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Abstract  

 
In this paper, we suggest a second order Backward Differentiation Formula (BDF-2) 
for solving stiff systems of Ordinary Differential Equations (ODEs) using piecewise 
uniform mesh instead of uniform mesh. The proposed method reduces the error and 
average error and improve the accuracy over BDF-2 with uniform mesh. Numerical 
examples validate our claim. 
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1 Introduction 
Numerical solutions for ODEs are very important in scientific computation, as they 
are widely used to model real world problems. In this paper, we are concerned with 
the numerical solution of Initial Value Problems (IVPs) for first-order ODEs of the 
form 
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with given initial values 
BvAu =(0)  ,  =(0)  (2) 

The function 1,2=,   )( jifortaij  of (1) satisfy the following inequality 
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The linear system (1) - (2) is said to be stiff if 
(i) niRe i 1,...,=0,<)(  and 
(ii) |)(| ii Remax   |)(| ii Remin  where 

i
 are the eigenvalues of stiff ODEs, 

n is the number of equations in the system and the ratio  
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is called the stiffness ratio or stiffness index. 
Problems involving rapidly decaying transient solutions occur naturally in a wide 
variety of applications, including the study of spring and damping systems, the 
analysis of control systems, and problems in chemical kinetics, fluid dynamics, 
quantum mechanics, electrical networks, etc. These are all examples of a class of 
problems called stiff (mathematical stiffness) systems of differential equations. 
Stiff systems are considered to be difficult because explicit numerical methods 
designed for non-stiff problems need to be used with very small step sizes. In the 
quest for better methods for solving these systems, Curtiss and Hirschfelder [5] 
discovered the BDF. Since then, a great effort has been made in order to obtain new 
numerical integration methods with strong stability properties desirable for solving 
stiff systems. 
The first use of BDF methods appears to date back to Curtiss and Hirschfelder (1952), 
although they were not given that name at the time. Later, Henrici [9], in Section 5.1-
4 of his book, discussed "methods based on differentiation". The methods were 
dismissed by Henrici because they are "less accurate than the corresponding Adams-
Moulton formula". For non-stiff equations this is a valid point. For stiff systems, the 
value of BDF lies in their superior stability properties which allow them to take much 
larger stepsizes than would be possible with explicit methods. 
We are concerned with the BDF-2 which is a linear multistep method. The focus of 
this paper is to extend the BDF-2 method with piecewise uniform mesh. 
For a detailed discussion on stiff nature, application, implicit methods and BDF-2 
with uniform mesh of stiff system of ODEs, one may refer to [1, 2, 5, 6, 7, 8, 9, 10, 
11, 13, 14, 16, 17, 20, 21, 22] and the thesis [3], to name a few. 
The idea of Shishkin mesh have been done by G. I. Shishkin. A Shishkin mesh is a 
piecewise uniform mesh. What distinguishes a Shishkin mesh from any other 
piecewise uniform mesh is the choice of the so-called transition parameter(s), which 
are the point(s) at which the mesh size changes abruptly. This type of piecewise 
uniform mesh allows fast updating of the iteration matrix after a stepsize or order 
change. Other studies on piecewise uniform mesh are discussed by several researchers 
such as C. Clavero, J. L. Gracia and F. Lisbona [4], Kailash C. Patidar [12], J. J. H. 
Miller, E. O’ Riordan and G. I. Shishkin [15], Natalia Kopteva and Eugene O’ 
Riordan [18]. As in [23] and [24], the focus of this paper is to improve the 
performance of the BDF-2 method by applying it in a piecewise uniform mesh 
(Shishkin mesh). 
The rest of the paper is organized as follows: In section 2, we briefly summarize the 
BDF-2 scheme. In section 3, we present the description of piecewise uniform mesh. In 
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section 4, we briefly discuss the local truncation error of the method. In section 5, we 
show the accuracy of our method. Finally, in section 6 we present some concluding 
remarks. 
 

 

2 BDF-2 piecewise uniform mesh 

Approximating the equations (1) and (2) by applying the BDF-2 method we have 
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where 1)(to1 = Nj  and N is the number of mesh point. 
From (4), 

1ju  and 
1jv  are determined implicitly. The new solution approximation 

needs to be computed iteratively, typically by an explict Euler method 
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In the next section, the description of piecewise uniform mesh is presented. 
 

