1 and y = h2k2 with h1 ϵܪ௘ೣ, k1 ϵܭ௘ೣ  and h2 ϵܪ௘೤ , 
k2ϵܭ௘೤ . Then, we have h1k1h2k2= h1(h2݇ଵᇱ )k2 for some ݇ଵᇱ ϵ K, where k1h2=h2݇ଵᇱ . 
Thus ݁௫௬ = ݁௬݁௞భᇲ  or ݁௫௬ = ݁௫௬݁௞భషభ and h2݇ଵᇱ ݇ଵି ଵ=k1h2݇ଵି ଵϵH (by normality of H) say 
h2݇ଵᇱ ݇ଵି ଵ = ݄ଷfor some h3ϵH, whence ݁௬݇ଵᇱ ݇ଵି ଵ = ݄ଶି ଵ݄ଷ א ܪ ת ܭ =  .(by(ii)) ܧ
Then ݁௬݇ଵᇱ ݇ଵି ଵ = ݁௫௬݇ଵᇱ  which gives ݁௫௬݇ଵᇱ = ݁௫௬݇ଵ. We have ݁௫௬݇ଵᇱ = ݁௫௬݇ଵ and so ݁௫௬݇ଵᇱ ݇ଶ = ݁௫௬݇ଵ݇ଶ = ݇ଵ݇ଶ. Therefore ߰(ݕݔ) = ߰൫(݄ଵ݄ଶ)( ݇ଵᇱ ݇ଶ)൯ =  ߰ ቀ݄ଵ݄ଶ ൫݁௫௬ ݇ଵᇱ ݇ଶ൯ቁ =  ߰൫(݄ଵ݄ଶ)( ݇ଵ݇ଶ)൯ =(݄ଵ݄ଶ, ݇ଵ݇ଶ) = (݄ଵ, ݇ଵ) ⊙ (݄ଶ, ݇ଶ) =  .Hence ψ is a homomorphism .(ݕ)߰(ݔ)߰
Clearly ψ is one-to-one and onto. 
 In view of Lemma 4.2 and Theorem 4.1, an Ω-partial group S is isomorphic to the 
(external) direct product H⊙K if and only if S is the (internal) direct product of ܪᇱ  

and ܭᇱas defiend in Lemma 4.2. If one of those two equivalent statements holds, we 
shall identify H with ܪᇱ , K with ܭᇱ and S with H⊙K, and refer to S simply as the 
direct product of the Ω-(sub)partial groups H and K. Formally, we shall write S=H⊙K 
to indicate that S is the (internal) direct product of the normal Ω-subpartial groups H 
and K. This product can be generalized naturally to any family of (normal) Ω-partial 
groups. 
 Throughout, unless stated otherwise, S stands for an arbitrary Ω-partial group. 
Recall that a subpartial group H of S is proper if ܪ ് ܵ, and non trivial if ܪ ്  .(ܵ)ܧ 
 
Definition 4.3: A wide Ω-subpartial group H of S is called an Ω-direct factor of S if 
there exists a wide Ω-subpartial group K such that S = H⊙K, K is then called an Ω-
direct complement of H in S. If there are no proper non trivial Ω-direct factors of S, 
then S is called Ω-indecomposable (or just indecomposable if Ω= ߶). If S is not Ω-
indecomposable it is called Ω- decomposable. 
 
Definition 4.4: We call a wide Ω-subpartial group H of S essentially proper 
(appreviated ess. proper) if He is a proper subgroup of Se for all eϵE(S), and essentially 
non trivial (abbreviated ess. non trivial) if He is a non trivial subgroup of Se for all 
eϵE(S). That is H is ess. proper if ݁ܪ ്  ܵ݁ for all eϵE and ess. non trivial if ݁ܪ ് ሼ݁ሽ for all e ϵ E. If there are no ess. proper ess. non trivial Ω-direct factors of S, then 
we say that S is essentially Ω-indecomposable (abbreviated ess. Ω-indecomposable). 
Again if ߗ =  ߶ we speak of essentially indecomposable (ess. indecomposable). 
Clearly, S is (Ω-) indecomposable implies that S is ess.(Ω-) indecomposable. If S is 
not ess.(Ω-) indecomposable, that is if there is some ess. proper ess. nontrivial (Ω-) 
direct factor of S, then S is called ess.(Ω-) decomposable. Again, we clearly have:  
 If S is ess.(Ω-) decomposable, then S is (Ω-) decomposable. From, the definition, 
it follows clearly that, if S = H⊙K for some (Ω-)subpartial groups H and K, then H is 
ess. proper ess.non trivial if and only if K is ess. proper ess. non trivial. Evidently an 
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ess. proper subpartial group is necessarily proper, but the converse is not true. To 
show this we can (and do) construct a variety of examples. 
 
