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Abstract

The classical theory of subnormal series, refinements and composition series
in groups is extended to the class of partial groups which is known to be
precisely the classes of Clifford semigroups, or equivalently semilattices of
groups. The Jordan-Holder theorem concerning composition series which is
known to hold in every abelian category is now extended to partial groups
which are certainly a non-abelian category. Other results including
decomposability and the Remak decomposition theorem of groups are
extended as well to partial groups.

1-Introduction
In [1] a partial group is defined in terms of a set of (new) axioms and proved to satisfy
a structure theorem of strong sort and a representation theorem. Formally; a partial
group is precisely a strong semilattice of groups (also called in literature a Clifford
semigroup), and every partial group is isomorphic to a certain partial group of partial
mappings. Other kinds of “partial algebras” have been introduced and existed in
literature, (e.g. partial rings in [4], and partial monoids in [5]). The principal aim of
introducing a particular kind of a partial algebra has been show that it is the most
convenient viewing as a “generalized algebra” from both the categorical and algebraic
points of views [2], [3], [4]. Some interesting categorical and algebraic results
concerning semigroup congruences on partial groups (semilattices of groups) whose
arrows are epimorphisms have been developed in [6] and [7]. In the present work we
establish for partial groups (new) generalization of two remarkable theorems in
groups. The first of those theorems is the Jordan Holder Theorem of composition
series which is known to hold in every abelian category (see, e.g. [8]).

We devote the second section of this paper for developing the theorem for the
category of partial groups, which is certainly non abelian category. This has required
generalizing all the needed definitions and results, such as Dedekind modular law, the



114 M. El-Ghali M. Abdallah and Marwa. A. El-lithy

Schreir refinement and the second Neother isomorphism theorems. In the third section
we develop the generalized Remak decomposition theorem for partial groups.

2- Preliminaries

In this section, we prepare the ground by the needed definitions and results
concerning partial groups cited from [1], [2]. Our reference in groups is [10], and for
semigroups in general we refere to [9]. Also, unless stated otherwise, S will denote an
arbitrary semigroup and E(S) will be the set of all idempotents in S, that is all xe S
such that x? = xx = x.

Definition 2.1: Let xe S. An element e€ S is called a partial identity for x if ex =
xe = x,and if e’ x =xe = xfor some e €S,thenee =e e = e. A partial
identity of x, when exist is unique and idempotent. It will be denoted by e,.

Definition 2.2: Let xe S and suppose that the partial identity e, of x exists. An
element ye S is called a partial inverse of x if xy=yx =e,and ye, = e,y =

y.A partial inverse of xe S, when exists, is unique and will be denoted by x 2.

Proposition 2.1: S is a completely regular semigroup if and only if e, and x~1 exist
for every xeS.

Definition 2.3: S is called a partial group if the following axioms hold. For all, ye S ;
e (PGl) e, and x lexist,

e (PG2) ey, = eye, that is, the mapping, e; S — S,x — ey, is a
homomorphism (of semigroups),

e (PG3) (xy)™! = y~t x71, that is, the mapping, is: S = S,x » x~
homomorphism.

1 is an anti

Proposition 2.2: Let S be a partial group. Then
e Every idempotent in S is its own partial identity and partial inverse,
e e;l=r¢e,=(e,) forall xeS,
o (x 1™ = x for all xeS.

Definition 2.4: Let S be a partial group. A subset B of S is a subpartial group of S
written B < S if B is a subsemigroup of S and e,,x ! are in B for all xeB. In
particular, S and E(S) are subpartial groups of S for every partial group S.

Definition 2.5: Let xe S and 7 be partial groups. A mapping ¢: S—T is a
homomorphism (of partial groups) if it is a homomorphism as a mapping of
semigroup. That is, if @(y)= e(x)p(y) for every x,yeS. Monomorphism,
epimorphism, isomorphism, etc of partial groups are defined in the usual manner. In
particular, if ¢: S —7 is a monomorphism of partial group, then it is called an
empedding. If p: S—T is an isomorphism then S and T are called isomorphic, written
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S=T. If p: S—T is a homomorphism of partial groups, then image of ¢, denoted by
Img and defined by Img = {p(x): xe S} is clearly a subpartial group of 7 and ¢ is
epimorphism if and only if Img= T.

Proposition 2.3: Let ¢: S—7 be a homomorphism of partial groups. Then, for all,
x€e S, we have

b gp(ex) = €p(x)»

° p(xH)=(p)) "

By the well known Clifford theorem (see [9]) a Clifford semigroup (i.e. a regular
semigroup with central idempotents)is precisely a strong semilattice of groups. Some
other characterizations of a Clifford semigroup exist in literatures (e.g. a completely
regular inverse semigroup, a semilattice of groups,...etc).In [1] the axioms PG1, PG2
and PG3 allowed to characterize a partial group as a Clifford semigroup, or
equivalently a strong semilattice of groups.If S is an arbitrary partial group, then S'is a
(disjoint) union of its (maximal) subgroups S = U,es S, 1s the maximal subgroup of
§ with identity e, In essence we have S, = {yeS; e, = e,}. It follows that S, = §, iff
ex = e,. Inparticular S, = S, _for all xeS.

Theorem 2.1: The following statements about a semigroup S are equivalent:

e Sis a partial group,

S is a completely regular inverse semigroup,
S is a Clifford semigroup,

S is a semilattice of groups,

S is a strong semilattice of groups.