 

3 Description of piecewise uniform mesh 

A piecewise uniform mesh is constructed on the interval [0,1] as follows: 

Choose a point  satisfying 
4

1
<0  and assume that 12     2= mwithN m . The 

point  is called a transition point and it divides the interval [0,1] into the two 
subintervals ][0,  and ,1][ . 
In stiff problems the solution may have an brief initial transient as the fast modes 
settle, followed by a longer period where it is the behaviour of the slow modes that 
dominate. In this latter phase, the fast modes are still present in the system even if 
they are not visible in the solution. Since the solution has fast varying component in 
the neighbourhood of 0=t , it is natural to have more number of mesh points in the 
neighbourhood of 0=t . This will give a better information about the solution near 

0=t . 

Therefore the piecewise uniform mesh is constructed by dividing ][0,  into 
4

N  equal 

mesh elements and ,1][  into 
4

 3 N  equal mesh elements. 

The piecewise uniform mesh is used with the following location of the transition point 

}. ,
4

1
{min= lnN  (6) 



3038  B. Sumithra A. Tamilselvan 

Assume that the parameter  as 
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If 
4

1
=  then 1

1 = Nh  and 1

2 = Nh . 

In such a case the method can be analysed using the standard techniques. We 
therefore assume that 

lnN=  (9) 
The above scheme will give less error and less average error of the solution if the stiff 
ratio lies between 400 to 1000. 
 
 

4 The local truncation error 

In general, )( 1jtu  is the exact value and 
1ju  is the approximate numerical value and 

the local truncation error at the point 
1)( jt  in the BDF-2 with uniform mesh is 
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Applying the BDF-2 with piecewise uniform mesh, 

The truncation error for 1
4
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The truncation error for 1
4

Nj
N  is 
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Therefore, the truncation error for BDF-2 with piecewise uniform mesh is 
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Similarly, the truncation error for the second component v  can be easily derived. 
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Hence, by the definition given as in [11], the order of convergence of BDF-2 with 
piecewise uniform mesh is two. 
 
 

5 Numerical example 

In this section, we present some numerical results to illustrate the performance of our 
method. The numerical results of BDF-2 with piecewise uniform mesh will be 
compared with uniform mesh. 
The comparison is based in terms of maximum error and average error. The numerical 
results are recorded interms of the following quantities and tabulated 
As the formula given in [19] for uniform mesh we have, 

,
)(

=
N

ab
h  where b is the end value of t and a is the initial value of t. 

The calculation of error (for piecewise uniform mesh and uniform mesh) is given as,  
|)(=| )()  ( eapproximatjsolutionexactjj utuerror . 
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For maximum error (MAXE) (for piecewise uniform mesh and uniform mesh), we 
use the formula, 

NMAXE  =  )(max jerror  
The average error for BDF-2 with uniform mesh is defined as, 
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where b is the end value of t and a is the initial value of t. 
The average error(AVE) for BDF-2 with piecewise uniform mesh is defined as, 
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Example 5.1 

)(1998)(998=)( tvtutu  
)(1999)(999=)( tvtutv  [0,1],t  

1.=(0)1,=(0) vu  
The exact solution is given by the sum of two decaying exponentials components 

)(tu  =  tt ee 100034  
tt eetv 100032=)( . 

The stiffness ratio is 1000:1 . 
After a short time the solution can be closely approximated by the dominant terms as 

tetu 4=)(  
tetv 2=)(  

since the fast decaying component vanished. Therefore, instead of taking uniform step 
size through out the interval, we consider the piecewise uniform mesh. In piecewise 

uniform mesh, the first 
4

N  interval having very small step size 1h (compared to 2h ), 

the fast decaying component may vanish. The remaining 
4

3N  interval with step size 
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2h , may dominate the slow active components. This technique surely reduced the 
error and average error of the solution which is shown in the Table 1. 
The numerical results obtained by applying the piecewise uniform mesh method (6), 
(7) and (8) to the 5.1example  are given in Table 1 and 2. 
 
Table 1: Value of )(),( uAVEuMAXE  for the solution component u  for the Example 

5.1 

 

N MESH MAXE(u) AVE(u) 
 

4096  meshuniform

piecewise

  
 

0.13418e-004 0.32758e-008 

meshuniform  0.52804e-001 0.12892e-004 
 

8192  meshuniform

piecewise

 

 
 

0.65503e-004          0.79959e-008 

meshuniform  0.14639e-001 0.1787e-005 
 

16,384  meshuniform

piecewise

 

 
 

0.45725e-004 0.27908e-008 

meshuniform  0.38700e-002 0.23621e-006 
 

32,768  meshuniform

piecewise

 

 
 

0.25907e-004 0.79062e-009 

meshuniform  0.99612e-003 0.30399e-007 
 

65,536  meshuniform

piecewise

 

 
 

