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Abstract 

 
Several variations of meta-heuristics have been developed recently and each 
of them claims to outperform others. Through this paper we are going to do 
the comparative study of three methods, each of them has its origin in Von 
Neumann’s Monte Carlo experiments. We have tested these methods with 
certain benchmark test problems and some new test functions introduced by 
us first time. 
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Methods 
(I) GA: This method is based on the Darwanian principle of survival of fittest 
introduced by Holland[3] . A population based method does the random selection of 
individuals. The selection scheme used here is tournament selection with suffling 
technique for choosing random pairs for mating. This routine includes jump mutation 
& creep mutation whichever is suitable and there is an option for single point 
crossover or uniform crossover. Niching(Sharing) option is also used. 
 
(II) Modified RPSO- PSO(Particle Swarm Optimization) was introduced in 1995 by 
Kennedy and Eberhart [4] . It was inspired by the swarming behaviour as it is 
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displayed by the flock of bird, a school of fish and even human social behaviour being 
influenced by other individual. 

The repulsive particle swarm optimization is a variant of PSO was being 
introduced to overcome the pre-mature convergence. The modification of basic PSO 
scheme is to modify the velocity update formula when the swarm diversity becomes 
less then the a fixed value (i.e. dlow) The velocity is updated by the formula 
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where, 
• x is the position and v  is the velocity of the individual particle. The subscripts 

i  and 1i + stand for the recent and the next (future) iterations, respectively. 
• 1 2 3, ,r r r  are random numbers, [0,1]∈ ; , ,α β γ  are constants 

• ω  is inertia weight, [0.01,0.7]∈ ; z  is a random velocity vector 

• x̂  is the best position of a particle; hx  is best position of a randomly chosen 

other particle from within the swarm 
Here the algorithm allows each swarm is allowed to search one step left and right, 

up and down. In the improved RPSO we allow the swarm to search at least fifteen 
step left and fifteen step right. This improves the performance of RPSO in many of 
the test function. 
 
(III) Modified-Simulated Annealing: It is a global optimization method that 
distinguishes between different local minima introduced by Kirkpatrick, Gelatt  and 
Vecchi [5]. Starting from the initial point, the algorithm takes a step and function is 
evaluated. When minimizing a function, any down hill step is accepted and the 
process repeats from this new points. The uphill decision is made by the metropolis 
criteria. Optimization process proceeds, the length of the steps decreases and 
algorithm closes in the global optima.        

 
Test Functions 
Brief Note of  Test Functions  
The objective of this paper is to present a comparative study of the performance of the 
Genetic algorithm and Repulsive particle swarm and Simulated Annealing methods 
on some bench mark numerical test functions [7] and some new test functions 
introduced first time [6]. These functions are difficult in nature. We present the new 
test functions in detail. We have given the graphical presentation of new test  
functions to understand the nature of difficulty.  

 
Experiments 
Algorithms used for the comparative study were Genetic Algorithm, Improved-
Repulsive Particle swarm Optimization & Simulated Annealing. For all algorithms 
the dimensions were set to be adjustable, thus based on few preliminary experiments. 
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(I)  Genetic algorithms: We have used  and input file to pass the different parameters 
i.e. npopsiz=5, pcross=.9d0, npsibl1=(2*N N= powers of 2) pmutate=0.02d0 and 
maxgen=200. Another params.f was included in the main program having three 
parameters population size=200, nchrommax=60 and nparamax=10. other two 
parameters are adjustable according to the dimensions of the problems. 
 
(II) Modified-RPSO setting: RPSO have several parameters population size=40, In 
most of the cases n=30 works fine. Its value can be increased up to 50 to 100. A 
randomly chosen neighbors NN=31. The maximum no of decision variables  
MX=100, The Local search for this Improved RPSO has been increased up to 21,  
NSTEP=21, Number of iteration was set 1000. 
Here the algorithm allows each swarm is allowed to search one step left and right, up 
and down. In the improved RPSO we allow the swarm to search at least ten step left 
and ten step right. This improves the performance of RPSO in many of the test 
function.  
 