According to the above structure theorem (of strong sort), a partial group S viewed
as a strong semilattice of groups may be written in the form S =g[E(S); S; ¢, ] where
E(S) is the semilattice of idempotents (partial identities) in S with the usual partial
ordering, e <f'iff ef = fe = e, Syis the maximal subgroup of S with identity £, and for /'
> g in E(S), ¢; ¢ is the homomorphism of groups ¢ 4: S = S, x - gx. The
operation in S may be given by the structure mappings as follows. If, ye S, say xeS,
and y = Sy Then xy = ¢, orx - @1 ory. Throughout the rest of this section S denotes an
arbitrary partial group and E(S) denotes the set of all partial identities (idempotentes)
in S.

Definition 2.6: A subpartial group B of S is called wide if E(S) € B and normal,
written B<S, if it is wide and xBx~1CB for all xe S. Evidently, E(S)< S, and we call
E(S) the trivial normal subpartial group of S.

Proposition 2.4: If K is a normal subpartial group of S, then K,_is a normal subgroup
of S, forall xe S.

Definition 2.7: Let ¢: S = T be a homomorphism of partial groups. Then k-kernel of
@, or simply k-kergp, is the subset of S, k-kerp= {xe S: ¢p(x) = e for some ee E(7)}.
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Proposition 2.5: If ¢p: S—7 is a homomorphism of partial groups, we have

o k-kerp = {xe S: p(x) = p(e:) = ey =ker(kerp)},

e k-kerp is a normal subpartial group of S,

e Ifp is a monomorphism then k-kerp = E(S),

e If ¢ is a homomorphism of groups, then k-kerp=kerp is the usual group-

theoretic kernel of ¢.

Here kerg is the usual kernel of ¢, that is kergp = {(x, y)eS*S: p(x) = ¢(y)}, which
is a congruence on S.(cf[9]). On the other hand, the kernel of any congruence on (a
semigroup) S is the subset of S; ker p= {x€ S: x p e for some eeE(S)} (cf.[9]).

Proposition 2.6: If is a congruence on S, then S/p={xp: xeS} with the usual operation
xp- yp = xyp, is a partial group, called the quotient partial group induced by p.
Moreover, e,,= eyp and (xp) ™! = x1p for all xe S.

Theorem 2.2: Let K be a normal subpartial group of S. Define pr= {(x,y)e Sx S: e,
=e,and x 'y € K}.Then
e p;is an idempotent separating congruence on S and K =kerp; = k-ker(p}),
where pif : S—S/p is the natural homomorphism,
o xpi=xK,, for all xe S,

o K=(E(S))pc=Ule.px: e E(S)}.

Theorem 2.3: For every idempotent separating congruence p on S there exists a
normal subpartial group K of S with K =kerp = E(S)p and p= px.

If K is a normal subpartial group of S, we denote the quotient partial group S/pi by
S/K, where py is the unique idempotent separating congruence on S associated with K
(Theorems 2.2, 2.3 above). We refer to S/K as the quotient of S by K.

Lemma 2.1: Let 4 and K be respectively wide and normal subpartial groups of S.
Then

e AK = KA and this is a wide subpartial group of S,

e A and K are respectively wide and normal subpartial groups of AK,

e If A is also normal, then AK = K4 is normal subpartial group of S.

The following is a second Noether isomorphism theorem for partial groups.

Theorem 2.4: Let A and K be respectively wide and normal subpartial groups of S.
Then

e The mapping y: A—AK/K, a—aK,, is an epimorphism of partial groups with
k-kery=ANK,

e There exists a unique isomorphism a: 4/ANK—AK/K of partial groups such
that the following diagram commutes
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3-Composition series and The Jordan-Holder theorem for partial group
In this section we extend the definitions and the well-known results concerning
refinements and composition series in (- groups to Q-partial groups.

Definition 3.1: A right operator partial group is a triple (S, 2, a) consists of a partial
group S, a set Q the operator domain and a function a: SxQ—S, (x, w))~x” which is
an endomorphism of S for each weQ). We then refer to S as an Q-partial group.

An operator partial group is a generalization of a partial group, since any partial
group can be regarded as an operator partial group with empty operator domain.

Concepts such as Q-subgroups and homomorphisms of Q-groups can be extended
analogously to Q-partial groups. In particular, if K is a normal Q-subpartial group of
an Q-partial group S, then by Theorem 2.2 (ii), the quotient partial group S/K becomes
an Q-quotient partial group with (x  )“=x" . Some examples of Q-groups can

be extended to partial groups. For instance, if S is a partial group we may take the
operator domain € the set of all endomorphisms of S acting on S in the obvious way.
Similarly, we may take Q the set of all automorphisms of S or the set of all inner
automorphisms of S, where an inner automorphism of S induced by an element se S is
the mapping s": S—S, defined by s°( ) = s (this is the conjugate of by s). In
this last example, a subpartial group K of the Q -partial group S is an Q-subpartial
group of S if and only if for all € K and se S, s°( ) € K, that is if and only if SE
K, if and only if K is a normal subpartial group of S.

In the following definitions and results, unless stated otherwise, S denotes an
operator partial group with operator domain. When no confusion exists, we will
denote E(S) by E.

