

On semiprime, Prime and Strongly Prime $*$ -bi-ideals in Semigroup with Involution

Moin A. Ansari, M. Rais Khan and J.P. Kaushik

*Department of Mathematics, Faculty of Natural Sciences
Jamia Millia Islamia (Central University)
New Delhi-110025*

Abstract

In [1] Ahsan and Liu has characterized the prime (semiprime) ideals and right ideals for a semigroup. Furthermore G. Szasz[5] has considered semigroups in which ideals are prime. He has also shown that the ideals of a semigroup P are prime if and only if P is intra regular. In this paper we have introduce the concept of semiprime, prime and strongly prime $*$ -bi-ideals in semigroups with involution. Also we have given characterizations for involution semigroups whose bi-ideals are having all the above properties. Furthermore we have investigated their structural properties by attaching involution on their corresponding ground semigroups. For every involution semigroup S we denote $*$ -bi-ideal for bi-ideals in involution semigroup.

AMS Mathematics Subject Classification (2000): 20M10

Key words and phrases: Involution semigroups, Prime, Semiprime, Strongly prime $*$ -bi-ideals.

1. Introduction

In [1] Ahsan and Liu has characterized the prime (semiprime) ideals and right ideals for a semigroup. Furthermore G. Szasz [5] has considered semigroups in which ideals are prime. All definitions and fundamental concepts concerning semigroups and their involution properties can be found in [2] and [4]. In this section we have given related definitions based on prime, semiprime and strongly prime $*$ -bi-ideal in involution semigroups. Also we have given some examples. Throughout this paper we have assumed S with a zero element. For different notations and terminologies the reader is referred to [2]. For every involution semigroup S we denote $*$ -bi-ideal for bi-ideals in

semigroup. Let B be a $*$ -bi-ideal then $B(a)$ denote $*$ -bi-ideal generated by an element a .

Definition 1.1: [6] A $*$ -semigroup is a set S equipped with a binary operation \cdot and a unary operation $*$: $S \rightarrow S$ satisfying the following three axioms:

- (i) $(x \cdot y) \cdot z = x \cdot (y \cdot z)$
- (ii) $(a^*)^* = a^{**} = a$
- (iii) $(ab)^* = b^*a^* \forall a, b \in S$.

Such a unary operation $*$ is sometimes called an involution, and $(S, \cdot, *)$ is sometimes called an involution semigroup.

Let A be a non-empty subset of a $*$ -semigroup $(S, \cdot, *)$ then A is said to be a $*$ -subsemigroup of S if $ab \in A$ for all $a, b \in A$. Where $*$ is taken as inverse of an element. Somewhere $*$ is taken as transpose in matrix sense and somewhere it is taken as inverse in general set theoretical sense. A $*$ -subsemigroup B of an involution semigroup S is called a $*$ -bi-ideal of S if $BSB \subseteq B$ with the condition $B^* \subseteq B$ and $B^* = \{b^* \in S : b \in B\}$ [3]. It is well known that intersection of any two $*$ -bi-ideal of an involution semigroup S is a $*$ -bi-ideal and in more general way intersection of a finite number of $*$ -bi-ideal is again a $*$ -bi-ideal. Also product of any two $*$ -bi-ideal is a $*$ -bi-ideal of S .

Definition 1.2: Let B be a $*$ -bi-ideal of S then B is said to be a prime $*$ -bi-ideal of S if $B_1B_2 \subseteq B$ implies that $B_1 \subseteq B$ or $B_2 \subseteq B$, where B_1, B_2 both are $*$ -bi-ideal of S . Equivalently, $S - B$ is a $*$ -semigroup. Analogously we can say that a $*$ -bi-ideal B is completely prime if for any two $b_1, b_2 \in B$ implies that $b_1 \in B$ or $b_2 \in B$ where b_1, b_2 being the elements of S . A $*$ -bi-ideal B which is completely prime is prime.

Example 1.3: An involution semigroup S itself is always a prime $*$ -bi-ideal of S .

