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Abstract

In this paper, we suggest a second order Backward Differentiation Formula (BDF-2)
for solving stiff systems of Ordinary Differential Equations (ODEs) using piecewise
uniform mesh instead of uniform mesh. The proposed method reduces the error and
average error and improve the accuracy over BDF-2 with uniform mesh. Numerical
examples validate our claim.
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1 Introduction

Numerical solutions for ODEs are very important in scientific computation, as they

are widely used to model real world problems. In this paper, we are concerned with

the numerical solution of Initial Value Problems (IVPs) for first-order ODEs of the

form

{u'(t)+a11(t)u(t)+a12(t)v(t> = 1), O
V (1) +ay (tu(t) +a, (t)v(t) = f,(t)

with given initial values

u®=A,v(0)=8B )

The function g;(t) for i, j =1,2 of (1) satisfy the following inequality

1 65L04, 65L05, 65L15, 65L50, 34A12, 34A09, 34A30
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Forall | a; (t) [>>1,fori, j=1,2. wheret € (0,1]
The linear system (1) - (2) is said to be stiff if
(i)Re(4) <0, i=1,..,n and

(if) max; | Re(4) | >> min, |Re(4,)| where A, are the eigenvalues of stiff ODEs,

n is the number of equations in the system and the ratio
SR = mfaxi |real partof A |,i =12..n 3)
min, | real partof 4 |
is called the stiffness ratio or stiffness index.
Problems involving rapidly decaying transient solutions occur naturally in a wide
variety of applications, including the study of spring and damping systems, the
analysis of control systems, and problems in chemical kinetics, fluid dynamics,
quantum mechanics, electrical networks, etc. These are all examples of a class of
problems called stiff (mathematical stiffness) systems of differential equations.
Stiff systems are considered to be difficult because explicit numerical methods
designed for non-stiff problems need to be used with very small step sizes. In the
quest for better methods for solving these systems, Curtiss and Hirschfelder [5]
discovered the BDF. Since then, a great effort has been made in order to obtain new
numerical integration methods with strong stability properties desirable for solving
stiff systems.
The first use of BDF methods appears to date back to Curtiss and Hirschfelder (1952),
although they were not given that name at the time. Later, Henrici [9], in Section 5.1-
4 of his book, discussed "methods based on differentiation". The methods were
dismissed by Henrici because they are "less accurate than the corresponding Adams-
Moulton formula". For non-stiff equations this is a valid point. For stiff systems, the
value of BDF lies in their superior stability properties which allow them to take much
larger stepsizes than would be possible with explicit methods.
We are concerned with the BDF-2 which is a linear multistep method. The focus of
this paper is to extend the BDF-2 method with piecewise uniform mesh.
For a detailed discussion on stiff nature, application, implicit methods and BDF-2
with uniform mesh of stiff system of ODEs, one may refer to [1, 2, 5, 6, 7, 8, 9, 10,
11, 13, 14, 16, 17, 20, 21, 22] and the thesis [3], to name a few.
The idea of Shishkin mesh have been done by G. I. Shishkin. A Shishkin mesh is a
piecewise uniform mesh. What distinguishes a Shishkin mesh from any other
piecewise uniform mesh is the choice of the so-called transition parameter(s), which
are the point(s) at which the mesh size changes abruptly. This type of piecewise
uniform mesh allows fast updating of the iteration matrix after a stepsize or order
change. Other studies on piecewise uniform mesh are discussed by several researchers
such as C. Clavero, J. L. Gracia and F. Lisbona [4], Kailash C. Patidar [12], J. J. H.
Miller, E. O’ Riordan and G. I. Shishkin [15], Natalia Kopteva and Eugene O’
Riordan [18]. As in [23] and [24], the focus of this paper is to improve the
performance of the BDF-2 method by applying it in a piecewise uniform mesh
(Shishkin mesh).
The rest of the paper is organized as follows: In section 2, we briefly summarize the
BDF-2 scheme. In section 3, we present the description of piecewise uniform mesh. In




Numerical Solution of Stiff System by Second Order Backward Difference Formula 3037

section 4, we briefly discuss the local truncation error of the method. In section 5, we
show the accuracy of our method. Finally, in section 6 we present some concluding
remarks.