Definition 3.2(Q2-series): A chain of Q- subpartial groups £ = S <51 < ....<5,= S is
called an Q-series in S. The S; are the terms of the series and the quotient partial
groups Sii; /S; are the factors of the series. If all the S; are distinct, the integer / is
called the length of the series. A subpartial group which is a term of at least one Q-
series is said to be Q-subnormal in S.When Q is empty; we shall simply speak of a
series and a subnormal subpartial group. If, for instance, QO =InnS (the set of all inner
automorphisms of S), the terms of an Q-series are normal in S and we shall speak of a
normal series, etc.
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Definition 3.3 (Refinements): In S there always exists at least one Q-series, namely
E <S. If R and T are Q-series of S, we call R a refinement of T if every term of T is
also a term of R. If there is at least one term of R which is not a term of 7, then R is a
proper refinement of 7.

We now extend the Dedekind modular law in groups (cf [10]) to partial groups.
For Q-partial groups, the proof is essentially the same.

Lemma 3.1: Let B, C and L be wide subpartial groups of a partial group with C<S L.
Then (BNL)C = (BC)L.

Proof: That (BNL)C< (BC)NL is clear. Let xe (BC) NL, say x = bc for some be B and
ce C with bce L Then bc = [, for some /e L and so we have be.= bcc™t=Ic™le LCC
L. Since B is wide, e. € B, whence be. € B(\L: Thus x = bc = b(e.c) = (be.)ce (BMNL)C.
Thus (BC) NL<S (BNL)C. The result follows.

Before establishing the Zassenhaus Lemma for Q-partial groups, we prepare the
ground by some more technical lemmas.

Lemma 3.2: Let 4 and B be wide Q-subpartial groups of S such that A<B. Then for
any wide Q-subpartial group C of S, we have CNA<CNB.

Proof: Clearly both CNA4 and CNB are wide Q-subpartial groups of S and CNA is a
wide Q-subpartial group of CNB. Let yeCNB and xeCNA. We must show that yxy !
€ CNA. Since A<B, we have yxyle A. Since x and y are in C and C< S, we have
yxy~teC. It follows that yxy~te CNA. Hence CNA<CNB.

Here we give a complete proof of Lemma 5.7, [2] for Q-partial groups.

Lemma 3.3: Let 4 and K be respectively wide and normal Q-subpartial groups of S.
Then AK = KA and this is a wide Q-subpartial group of S.
e 4 is a wide Q-subpartial group of AK and K is a normal Q-subpartial group of
AK.

e If A is also normal, then AK = K4 is a normal subpartial group of S.

Proof: (i) Clearly E(S) € AKNKA. By normality, sK = Ks for all seK. Let x, ye AK
say x = a1ki, y = axk, for some aj, a, € A and ki, k; € K. We have xy = a\kiaxk, =
araxkzky = ajazrks € AK (k3, kye K) Since E(S)g ANK, we have E(S) = E(S)E(S)E AK.
For any ae A, ke K, we have(ak) =k ~a ' =a "1 k € AK (ki€ K). Thus AK is a
wide subpartial group of S Since 4 and K are Q-subpartial groups of S, we have for
aed, ke K and weQ, (ak)” = a“k” € AK. Hence AK is also an Q-subpartial group of S.
Letx = ake AK. Since K<S, we have ak = kjae KA. Hence AKE KA. Similarly,
KACAK. Thus AK = KA and (i) follows.

(i) Since E(S) €K, we have A€ AK and so A is a wide Q-subpartial group of AK.
Similarly, K is a wide Q-subpartial group of AK. For any akeK (ae A4, k €K), ki €K,
and by the normality of K, we have (ak)k; (ak)™! = akk; (k ~*a 1) = ak (kik ~1)
a 1= ak (k _1k2) a 1= akk _1k2a 1= akza 1= aa _1k3 = eak3 ek (kz, k3 eK and K is
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wide). This proves that K is a normal Q-subpartial group of AK. The last assertion of
(i1) follows similarly.

Lemma 3.4: Let B and C be wide Q-subpartial groups of S such that B<C. Then BK<
CK for every normal Q-subpartial group K of S.

Proof: By lemma 3.3 (i), BK = KB and CK = KC are wide Q-subpartial groups of S.
Whence BK is a wide Q-subpartial group of CK. To show that BK is normal in CK, let
x = bkieBK and y = ck; eCK (for some beB, ceC, ki, k» eK). We have yxy 1= ck, (bki)
kz_lC_1 = cky (bk]kz_l) c 1= C(kzbk3) c 1= C(kzb) k3C_1= C(b1k4)k3C_1=C(b1k4k3) ¢!
=ch, (ksC_l) = (Cb]C_l)k6 € Bke¢ © BK (since B<C, k3 = k]kz_le K ki, ks, keeK,
b1eB).This proves that BK is normal in CK.

We now give a version of the Noether second isomorphism theorem (cf.
Theorem2.4) in terms of Q-partial groups and Q2-homomorphisms which is needed for
the proof of Zassenhauss lemma of Q-partial groups.

We begin by some technicalities.

Lemma 3.5: Let S be an Q-partial group. Then for all weQ and xeS, we have

o (e)” = eyo,
° (x—l)w — (xw)—l'

Proof: (i) We have x“(e,)® = (xe,)® = x®, similarly(e,)“x® = x“. Suppose
thatyx® = x?y = x®, for some yeS. Theny(e,)® =y(xx 1)® =yx®(x 1)® =
X©(x1)® = (xx~1)® = (e,)®. Similarly, (e,)®y = (e,)®. Whence, (,)® = e o.
(i) We have x@(x 1) = (xx )® = (e,)® = e 0. Similarly, (x"1)x® = e .
Also, exo(x D) = (e)?(x 1) = (e,x~1)® = (x~)®. Similarly, (x")®e 0 =
(x~H®. Hence (x®)™1 = (x 1)

Lemma 3.6: Let K be a normal Q-subpartlal group of an Q-partial group S. Then the
natural homomorphism(epimorphism) pff:  S—S/K, x xK,, is an Q-
homomorphism.