Example 1.4: Suppose that $S = [0, 1]$ be an involution semigroup under the $*$ operation taken as inverse of numbers between 0 and 1 with respect to multiplication (Excluding 1) where $a \in [0, 1]$. Considering an element $\frac{1}{2}$ with any other subset C_1 such that,

$S = C_1 \cup \{\frac{1}{2}\}$. Now suppose \circ denote commutative multiplication in such a way that:

$$a \circ b = \{ab, \text{ if } a \in C_1, b \in C_1\}$$

$$a \circ b = \{0, \text{ if } a \in C_1, b = \frac{1}{2}\}$$

$$a \circ b = \{\frac{1}{4}, \text{ if } a = \frac{1}{2}, b = \frac{1}{2}\}$$

Then the set $B = \{0, \frac{1}{2}\}$ is a prime $*$ -bi-ideal of S .

Example 1.5: Suppose that $S = M_{2 \times 2}(\mathbb{Z}_4)$ be the 2×2 matrix $*$ -semigroup over the semigroup \mathbb{Z}_4 . Then $P(B) = \left\{ \begin{pmatrix} a_{11} & a_{12} \\ a_{13} & a_{14} \end{pmatrix} \mid a_{ij} \in \mathbb{Z}_2 \right\}$.

Definition 1.5: Let B be a $*$ -bi-ideal of S then B is said to be a semiprime $*$ -bi-ideal of S if $\forall B_1 \in B, B_1^2 \subseteq B \Rightarrow B_1 \subseteq B$.

Definition 1.6: Let B be a $*$ -bi-ideal then B is said to be a strongly prime $*$ -bi-ideal of S if for any two $*$ -bi-ideals B_1 and B_2 of S we have,

$$B_1 B_2 \cap B_2 B_1 \subseteq B \Rightarrow B_1 \subseteq B \text{ or } B_2 \subseteq B.$$

Remarks: Every strongly prime $*$ -bi-ideal of an involution semigroup S is a prime $*$ -bi-ideal and every prime $*$ -bi-ideal is a semiprime $*$ -bi-ideal. A prime $*$ -bi-ideal is not necessarily strongly prime and a semiprime $*$ -bi-ideal is not necessarily prime.

Lemma 1.7: Now suppose that $StP(B)$ denote strongly prime $*$ -bi-ideal, $SeP(B)$ denote semiprime $*$ -bi-ideal and $P(B)$ denote prime $*$ -bi-ideal of S . Then $StP(B) \subseteq P(B) \subseteq SeP(B)$.

Proof: Suppose that B is a strongly prime $*$ -bi-ideal i.e. suppose $B \in StP(B)$. Our aim is to show that $B \in P(B)$. To that end let $CD \subseteq B$. Since B is strongly prime so $C \subseteq B$ or $D \subseteq B$. So B is prime. Which implies that $StP(B) \subseteq P(B)$. Now suppose that $C^2 \subseteq B$. Then clearly, $CC \subseteq B$ and so $C \subseteq B$. Hence B is semiprime. Finally, $P(B) \subseteq SeP(B)$. It follows from the definition itself.

Example 1.8: Consider the semigroup $S = \{0, 1, 2\}$ defined in tabular form as follows:

.	0	1	2
0	0	0	0
1	0	1	1
2	0	1	2

Here $*$ -bi-ideals of S are $\{0\}$, $\{0, 1\}$, $\{0, 2\}$ and $\{0, 1, 2\}$.

Therefore, all $*$ -bi-ideals are prime $*$ -bi-ideals and hence semiprime $*$ -bi-ideals. However, the prime $*$ -bi-ideals $\{0\}$ is not strongly $\{0\}$ prime $*$ -bi-ideals because

$$\{0, 1\} \{0, 2\} \cap \{0, 2\} \{0, 1\} = \{0, 1\} \cap \{0, 2\} = \{0\} \subseteq \{0\}.$$

Example 1.9: All $*$ -maximal ideals of involution semigroup S are strongly prime $*$ -bi-ideals.

Lemma 1.10: Let B_1 and B_2 be any two prime $*$ -bi-ideals of an involution semigroup S then $B_1 \cap B_2$ is a prime $*$ -bi-ideals then either $B_1 \subseteq B_2$ or $B_2 \subseteq B_1$.