2 BDF-2 piecewise uniform mesh
Approximating the equations (1) and (2) by applying the BDF-2 method we have

4 1 2h
Ui :§uj _guj—l+?[f1(tj+l’uj+l)]
4 1 2h
Via :Evj _§Vj~l+?[f2(tj+livj+1)] 4)

where j=1to(N —1) and N is the number of mesh point.
From (4), u;,; and v, are determined implicitly. The new solution approximation
needs to be computed iteratively, typically by an explict Euler method
U, =u; +hfy(t;,u;)
Vi =V +hf, () where j=0to(N —1) (5)

In the next section, the description of piecewise uniform mesh is presented.

3 Description of piecewise uniform mesh
A piecewise uniform mesh is constructed on the interval [0,1] as follows:

: s 1 .
Choose a point o satisfying 0< O'SZ and assume that N =2" with m>12. The

point o is called a transition point and it divides the interval [0,1] into the two
subintervals [0,0] and [o,1].

In stiff problems the solution may have an brief initial transient as the fast modes
settle, followed by a longer period where it is the behaviour of the slow modes that
dominate. In this latter phase, the fast modes are still present in the system even if
they are not visible in the solution. Since the solution has fast varying component in
the neighbourhood of t =0, it is natural to have more number of mesh points in the
neighbourhood of t=0. This will give a better information about the solution near
t=0.

Therefore the piecewise uniform mesh is constructed by dividing [0, o] into 7 equal

mesh elements and [o,1] into % equal mesh elements.

The piecewise uniform mesh is used with the following location of the transition point

o= min{%,g InN}. (6)
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Assume that the parameter & as

g<%, where M = min{a,,(t),a,,(t),a,,(t),a,,(t)}, forall te(0,1], (7)
and
t; = jh, where h :%, j:O(l)%,
4(1-0)
3N

(®)

tj:a+(j—%)h2 where h, = | j:(%+1)(1)N.

IfO':% then h, =N"and h, =N,

In such a case the method can be analysed using the standard techniques. We
therefore assume that

o =é&nN 9)
The above scheme will give less error and less average error of the solution if the stiff
ratio lies between 400 to 1000.

4 The local truncation error
In general, u(t;,,) is the exact value and u,,, is the approximate numerical value and

the local truncation error at the point t;,,, in the BDF-2 with uniform mesh is

T, =u(t,,)-u, wherej =0,1..N -1

Ut~ U+ SU )~ (G )

=U(t;.) - S1U(0) P ) +h—22u" (t,.0) —“—;u” (t,.2)]
L) -2 ) -2 ) - S - A )

=>Ta= Chsu"'(tm)
Applying the BDF-2 with piecewise uniform mesh,

The truncation error for 0 < j s%—l is
Tj+1 = u(tj+1)_uj+1
4 1 2
= Ut U )+ () - 2 (U0)
4 ' 2 3
= u(tj+1)_§[u(tj+1)_h1u (tj+1)+hl?u (tj+1)_%u (tj+1)]

L0206, 42 () - ) 2 )
= Tj+1 = Chl3u"' (tj+l)
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The truncation error for %S JESN-1is

Tj+1 = u(tj+1) - U j

= U(t,) -~ U(E)+ Ut ) “Zfaﬁyuaﬁo>
=u(t,,,) - gmaﬁo B () + U ()~ amn
L0020 (.0 + 200 2 (0P ()

j+1 - Ch2u (tj+l)
Therefore, the truncation error for BDF-2 with piecewise uniform mesh is
. N
Chiu'(t,,) for 0<j sz—l
N

T.a=1Chiu'(t,,) for PR
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(10)

Similarly, the truncation error for the second component vV can be easily derived.

we define || Y ||,=sup{Ju® ®)|,|v® ) [} forall te(0,1].
Let

h® = max(h’,h,%)

Then,

Ta(h)<Ch* Y,

where||Y [l,=sup{Ju” |,|v" [} forall te(0,1].