Proof: For every wmeR and xeS, we have, by using Lemma 3.5 (i), (pfx)® =
(XK, )® = xK(eyo = x“K,_,, = piix®. The result follows.
The proof of the following theorem follows immediately by using Lemma 3.6.

Theorem 3.1: [Second Noethor Isomorphism Theorem for Q-Partial Groups]
Let 4 and K be respectively wide and normal Q-subpartial groups of an Q-partial
group S. Then
e The mapping v: A—AK/K, a—aK,, is an Q-epimorphism of Q-partial groups
with k-ker y= ANK,
e There exists a unique Q-isomorphism
a: A/ANK —AK/K of Q-partial groups such that the following diagram commutes.
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Theorem 3.2: [Zassenhaus’s Lemma for Q-Partial Groups]
Let 4, A», By and B; be wide Q-subpartial groups of an Q-partial group S such that 4,
<A and By <B». Let D;j= A4; NB;. Then

o A,Dy <A1D22, and B1D1y <B1D»).

e The partial groups A1D2/A1D»; and B1D,,/B1D; are Q-isomorphic.

Proof: (i) We have B, <B; implies by lemma 3.2, that

Aanl<Aanz (1)
Similarly
A]ﬂBzQAanz (2)

Applying lemma 3.4 with § = 4, and K = A4;, we obtain by (1)

Al(Aanl)QAl(Aanz), similarly B](AlnBz) <B](Aanz). That is A]Dzl < A1D22, and
BlDlz <B]D22.
(i) Applying the second Noether isomorphism theorem of Q-partial groups (Theorem
31) with § = A]Dzz, A= D22 and K = A1D21 noticing by (1) above that K=A1D21<A1D22
= §, we obtain at once the following Q- isomorphism of Q-partial groups
Dzz/DzznAlDzl2QD22A1D21/A1D21. By Lemma 3.3 (l) we have AK = K4 = A1D21D22 =
A1Dy; and by using the modular law for Q-partial groups (Lemma 3.1), we can easily
obtain KNA4 = D1,D,; whence the abave isomorphism gives,

Dyy/D12D21=* 41D5/A1Ds; 3)

Applying again the second isomorphism theorem (Theorem 3.1) with S = B1Dy,, 4
= Dy and K = B1D;;, we can obtain the following isomorphism

Dyy/D12Dy1 = BiD1y/B1D1> 4)

From (3) and (4) we obtain the desired isomorphism and the proof is complete.

Definition 3.4 (Isomorphic Series): Two Q-series R and T of an Q-partial group S
are said to be Q-isomorphic if there is a bijection from the set of factors of R to the set
of factors of 7 such that corresponding factors are Q-isomorphic.

We can now use Zassenhaus’s Lemma for Q-partial groups (Theorem 3.2) to
establish the partial group analogue of the fundamental Schreier Refinement Theorem
in groups ([10], 3.1.2).

Theorem 3.3: [ The Schreier Refinement Theorem for Q-Partial Groups]
Any two Q-series of an Q-partial group possess Q- isomorphic refinements.



Composition Series and Decompositions of Partial Groups 121

Proof: Let E(S) = Hy <H; <....<H;= § and E(S) = Ky <K, <.....<K,, = S be two Q-
series of S. Define H; = H(H+ NK), i =0, 1, ..., -1, j =0, ..., m and
Ki=K{(HiNKj+1), i=0, 1, ...., [, j=0, ....., m-1. Applying Theorem 3.2 with 4, = H,, A,=
Hii, By = K;, and B, = Kj11, we obtain, 41 (42 NB)) < 4 (4> NB,) and
Bl(AlnBz)QBl(Aanz). That 1S H,-(fb+1ﬂKj)<lfb(fb+1ﬂKj+1) and
K{(HNK;1)<K{(H;i+1NKj11). That is Hj<Hjj1, Kij<Ki+; and
A1(A>NB3)/A1(4:NB))~="B1(4:NB2)/Bi(A,NBy).

That is Hy1/H;="K;1/K;. Hence the series {H;/ i=0, 1, ...., -1, j=0, ....., m} and
{Ki/i=0, 1, ..., j=0, ..., m-1} are Q-isomorphic refinements of {H;/i=0, 1, ...., [}
and {K/j=0, ...., m} respectively.

Throughout the rest of this section unless stated otherwise S stands for an arbitrary
Q-partial group.

Definition 3.5: An Q-series in S which has no proper refinements is called an Q-
composition series. If S is empty, we speak of a composition series in a partial group.

As it is known, not every group has a composition series. An example is the group
of integer Z, since every non trivial subgroup of Z is infinite cyclic. More formally if
0<H;<...<Z is a series in Z. Then H, (may be Z itself)is infinite cyclic with a
generator, say m. Thus H, =<m>= m Z. Whence for any n(#0) in Z, <nm>=nmnm Z = H
is a proper infinite cyclic subgroup of m Z = H,, and we obtain a proper refinement
0<H<H, <...< Z of the given series.

Analogously, we may construct partial groups which are not groups with no
composition series. Here is a simple example.