(III) Modified SA : The parameter T is very crucial in using the SA. Other 
parameters N is the dimension of the function can be changed from the parameter 
statement N=?. VM step length. T is imposed upon the system with the RT variable 
by T(I+1) = RT*T(i). The RT value was set 1.5  
In a traditional SA for different random seed, result were different. So, we modified 
the program to save the optimum value in a particular iteration by setting the extra 
variable ffopt, and indexopt to get the particular iteration which gave the value of 
ffopt. We got these value printed. This we called it as Modified SA.   
 
(IV) Numerical bench mark test function: For evaluating the three algorithms, we 
used 40 bench mark test functions and some of them given in the result table. 

 
Ackley function: An m − variable ( 1m ≥ ) function with search domain 
[ 15 30]ix− ≤ ≤  for  ( 1, 2,...,i m= )  given as  
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is called the Ackley function. It is a multi-modal function. The global minimum of 
this function is *( ) 0f x =  for * (0,0,...,0).x =  
 
Easom function: This function is in 2 variables ( 2m = ) with search domain 

[ 100 100]ix− ≤ ≤ ; ( 1,2i = ) and *( ) 1f x = −  at * ( , ).x π π=  It is given as 
2 2

1 2 1 2( ) cos( )cos( )exp[ ( ) ( ) ]f x x x x xπ π= − − − − − . 

 
Griewank function: It is a typical multi-modal function with a large number of local 
minima in the search domain [ 600 600]ix− ≤ ≤ , 1, 2,...,i m=  and global minimum 

*( ) 0f x = at * (0,0,...,0).x =  It is given as 
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Booth Function: A 2 − variable ( 2m = ) function with search domain 
[ 10 10]ix− ≤ ≤ ; ( 1,2i = )  given as. 

2 2
1 2 1 2( ) ( 2 7) (2 5)f x x x x x= + − + + −  

This function is multimodal with the global minimum *( ) 0f x =  at * (1, 3)x = . 
 
Matyas function: It is a 2-variable ( 2m = ) function with search domain [ 10 10]ix− ≤ ≤ ; 

( 1,2i = ) and minimum *( ) 0f x =  at * (0, 0).x =  It is given as 
2 2
1 2 1 2( ) 0.26( ) 0.48f x x x x x= + −  

 
Weierstrass function: The Weierstrass function [in its original form, 

0
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of the most notorious functions (with almost fractal surface) that changed the course 
of history of mathematics. Weierstrass proved that this function is throughout 
continuous but nowhere differentiable. In its altered form this function in m ( 1m ≥ ) 
variables with search domain [ 0.5 0.5]ix− ≤ ≤ ; ( 1,2,...,i m= )  and the minimum *( ) 0f x =  for 

* (0, 0,...,0);x = 0.5; 3; 20a b= = =k , is given as. 
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Results 
 

Results of some benchmark test problems 
SN Functions Dim GA I-RPS SA T. Value 

1 Ackley Fun. 5 0.00000 0.000000 0.189945E-07 0 

2 Easom Fun. 2 -1.00001 -1.00000 -0.953971 -1 

3 Griewank Fun 5 0.00000 0.000000 0.0172410 0 

4 Beale Fun 5 5.45315 0.00000 0.1080137E-09 0 

5 Weierstrass Fun. 5 0.00000 0.02990 0.7513280E-08 0 

6 Booth fun 2 -20.999 0.00000 0.4368455E-09 0.000000 

7 Michalewich Fun 2 ******* -1.80130 -1.80130 -1.8013 

8 Simple Quad Fun 2 -3846.15 -3872.7 -3873.7 3873 

9 Hump Fun 2 -1.00000 -1.03162 -1.03162 -1 

10 Matya fun 2 0.00000 0.00000 0.4148318E-09 0.00000 
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Discussion  
The results clearly show that no methods are able to outperform for all the functions. 
In functions 1-3,10 three methods give the same results. Whereas for function 4 GA 
fails, 5-I-RPS fails, 6-GA fails,7-GA overflows, 8,10-Modified RPS & Modified SA 
outperforms GA, 9,11-GA outperforms Modified-RPS & Modified SA, 12-GA & 
Modified-RPS outperforms Modified SA & 13-all the three methods fails.   
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Bench mark test functions 
Ackley Function Beale Function 

 
 

Booth Function Easom Function 
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