Proof: It is clear that $B_1B_2 \subseteq B_1 \cap B_2$. Because $B_1 \cap B_2$ is prime $*$ -bi-ideals (By assumption) of S so either $B_1 \subseteq B_1 \cap B_2$ or $B_2 \subseteq B_1 \cap B_2$ and hence either $B_1 \subseteq B_2$ or $B_2 \subseteq B_1$.

Theorem 1.11: For an involution semigroup S the following assertions are true:

- (i) $B^2 = B$ for every $*$ -bi-ideal B of S .
- (ii) $B_1 \cap B_2 = B_1B_2 \cap B_2B_1$ for all $*$ -bi-ideal B_1 and B_2 of S .
- (iii) Each $*$ -bi-ideal of S is semiprime.

Proof: (i) \Rightarrow (ii) Let B_1 and B_2 be any two $*$ -bi-ideals of S . Then by our hypothesis,

$$\begin{aligned} B_1 \cap B_2 &= (B_1 \cap B_2)^2 \\ &= (B_1 \cap B_2)(B_1 \cap B_2) \\ &\subseteq B_1 \end{aligned}$$

In the similar way,

$$B_1 \cap B_2 \subseteq B_2B_1$$

$$B_1 \cap B_2 \subseteq B_1B_2 \cap B_2B_1$$

Here it is clear that B_1B_2 and B_2B_1 both are $*$ -bi-ideals being the product of $*$ -bi-ideals. Moreover $B_1B_2 \cap B_2B_1$ is also a $*$ -bi-ideals. And hence,

$$\begin{aligned} B_1B_2 \cap B_2B_1 &= (B_1B_2 \cap B_2B_1)(B_1B_2 \cap B_2B_1) \\ &\subseteq B_1B_2B_2B_1 \\ &\subseteq B_1SB_1 \\ &\subseteq B_1 \end{aligned}$$

In the same way we can have,

$$B_1B_2 \cap B_2B_1 \subseteq B_2$$

And hence we can say that,

$$B_1B_2 \cap B_2B_1 \subseteq B_1 \cap B_2$$

Therefore by above two conditions we have,

$$B_1B_2 \cap B_2B_1 = B_1 \cap B_2$$

(iii) \Rightarrow (iv). For this we let that B_1 and B_2 be any two $*$ -bi-ideals of S such that $B_1^2 \subseteq B$. Which implies by our supposition that,

$$B_1 = B_1 \cap B_1 = B_1B_1 \cap B_1B_1 = B_1^2$$

So,

$$B_1 \subseteq B.$$

Hence every $*$ -bi-ideal is semiprime.

Lemma 1.12: The intersection of family of prime $*$ -bi-ideals of a commutative involution semigroup is a semiprime $*$ -bi-ideals.

Proof: We'll show this result for two prime $*$ -bi-ideals and then generalize for family of prime $*$ -bi-ideals. Suppose that B_1 and B_2 be any two prime $*$ -bi-ideals of an involution semigroup S . Now for any $x \in S$, $x^2 \in B_1 \cap B_2 \Rightarrow x^2 \in B_1$ and $x^2 \in B_2$. Since B_1 is a prime $*$ -bi-ideal of S . Therefore, $x^2 = x \cdot x \in B_1 \Rightarrow x \in B_1$. In the same way, $x^2 = x \cdot x \in B_2 \Rightarrow x \in B_2$. Hence $x \in B_1 \cap B_2$.

Theorem 1.13: Let S be a semigroup with involution then the following assertion are true:

- (i) $(A)^2 = A$ for every $*$ -bi-ideal A of S .
- (ii) $A \cap C = AC$ for every $*$ -bi-ideals A and C of S .
- (iii) $B(a) \cap B(b) = B(a)B(b)$ for all $a, b \in S$.
- (iv) $B(a) = (B(a))^2$ for all $a \in S$.
- (v) $a \in (BaBaB)$ for all $a \in S$.