Example 3.1: Let S be the partial group with maximal subgroups S, Sy that is S =S,
US; E(S) = {e, f} is the semilattice e>f, where S, and Srare (disjoint) copies of Z, with
the homomorphism ¢, S. —Sbe the natural isomorphism. Let E(S) <5} <....<S,=S
be a series in S. Clearly {e}< (Si)e <(S2)e <....9(Sp)e=S. and {f}<3(S1)=($»)<....<
(Sm)r= Srare series in S, and Syrespectively. By the above discussion since S, and Srare
isomorphic to Z, we may find(assuming that (Si). and (S)); are nontrivial infinite
cyclic) the following two proper refinements of S. and Sy respectively
{e} H(51)e<(82)e Q... ASm)e=Se, {f} H(S1)(852)Q....2(Sim)r= Sy such that H, and
Hjyare infinite cyclic and isomorphic. Let H = H, UHybe the partial group with E(H) =
{e;f- e>f}. Thus H is clearly a subpartial group of S and E(S)<H<S,<...<5,=S is a
proper refinement of the given series of S. Whence S has no composition series. In
general, we may conclude that any partial group S whose maximal subgroups are
isomorphic copies of Z with the connecting maps the natural isomorphisms has no
composition series.

Definition 3.6: A non trivial Q-partial group S (that is S # E(S)) is said to be Q-
simple if it has no proper non trivial normal Q-subpartial groups.

By Propositions 2.3 and 4.1 in [2], [ see also, section 2, Theorem 2.2 (ii) in this
paper], it follows immediately that if K is a normal subpartial group of a partial group
S, then every subpartial group of the quotient partial group S/K must be a quotient
partial group H/K for some subpartial group H of S with K<H. These remaks hold as
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well for Q-partial groups. We can now establish the Q-partial group analouge of 3.13
in [10]. Again S stands for an arbitrary  -partial group.

Lemma 3.7: An Q-series in S is an Q-composition series if and only if all its factors
are QQ-simple.

Proof: Let £(S)<S:<...< .5, = S be an Q-series in S and suppose that not all its factors
are Q-simple. Whence there is a factor say S;+1/S; (for some j) which is not Q-simple.
Thus there is a non trivial normal subpartial group K of S;11/S;. By the above remaks,
we have K = H/S; for some proper Q-subpartial group H of Sy with S; <. H = Sj1.
Since K = H/S;is normal in Sj1/S;, we must have H is also normal in Sj+. Then S; <. H
<.Sj+1. It follows that the given series has a proper refinement E(S5)<S:<....<S;
<H<S;419....95,, = S and so the series is not an Q-composition series. This proves the
only if part. Conversely, let an Q-series in S be not a composition series. Then it has a
proper refinement. Whence for some consecutive terms K<L in the series there exists
a proper normal Q-subpartial group H of L with K<H and K #H. It follows that H/K
is a proper non trivial normal Q-subpartial group of L/K. Thus the factor L/K is not Q-
simple and the proof is complete.

Here we give our main result in this section, namely a Jordan-Holder Theorem for
Q-partial groups.

Theorem 3.4: If R is an Q-composition series and 7 is any Q-series of the Q-partial
group S, then 7 has a refinement which is a composition series and is Q-isomorphic
with R. In particular, if 7' is a composition series it is Q-isomorphic with R.

Proof: According to Theorem 3.3, there exist Q-isomorphic refinements, say, R'and
T' of R and T respectively. Since, by definition, R has no proper refinement, we must
have R = R',and so T’ is Q-isomorphic to R. It follows that any factor of T’ is Q-
isomorphic to the corresponding factor of R. Whence, by Lemma 3.7, all factors of T’
are Q-simple and again by Lemma 3.7, T' is an Q-composition series isomorphic to R.
In particular, if 7 is a composition series, then its refinement T’ which is isomorphic
to R is itself 7. The result obtains.

Recall that a partially ordered set is a pair (P, <) (or simply P), where P is a set
and < is a binary relation in P which is: reflexive (a< a for all a €P), antisymmetric
(a< b and b <a =a= b) and transitive (a< b and b< ¢ = a< ¢). If ACS P, then an
element m €A is a maximal element of 4, if ae A and m< a implies m = a. The
partially ordered set R is said to satisfy the maximal condition if each nonempty
subset 4 of P has a maximal element. Also we say that P satisfies the ascending chain
condition if there does not exist an infinite properly ascending chain p;<p, <.... in P.
Evidently these two properties of P are identical. The minimal condition and the
descending chain condition can be defined dually. Maximal and minimal conditions
can be considered on any family of sets viewing as a partially ordered set by set
theoretic inclusion (). In particular we consider these conditions on the family of all
subnormal Q-subpartial groups of an Q-partial group S. As in groups, the maximal
and minimal conditions on that family may be denoted by max-Qs and min-Qs
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respectively. It is known that in an Q-group G, max-Qs and min-Qs are equivalent to
the existence of an Q-composition series [cf.[10], 3.1.5]. We conclude this section by
extending that result to Q-partial groups.

Theorem 3.5: An Q-partial group S has an Q- composition series if and only if it
satisfies max-Qs and min-Qs.