Hence, by the definition given as in [11], the order of convergence of BDF-2 with

piecewise uniform mesh is two.

5 Numerical example

In this section, we present some numerical results to illustrate the performance of our
method. The numerical results of BDF-2 with piecewise uniform mesh will be

compared with uniform mesh.

The comparison is based in terms of maximum error and average error. The numerical

results are recorded interms of the following quantities and tabulated
As the formula given in [ 19] for uniform mesh we have,

(-2
N

, where b is the end value of t and a is the mitial value of't.

The calculation of error (for piecewise uniform mesh and uniform mesh) is given as,

errorj :| u(tj)(exact solution) _uj(approximaa) |
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For maximum error (MAXE) (for piecewise uniform mesh and uniform mesh), we
use the formula,

MAXE" = max(error;)
The average error for BDF-2 with uniform mesh is defined as,

N
Zh error,
AVE=J%
(b-a)

where b is the end value of t and a is the mitial value of't.

The average error(AVE) for BDF-2 with piecewise uniform mesh is defined as,
N

)
> (error;)
AVEl=12
o
h
4
N
> (error,))
avE2="at
- (-0
3n,
4

AVE = max{AVE1, AVE2}

Example 5.1

u’(t) =998u(t) +1998v(t)

V/(t) = -999u(t) —1999v(t) Vte[0,1],

u(0)=1,v(0) =1.

The exact solution is given by the sum of two decaying exponentials components
u(t) = 4et -3

v(t) = —2et +3e710%%

The stiffness ratio is 1:1000.

After a short time the solution can be closely approximated by the dominant terms as

u(t) =4e’

v(t) =-2e™

since the fast decaying component vanished. Therefore, instead of taking uniform step
size through out the interval, we consider the piecewise uniform mesh. In piecewise

. N . . .
uniform mesh, the first 7 interval having very small step size h, (compared to h,),

. . .. 3N . . .
the fast decaying component may vanish. The remaining 2 interval with step size
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h,, may dominate the slow active components. This technique surely reduced the

error and average error of the solution which is shown in the Table 1.

The numerical results obtained by applying the piecewise uniform mesh method (6),

(7) and (8) to the example—5.1 are given in Table 1 and 2.

Table 1: Value of MAXE(u),AVE(u) for the solution component u for the Example

5.1

Table 2: Values of MAXE(v),AVE(v) for the solution component v for the

MESH

MAXE(u)

AVE()