Proof: (i) is followed by (ii): Consider A and C be $*$ -bi-ideal of S . Then $AC \subseteq AS \subseteq A$ in other way $AC \subseteq SC \subseteq C$ i.e; $AC \subseteq A \cap C$. As $A \cap C$ is a $*$ -bi-ideal of S [give reference of intersection of bi-ideal in again a bi-ideal] therefore we have,

$$A \cap C = (A \cap C)^2 = (A \cap C)(A \cap C) \subseteq AC.$$

(iii) is followed by (iv): For this we consider that $a, b \in S$. Since $B(a), B(b)$ are $*$ -bi-ideal of S . Hence,

$$B(a) \cap B(b) = B(a)B(b) \text{ by (ii).}$$

(iv) is followed by (v): Straight forward.

(iv) is followed by (v): Let $a \in S$. Here $B(a) = (B(a))^2$ thus we have,

$$(B(a))^2 = (B(a))^2 B(a) \subseteq (B(a))^3 \subseteq (B(a))^3 B(a) \subseteq (B(a))^4.$$

$$\Rightarrow (B(a))^4 \subseteq (B(a))^3.$$

Therefore we have,

$$\begin{aligned} B(a) &= (B(a))^2 \subseteq (B(a))^3 \subseteq (B(a))^4 \\ &= (B(a))^4 \subseteq (B(a))^3 = (B(a))^3 \\ &\subseteq (SB(a)) \subseteq (B(a)) = (B(a)) \\ &\Rightarrow B(a) = (B(a))^3. \end{aligned}$$

In the similar way we can have,

$$\begin{aligned} (B(a))^3 &= ((a \cup Sa \cup aS \cup SaS))^2 \\ &\subseteq ((a \cup Sa \cup aS \cup SaS))^2 (a \cup Sa \cup aS \cup SaS) \\ &\subseteq (Sa \cup SaS)(a \cup Sa \cup aS \cup SaS) \end{aligned}$$

$$\begin{aligned}
& \subseteq (Sa \cup SaS)(a \cup Sa \cup aS \cup SaS) \subseteq SaS \\
\Rightarrow (B(a))^4 & \subseteq (SaS)(a \cup Sa \cup aS \cup SaS) \\
& \subseteq (SaSa \cup SaS^2a \cup SaSaS \cup SaS^2aS) \\
& = (SaSa \cup SaSaS) \\
\Rightarrow (B(a))^5 & \subseteq (SaSa \cup SaSaS)(a \cup Sa \cup aS \cup SaS) \\
& \subseteq (SaSaS).
\end{aligned}$$

And hence finally we have,

$$a \in B(a) = (B(a))^5 \subseteq (SaSaS) = SaSaS.$$

(v) is followed by (i): For this we suppose that B_1 be $*$ -bi-ideal of S . Next suppose that $x \in B_1^2$. Since B_1 is a $*$ -bi-ideal of S . Therefore, $ab \in B_1$. Further let $x \in B_1$ then by (v), $x \in (BxBxB)$. Also since, $(tx)n \in (SB_1)S \subseteq B_1S \subseteq B_1$, also $xk \in B_1S \subseteq B_1$. Therefore we have, $x \in B_1^2$ for some $t, n, k \in S$.

Theorem 1.14: Let S denote semigroup with involution and B be $*$ -bi-ideal of S then B is strongly prime $*$ -bi-ideal of S if and only if one of the five equivalent conditions of lemma 1.9 holds in S .

References

- [1] J. Ahsan and Zhongkui Liu: Prime and semiprime acts over monoids with zero, *Math. J. Ibaraki Univ.* 33, 9-15 (2001)
- [2] J. M. Howie, Fundamentals of semigroup theory, Oxford University Press, London, 1995.
- [3] K.I. Beidar, L.MÁRKI, R.MLITZ and WIEGANDT, *Primitive involution rings*, Acta Math. Hungar. 109(4) (2005), 357-368
- [4] Max-Albert Knus, Alexander Merkurjev, Markus Rost and Jean-Pierre Tigno, AMS Colloquium Publications, Vol. 44, 1998.
- [5] Szasz, G., Eine Charakteristic der Primeidealha-lbgroupen, *Publ. Math Debrecen* 17 (1970), 209-213
- [6] T.E. Nordahl and H.E. Scheiblich, *Regular $*$ -semigroups*, semigroup forum vol. 16(1978) 369-377