Proof: Let S have an Q-composition series of length /, and suppose, however that
there exists an infinite properly ascending chain K; <K, <... of subnormal subpartial
groups of S. Considering the chain £ < K; < K, <...<Kj, every K;, being Q-
subnormal in S, is also Q-subnormal in K;+; (by Lemma 3.2). Again by Lemma 3.2,
the given chain can be made into an Q-series of S by inserting terms of a suitable Q-
series between K; and K11 and between K;1; and S. Obviously, the length of the
resulting series, and hence of any of its refinements is at least /+1, and so a refinement
of this series isomorphic to our composition series cannot exist. A contradiction with
Theorem 3.4. Thus § must have max-Qs. Similarly, S has min-Qs. Conversely,
suppose that G has max-Qs and min-Qs but does not have an Q-composition series.
Hence S # E(S), and we may apply max-Qs to the set of proper subnormal Q-
subpartial groups of S and obtain maximal member, say S;. By maximality, S; is
normal in § and S/S; is Q-simple. Since S has no Q-composition series, the set of
proper subnormal Q-subpartial groups of S; is non empty, otherwise E(S)<S51<95,=S
would be a composition series, contradicting our assumption. Whence we may apply
again max-Qs to this set and obtain a maximal proper member, say S,. Again S is
normal in Sj, §1/5, is Q-simple and S, #E(S). As this process cannot terminate, we
obtain an infinite descending chain of Q-subnormal subpartial groups ...<S, <S; <Sp =
S, a contradiction to min-Q2s.

4-Some Decompositions of Partial Groups

In this section we introduce the notion of decomposability of Q-partial groups in a
way that allows to extend the direct decomposition of Q-groups known as Remak
decomposition to Q-partial groups. The (Remak) theorem on Q- groups that relates
the existence of a Remak decomposition to the minimal condition on Q-direct factors
is generalized to Q-partial groups. Our reference on direct decomposition and Remak
decomposition of Q-groups is [10].

Lemma 4.1: Let S be an Q-partial group and let H and K be wide Q-subpartial groups
of S. Let H(® K = U H, XK, where H, xK, is the usual product of the (maximal)
groups H, and K.,. Then H O K is an Q-partial group with a semilattice of
idempotents E O E = {(e, e): eeE} and structure maps; for (e, e) > (f, f) (i.e. €>f) ¢,
o), (¢ n: Hex Ke =Hy XKy (h, k)y>(@e, o, @e, or k) = (B, kf). Moreover H © E = Ueeg
H,x{e} and E O K = U {e}*xK,are normal Q-subpartial groups of H © K.

Proof: It is easy to show that HO K, so defined, is actually a partial group with the
desired semilattice of idempotents and structure mappings. That HO K is also an Q-
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partial group follows at once uppon defining for (4, k) eHO K, weQ, (h, k)” = (h*,
k“). The proof of the other assertions is straight forward.

Definition 4.1: The Q-partial group H O K constructed in Lemma 4.1 is called the
(external) direct product of the Q-partial groups H and K.

Lemma 4.2: Let H and K be normal Q-subpartial groups of the Q-partial group S.
Suppose that there exists an Q-isomorphism y: S —H(Q® K. Then we have:
e H=y 1 (HOE)and K'=¢~1 (E © K) are normal Q-subpartial groups of

S,

e H'NK'=E,

e Every element xeS, can be uniquely expressed as a product x = hk with heH
and keK,_,

e For each e€eFE, S, is the (internal) direct product of the Q-subgroups H,, and K,
That is S, = H, XK, for every e€eFE.

Proof: Part (i) follows from the hypothesis and Lemma 4.1. Likewise, y is an
isomorphism gives H'NK'= Y 1 (HOENY ' (EOK) =y 1 ((HO E)N(EOK))=
Y 1(E® E) = E, which proves (ii). Let xeS, there exist eeE, heH,, keK, such that y(x)
= (h, k), ex=9P (e, e). We have (h, e) € HOE and (e, k) € EQ K and so y'(h, e) €
H,_and Y~Y(e, k) € K;_. Setting h' = y'(h, e) and k' =9 (e, k), we obtain x=1p~1(h,
k) =Y Y((h, e)O (e, k) =Y~1(h, e) Y~1(e, k) = h'k’. On the other hand, suppose
that 1k, = hok, for some hy, hy €H!, and ki, k» €K, for some e€E. Thus h,'hk, = h
'hyky, which gives ki = hky, where h = hi'h, €H'. Again, kik;'= hkok;*. Thus k = h,
where k = kik; ' € K'. It follows that ~=keH'NK'=Eand so h =k = e. Thus e = h{'h,
that is 4, =h, Similarly, k&; = k. Thus (iii) follows. The proof of (iv) follows
immediately from (i), (ii) and (iii), since for any subpartial group K of S, we have
K<S implies K, <8, for every ee E (cf. Proposition 2.4).

Definition 4.2: If H and K are normal Q-subpartial groups of S, satisfying (ii) and (iii)
(and hence (iv) in Lemma 4.2) we say that S is the (internal) direct product of H and
K.

The converse of the Lemma 4.2 is also true. That is if the Q-partial group S is the
internal direct product of the normal Q-subpartial groups H and K, then S is
isomorphic to the direct product H® K. Formally, we have

Theorem 4.1: Suppose that S is an Q-partial group and H and K are normal Q-
subpartial groups of S such that the conditions (ii) and (iii) (and hence (iv)) of Lemma
4.2 hold. Then S is Q-isomorphic to the direct product HO K.