0.13662e-004 0.20846e-009 

meshuniform  0.25277e-03 0.38569e-008 
 

1,31,072 meshuniform

piecewise

 

 
 

0.69862e-005 0.5330e-010 

meshuniform  0.6367e-004 0.48576e-009 
 
Table 2: Values of )(),( vAVEvMAXE  for the solution component v  for the 

Example 5.1 

 

N MESH MAXE(v) AVE(v) 
 

4096  
meshuniformpiecewise    0.6545e-005 0.1598e-008 

meshuniform  0.2640e-001 0.6446e-005 
 

8192  
meshuniformpiecewise    0.3278e-004 0.4001e-008 

meshuniform  0.7319e-002 0.8935e-006 
 

16,384  
meshuniformpiecewise    0.2287e-004 0.1396e-008 

meshuniform  0.1935e-002 0.1181e-006 
 meshuniformpiecewise    0.1296e-004 0.3954e-009 
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32,768  meshuniform  0.4981e-003 0.5120e-007 
 meshuniformpiecewise    0.6831e-005 0.1042e-009 

65,536  meshuniform  0.1264e-003 0.1929e-008 
 

1,31,072 
meshuniformpiecewise    0.3493e-005 0.2665e-010 

meshuniform  0.3184e-004 0.2429e-009 
 

 
 

Figure 1: 
 
 

For the example-5.1 with 
998

1
=1,31,072,=N  the solution obtained by the 

suggested numerical method is displayed in Figure-1. Here U, V and u, v represents 
the numerical and exact solution respectively. 
 
Example 5.2 

)(1995)(1195=)( tvtutu  
)(1997)(1197=)( tvtutv  [0,1],t  

1.=(0)1,=(0) vu  
Exact solution of the above problem is 

)(tu  =  tt ee 8002 810  
tt eetv 8002 86=)( . 

The stiffness ratio is 400:1 . 
The numerical results obtained by applying the piecewise uniform mesh method (6), 
(7) and (8)  to the 5.2example  are given in Table 3 and 4. 
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Table 3: Value of )(),( uAVEuMAXE  for the solution component u  for the Example 

5.2 

 
N MESH MAXE(u) AVE(u) 
 
4096  

meshuniformpiecewise    0.71173e-003 0.17376e-006 
meshuniform  0.70797e-001 0.17284e-004 

 
8192  

meshuniformpiecewise    0.96129e-004 0.11734e-007 
meshuniform  0.17862e-001 0.21804e-005 

 
16,384  

meshuniformpiecewise    0.60188e-004 0.36736e-008 
meshuniform  0.46062e-002 0.28114e-006 

 
32,768  

meshuniformpiecewise    0.39257e-004 0.1198e-008 
meshuniform  0.11751e-002 0.3586e-007 

 
65,536  

meshuniformpiecewise    0.22714e-004 0.34659e-009 
meshuniform  0.29707e-003 0.45329e-008 

 
1,31,072 

meshuniformpiecewise    0.12231e-004 0.93315e-010 
meshuniform  0.74703e-004 0.56994e-009 

 
Table 4: Value of )(),( vAVEvMAXE  for the solution component u  for the Example 

5.2 

 
N MESH MAXE(v) AVE(v) 
 
4096  

meshuniformpiecewise    0.4279e-003 0.1045e-006 
meshuniform  0.4248e-001 0.1037e-004 

 
8192  

meshuniformpiecewise    0.5781e-004 0.7057e-008 
meshuniform  0.1072e-001 0.1308e-005 

 
16,384  

meshuniformpiecewise    0.3614e-004 0.2206e-008 
meshuniform  0.2764e-002 0.1687e-006 

 
32,768  

meshuniformpiecewise    0.2356e-004 0.7190e-009 
meshuniform  0.7051e-003 0.2152e-007 

 
65,536  

meshuniformpiecewise    0.1363e-004 0.2080e-009 
meshuniform  0.1782e-003 0.2720e-008 

 
1,31,072 

meshuniformpiecewise    0.7339e-005 0.5599e-010 
meshuniform  0.4482e-004 0.3420e-009 
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Figure 2: 

 

 

For the example-5.2 with 
1195

1
=1,31,072,=N  the solution obtained by the 

suggested numerical method is displayed in Figure-2. Here U, V and u, v represents 
the numerical and exact solution respectively. 
 
 

6 Conclusion 

We have suggested a BDF-2 for solving stiff system of ODEs on piecewise uniform 
mesh. The numerical results shows that the BDF-2 with piecewise uniform mesh is 
more efficient than BDF-2 method with uniform mesh. 
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