Example 4.1: Let S be a partial group with φe, f a monomorphism but not an 
isomorphism for some e, fϵE with e>f. Let H be the subpartial group of S such that Hg 
= Sg for all gϵE with ݃ ്  ݂ and Hf = φe, f Se = f Se. Since φe, f is monomorphism we 
have Hf is a proper subgroup of Sf but Hg = Sg, ݃׊ ് ݂. Thus H is a proper subpartial 
group of S but not ess.proper.(For instsnce if S = Se ∪ Sf, with e>f, Seൎ2Ժ, Sf ൎ Ժ, and 
φe, f is the usual emppeding 2Ժ մ  Ժ, then H =2 Ժ∪2 Ժ is a proper subpartial group of 
S but not ess.proper). 
 As in the case of Ω-groups, it is obviouse that every Ω-simple partial group is Ω-
indecomposable, whereas the converse is not true, that is Ω-indecomposable partial 
groups need not be simple. Here is a simple example. 
 
Example 4.2: For any prime p, let Se ≃Ժ௣ and Sf ≃Ժ௣మ , be disjoint isomorphic copies 
of Ժ௣ and Ժ௣మ  respectivly. Let S be the partial group S = Se ∪Sf with semilattice e>f, 
and structure map φe, f: Se →Sf the natural empedding. Clearly each of Se = Ժ௣ and Sf = Ժ௣మ  is indecomposable (see also later results) and hence also ess.indecomposable, but 
clearly S is not simple. (Actually H=Ժ௣∪Ժ௣ is a non trivial normal subpartial group of 
S). 
 The inheritance of ess.(Ω -) decomposability (ess.(Ω -) indecomposability) 
between S and its maximal subgroups may be formalized as follows. 
 
Theorem 4.2: We have 

• S is ess.(Ω-) decomposable if and only if Se is (Ω-) decomposable for every 
eϵE(S),  

• S is ess.(Ω-) indecomposable if and only if Se is (Ω-) indecomposable for some 
eϵE(S). 

 
Proof: (i) Suppose that S is ess.(Ω-)decomposable. There exists ess.non trivial 
ess.proper wide (Ω-) subpartial group H of S such that S = H⊙ K, for some (Ω-) 
subpartial group K of S, (and so, as shown earlier, H and K are necessarily normal in 
S). Now let eϵE(S). We have Se = He×Ke. By assumption He ്{e} and He ⊲ஷSe and so 
Se is (Ω-) decomposable. This establishes the only if part of (i). Conversely, suppose 
that Se is (Ω-) decomposable for every eϵE(S). Thus for each e, there exists a non 
trivial proper normal (Ω-) subgroup, say He of Se such that Se = He×Ke, for some say 
(Ω-) subgroup Ke of Se. We have He ്{e} ֞ Ke ്Se and He≨ Se ֞ Ke ്{e}. Whence 
Ke ്{e} and Ke ് Se. Now set H = ∪eϵE He. For e≥ f in E(S), we have a 
homomorphism φe, f: Se →Sf, ݔ↦ݔf, which may be viewed naturally as a 
homomorphism φe, f: He× Ke →Hf ×Kf, (h, k) ↦ (hf, kf), where for any ݔϵHe× Ke, say ݔ 
= he·ke (unique product), with heϵHe and keϵKe, we have heke ϵHe ֞ke=e by uniqueness 
of products. Thus ݔϵHe implies that ݔ=he eϵ He×Ke and φe, f(ݔ) = hef ϵHf. Whence, φe, f: 
Se→Sf induces a homomorphism φe, f: He →Hf, ݔ↦ݔf (for all e≥ f in E). Thus H = ∪eϵE 
He is a wide ess.nontrivial ess.proper (Ω-) subpartial group of S. This holds similarly 
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for if we define K=∪eϵEKe. The construction of H and K implies clearly, that S = 
H⊙K, and hence that S is ess.(Ω-)decomposable. This completes the proof of (i). 
(ii) By taking the contrapositives of the two conditionals in (i), the bicoditional in (ii) 
follows at once. 
 We now give the partial group analogue of the known result in Ω-groups (cf.[10], 
3. 3.1) concerning minimal and maximal conditions on Ω-direct factors. As usual S 
denotes an Ω-partial group. In the next result the set of all Ω- direct factors of S is 
viewed as a partially ordered set with set theoretic inclusion ⊆ as the partial ordering.  
 