Proof: For each e€ E, S, is the internal direct product of the normal Q-subgroups H,
and K.. Hence S, is Q-isomorphic to the direct product H.x K.. Since H.*xK, =
(HOK), and the mapping E—-EQE, e(e, e) is (Q-) isomorphism of semilattices, it
follows by Lemma 4.2.[6] that S and HOK are (Q-) isomorphic.
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Actually, we may construct a proof of Theorem 4.1 that does not depend on
Lemma 4.2 [6], by defining explicitly the desired isomorphism. Formally, we may
define a mapping y: S—HQOK as follows, for each xeS, there exist unique heH, and
k €K, with x = hk. Define y(x)=(h, k). To show that y is (2-) homomorphism, let x,
yeS have the unique products x = hiky and y = hoky with hy €H,, ki €K, _and hy €H,,
k2€Ke,. Then, we have hikihokz= hi(hsky)k: for some kie K, where khr=hzk;.
Thus ey, = eye;s Or ey, = eyye;-1 and hoki ki '=kihoky " €l (by normality of H) say
hokiki' = hyfor some hseH, whence eykiki' =h;'h; € HNK =E (by(ii)).
Then ey k1ki' = ey, ki which gives ey, ki = ey, ki. We have ey, ki = e,y k; and so
exykik, = exykiky = kik,. Therefore

Yxy) = ¢((h1h2)( kikz)) =y (h1h2 (exy kikz)) = ¢((h1h2)( k1k2)) =
(hihy, kiky) = (hy, ki) © (hy, ky) = p(x)Y(y).Hence w is a homomorphism.
Clearly y is one-to-one and onto.

In view of Lemma 4.2 and Theorem 4.1, an Q-partial group S is isomorphic to the
(external) direct product HOK if and only if S is the (internal) direct product of H'
and K'as defiend in Lemma 4.2. If one of those two equivalent statements holds, we
shall identify H with H”” K with K’ and S with HOK, and refer to S simply as the
direct product of the Q-(sub)partial groups H and K. Formally, we shall write SSHOK
to indicate that S is the (internal) direct product of the normal Q-subpartial groups H
and K. This product can be generalized naturally to any family of (normal) Q-partial
groups.

Throughout, unless stated otherwise, S stands for an arbitrary Q-partial group.
Recall that a subpartial group H of S is proper if H # S, and non trivial if H # E(S).

Definition 4.3: A wide Q-subpartial group H of S is called an Q-direct factor of S if
there exists a wide Q-subpartial group K such that S = HOK, K is then called an Q-
direct complement of H in S. If there are no proper non trivial Q-direct factors of S,
then S is called Q-indecomposable (or just indecomposable if Q= ¢). If § is not Q-
indecomposable it is called Q- decomposable.

Definition 4.4: We call a wide Q-subpartial group H of S essentially proper
(appreviated ess. proper) if H, is a proper subgroup of S, for all eeE(S), and essentially
non trivial (abbreviated ess. non trivial) if H. is a non trivial subgroup of S, for all
eeE(S). That is H is ess. proper if He # Se for all eeE and ess. non trivial if He #
{e} for all e € E. If there are no ess. proper ess. non trivial Q-direct factors of S, then
we say that S is essentially Q-indecomposable (abbreviated ess. Q-indecomposable).
Again if 2 = ¢ we speak of essentially indecomposable (ess. indecomposable).
Clearly, S is (€2-) indecomposable implies that S is ess.(Q2-) indecomposable. If S is
not ess.(Q2-) indecomposable, that is if there is some ess. proper ess. nontrivial (Q-)
direct factor of S, then S is called ess.(€2-) decomposable. Again, we clearly have:

If § is ess.(Q2-) decomposable, then S is (Q-) decomposable. From, the definition,
it follows clearly that, if § = HOK for some (Q-)subpartial groups H and K, then H is
ess. proper ess.non trivial if and only if K is ess. proper ess. non trivial. Evidently an
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ess. proper subpartial group is necessarily proper, but the converse is not true. To
show this we can (and do) construct a variety of examples.

Example 4.1: Let S be a partial group with ¢, s a monomorphism but not an
isomorphism for some e, feE with e>f. Let H be the subpartial group of S such that H,
= S, for all geE with g # f and H;= ¢, S. = f S.. Since ¢, ris monomorphism we
have Hyis a proper subgroup of Sybut H,=S,, Vg # f. Thus H is a proper subpartial
group of S but not ess.proper.(For instsnce if § = S, U Sy with e>f, S.=2Z, Sy~ Z, and
@e, r1s the usual emppeding 2Z < Z, then H =2 ZU2 Z is a proper subpartial group of
S but not ess.proper).

As in the case of Q-groups, it is obviouse that every Q-simple partial group is Q-
indecomposable, whereas the converse is not true, that is Q-indecomposable partial
groups need not be simple. Here is a simple example.

Example 4.2: For any prime p, let S, =Z, and Sy=Z,z, be disjoint isomorphic copies
of Z, and Z,2 respectivly. Let S be the partial group § = S, USy with semilattice e>f,
and structure map ¢, 1 S, —Sythe natural empedding. Clearly each of S, = Z,, and §;=
Z,2 is indecomposable (see also later results) and hence also ess.indecomposable, but
clearly S is not simple. (Actually H=Z,UZ,, is a non trivial normal subpartial group of
S).

The inheritance of ess.(Q -) decomposability (ess.(QQ -) indecomposability)
between S and its maximal subgroups may be formalized as follows.

Theorem 4.2: We have
e S is ess.(Q-) decomposable if and only if S, is (2-) decomposable for every
eek(S),

e Sis ess.(Q-) indecomposable if and only if S, is (2-) indecomposable for some

eeE(S).