4096

piecewise
uniform mesh

0.13418e-004

0.32758e-008

uniform mesh

0.52804e-001

0.12892e-004

8192

piecewise
uniform mesh

0.65503e-004

0.79959¢-008

uniform mesh

0.14639¢-001

0.1787e-005

16,384

piecewise
uniform mesh

0.45725e-004

0.27908e-008

uniform mesh

0.38700e-002

0.23621e-006

32,768

piecewise
uniform mesh

0.25907¢-004

0.79062¢-009

uniform mesh

0.99612¢-003

0.30399¢-007

65,536

piecewise
uniform mesh

0.13662e-004

0.20846e-009

uniform mesh

0.25277e-03

0.38569e-008

1,31,072

piecewise
uniform mesh

0.69862¢-005

0.5330e-010

uniform mesh

0.6367e-004

0.48576e-009

Example 5.1
N MESH MAXE(v) | AVE(v)
piecewiseuniformmesh | 0.6545e-005 | 0.1598e-008
4096 uniform mesh 0.2640e-001 | 0.6446¢-005
piecewiseuniformmesh | 0.3278e-004 | 0.4001e-008
8192 uniform mesh 0.7319e-002 | 0.8935¢-006
piecewiseuniformmesh | 0.2287¢-004 | 0.1396e-008
16,384 uniform mesh 0.1935e-002 | 0.1181e-006
piecewiseuniformmesh | 0.1296e-004 | 0.3954e-009
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32,768 uniform mesh 0.4981¢-003 | 0.5120e-007
piecewiseuniformmesh | 0.6831e-005 | 0.1042e-009
65,536 uniform mesh 0.1264¢-003 | 0.1929¢-008
piecewiseuniformmesh | 0.3493e-005 | 0.2665e-010
1,31,072 uniform mesh 0.3184e-004 | 0.2429¢-009
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Figure 1:

For the example-5.1 with N :1,31,072,8:§18 the solution obtained by the

suggested numerical method is displayed in Figure-1. Here U, V and u, v represents
the numerical and exact solution respectively.

Example 5.2

u’(t) =1195u(t) —1995v(t)

V/'(t) =1197u(t) —1997v(t) Vte][0,1],

u(0) =1,v(0) =1.

Exact solution of the above problem is

u(t) = 10e —8e

v(t) = —6e7 +8e7°"

The stiffness ratio is 1:400.

The numerical results obtained by applying the piecewise uniform mesh method (6),
(7) and (8) to the example—5.2 are given in Table 3 and 4.
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Table 3: Value of MAXE(u),AVE(u) for the solution component u for the Example

5.2

N

MESH

MAXE(u)

AVE(u)

4096

piecewiseuniform mesh

0.71173e-003

0.17376e-006

uniform mesh

0.70797e-001

0.17284e-004

8192

piecewiseuniform mesh

0.96129¢-004

0.11734e-007

uniform mesh

0.17862e-001

0.21804¢-005

16,384

piecewiseuniform mesh

0.60188e-004

0.36736e-008

uniform mesh

0.46062¢e-002

0.28114e-006

32,768

piecewiseuniform mesh

0.39257e-004

0.1198e-008

uniform mesh

0.11751e-002

0.3586e-007

65,536

piecewiseuniform mesh

0.22714e-004

0.34659¢-009

uniform mesh

0.29707e-003

0.45329¢-008

1,31,072

piecewiseuniform mesh

0.12231e-004

0.93315e-010

uniform mesh

0.74703e-004

0.56994¢-009

Table 4: Value of MAXE(v),AVE(v) for the solution component u for the Example

5.2
N MESH MAXE(v) [AVE(v)
piecewiseuniformmesh | 0.4279¢-003 | 0.1045¢-006
4096 uniform mesh 0.4248e-001 | 0.1037e-004
piecewiseuniformmesh | 0.5781e-004 | 0.7057e-008
8192 uniform mesh 0.1072¢-001 | 0.1308¢-005
piecewiseuniformmesh | 0.3614e-004 | 0.2206e-008
16,384 [ yniform mesh 0.2764¢-002 | 0.1687¢-006
piecewiseuniformmesh | 0.2356e-004 | 0.7190e-009
32,768 | uniform mesh 0.7051e-003 | 0.2152¢-007
piecewiseuniformmesh | 0.1363e-004 | 0.2080e-009
65,536 | uniform mesh 0.1782¢-003 | 0.2720e-008
piecewiseuniformmesh | 0.7339e-005 | 0.5599¢-010
1,31,072 | yniform mesh 0.4482¢-004 | 0.3420e-009
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For the example-5.2 with N :1,31,072,8:$ the solution obtained by the

suggested numerical method is displayed in Figure-2. Here U, V and u, v represents
the numerical and exact solution respectively.

6 Conclusion

We have suggested a BDF-2 for solving stiff system of ODEs on piecewise uniform
mesh. The numerical results shows that the BDF-2 with piecewise uniform mesh is
more efficient than BDF-2 method with uniform mesh.
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