Theorem 4.3: The maximal and minimal conditions on Ω-direct factors of S are 
equivalent properties. 
 
Proof: Let S satisfy the minimal condition on Ω-direct factors and let ࣦ be a 
nonempty set of Ω-direct factors of S. Let ࣠ be the set of all Ω-subpartial groups of S 
which are direct complements of at least one element of ࣦ. By assumption, ࣠ has a 
minimal element N and so S = M⊙N for some Mϵࣦ. If M is maximal in ࣦ, the result 
obtains, otherwise, there exists M1 ϵࣦ such that M is a proper Ω-subpartial group of 
M1 (in notation, M<M1) and so S=M1⊙N1 for some N1ϵ࣠. By the definition of the 
operation ⊙, we obtain M1= M1⋂S = M1⋂(M⊙N) = (∪eϵE M1e) ⋂∪eϵE(Me×Ne) 
=∪eϵE∪eϵE (M1e⋂(Me×Ne)) = ∪eϵE (Me× (M1e⋂Ne)) = M⊙(M1⋂N) whence with the 
same procedure, S=M1⊙N1=∪eϵE(M1e×N1e) =∪eϵE(Me×N1e×(M1e⋂Ne)) 
=M⊙N1⊙(M1⋂N). Intesrecting with N gives, N = N2⊙(M1⊙N), where 
N2=(M⊙N1)⋂N. Hence, S = M⊙ N = ((M ⊙(M1⋂N)) ⊙N2 = M1⊙N2. Thus N2 ϵ࣠ 
and so N2=N by the minimality of N in ࣦ. Consequently, N≤ M ⊙N1and hence Ne ≤ 
Me× N1e for all eϵ E. Thus, S = M⊙N =∪eϵE (Me ×Ne). Now, Se = Me×Ne 
=Me×(Me×N1e) = Me×N1e, for all eϵE. Equivalently, S=M⊙N1 which gives S =M⊙N1 = M1⊙N1. Again by the very definition of the product ⊙and since M≤ M1, it follows 
immediately that M = M1 and hence M is not a proper subpartial group of M1, a 
contradiction. Therefore, M must be maximal in ࣦ. This proves that if S satisfies the 
minimal condition on Ω-direct factors, then it satisfies the maximal condition on those 
factors. A similar argument can be constructed to establish the opposite direction. 
 In (Ω-)groups the equivalent maximal and minimal conditions on direct factors 
lead naturally to a certain kind of decomposition the so called "Remak 
decomposition" (cf.[10], 3.3.2). In view of Theorem 4.3, one may excepect extension 
of that result to (Ω-)partial groups. First we give a definition. 
 
Definition 4.5: An Ω-partial group S is said to have a Remak decomposition if it can 
be expressed as a direct product of finitely many nontrivialΩ-indecomposable 
subpartial groups. 
 
Theorem 4.4: If the Ω-partial group S has the minimal condition on direct factors, it 
has a Remak decompositon. 
 
Proof: Assume that the hypothesis holds, but S has no Remak decomposition. Thus, 
in particular, S cannot be Ω-indecomposable and so S must be decomposable. 
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Accordingly, the set ࣦ of all proper nontrivial Ω-direct factors of S is non empty, 
whence there is some minimal element S1 of ࣦ which then induces an Ω-
decomposition S=S1⊙H1. By minimality, S1 is Ω-indecomposable. This with the 
assumption that S has no Remak decomposition implies clearly that H1 cannot be Ω-
indecomposable. Hence H1 must be Ω-decomposable. Also, H1 inherits the minimal 
condition form S and the above argument applying now to H1 yields an Ω-
decomposition H1=S2⊙H2 >S2, with S2 Ω- indecomposable and S = S1⊙S2⊙H2. 
Repetition of this procedure yields an infinite descending chain H1 >H2 >…. of Ω-
direct factors of S, which cannot exist by the assuming minimal condition. So, S has a 
Remak decomposition. 
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