Proof: (i) Suppose that S is ess.(Q2-)decomposable. There exists ess.non trivial
ess.proper wide (€2-) subpartial group H of S such that S = HO K, for some (Q-)
subpartial group K of S, (and so, as shown earlier, H and K are necessarily normal in
S). Now let e€E(S). We have S, = H,xK,. By assumption H, #{e} and H, <.S. and so
Se is (©2-) decomposable. This establishes the only if part of (i). Conversely, suppose
that S, is (Q2-) decomposable for every e€E(S). Thus for each e, there exists a non
trivial proper normal (Q-) subgroup, say H. of S such that S, = H.xK,, for some say
(Q-) subgroup K, of S.. We have H, #{e} & K, #S.and H.= S, & K. #{e}. Whence
K. #{e} and K, # S.,. Now set H = Uer H.. For e> f in E(S), we have a
homomorphism ¢,  S. —S; x-xf; which may be viewed naturally as a
homomorphism ¢, » H.x K. —H XK, (h, k) = (hf, kf), where for any xeH, *x K., say x
= hek, (unique product), with 4.€eH, and k.€K., we have h.k, eH, <k.=e by uniqueness
of products. Thus xeH, implies that x=h. ee H,*K.and ¢, (x) = hf eHr. Whence, ¢, /
S.—Srinduces a homomorphism ¢, » H. —Hy; x—xf(for all e> f'in E). Thus H = Uk
H, is a wide ess.nontrivial ess.proper (Q2-) subpartial group of S. This holds similarly
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for if we define K=U.K,. The construction of H and K implies clearly, that S =
HQOK, and hence that § is ess.(Q2-)decomposable. This completes the proof of (i).
(i1) By taking the contrapositives of the two conditionals in (i), the bicoditional in (ii)
follows at once.

We now give the partial group analogue of the known result in Q-groups (cf.[10],
3. 3.1) concerning minimal and maximal conditions on Q-direct factors. As usual S
denotes an Q-partial group. In the next result the set of all Q- direct factors of S is
viewed as a partially ordered set with set theoretic inclusion € as the partial ordering.

Theorem 4.3: The maximal and minimal conditions on Q-direct factors of S are
equivalent properties.

Proof: Let S satisfy the minimal condition on Q-direct factors and let £ be a
nonempty set of Q-direct factors of S. Let F be the set of all Q-subpartial groups of S
which are direct complements of at least one element of L. By assumption, F has a
minimal element N and so S = MON for some MeL. If M is maximal in £, the result
obtains, otherwise, there exists M; €L such that M is a proper Q-subpartial group of
M, (in notation, M<M;) and so S=M;(ON; for some N,eF. By the definition of the
operation (O, we obtain M= MiNS = MiIN(MON) = (Ueet Mi.) NUeer(M,*N,)
=UeegUeer (M1N(M%XN,)) = Ueer (M*x (M1NN,)) = MO(M,NN) whence with the
same procedure, S=M1ON1=Ueep(M1.xNi.) =Ueep(Me XN X(M1.NN,))
=MON, O M NN). Intesrecting with N gives, N = N,O(MON), where
No=(MO N1)NN. Hence, S = MO N = (M O(MiNN)) ©ONo= MO M. Thus N, €F
and so N>=N by the minimality of N in £. Consequently, N< M (ON,and hence N, <
M.,x Nj. for all ee E. Thus, S = MON =Ueg (M, XN,). Now, S, = M.xN,
=M, *(M,*Ni.) = M.xNj,, for all eeE. Equivalently, SSM(ON, which gives S =M(O M
= Mi(ON;. Again by the very definition of the product (Oand since M< M, it follows
immediately that M = M, and hence M is not a proper subpartial group of M, a
contradiction. Therefore, M must be maximal in L. This proves that if S satisfies the
minimal condition on Q-direct factors, then it satisfies the maximal condition on those
factors. A similar argument can be constructed to establish the opposite direction.

In (Q-)groups the equivalent maximal and minimal conditions on direct factors
lead naturally to a certain kind of decomposition the so called "Remak
decomposition" (cf.[10], 3.3.2). In view of Theorem 4.3, one may excepect extension
of that result to (Q2-)partial groups. First we give a definition.

Definition 4.5: An Q-partial group S is said to have a Remak decomposition if it can
be expressed as a direct product of finitely many nontrivialQ-indecomposable
subpartial groups.

Theorem 4.4: If the Q-partial group S has the minimal condition on direct factors, it
has a Remak decompositon.

Proof: Assume that the hypothesis holds, but S has no Remak decomposition. Thus,
in particular, § cannot be Q-indecomposable and so S must be decomposable.
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Accordingly, the set £ of all proper nontrivial Q-direct factors of S is non empty,
whence there is some minimal element S; of £ which then induces an Q-
decomposition S=S1OH;. By minimality, S; is Q-indecomposable. This with the
assumption that S has no Remak decomposition implies clearly that H; cannot be Q-
indecomposable. Hence H; must be Q-decomposable. Also, H; inherits the minimal
condition form § and the above argument applying now to H; yields an Q-
decomposition H,=S:OH, >S,, with §; Q- indecomposable and S = S1OS:OH..
Repetition of this procedure yields an infinite descending chain H, >H, >.... of Q-
direct factors of S, which cannot exist by the assuming minimal condition. So, S has a
Remak decomposition.
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