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Abstract

We present an elementary proof of lim sup
n→∞

cos(n) = lim sup
n→∞

sin(n) = 1,

and lim inf
n→∞

cos(n) = lim inf
n→∞

sin(n) = −1. Our approach avoids the use of
the Kronecker density theorem, equidistribution theorem, or any concepts from
Diophantine approximations, providing a more direct and accessible argument.

Given the oscillatory nature of cos(x) and sin(x), it is natural to expect that the
sequences {cos(n)}∞n=1 and {sin(n)}∞n=1 do not converge to a single limit. However,
since they are bounded within [−1, 1], their lim sup and lim inf values exist and are
finite.

The inequalities lim inf
n→∞

cos(n) < lim sup
n→∞

cos(n), and similarly for sin(n), highlights

the presence of distinct accumulation points due to their oscillatory nature. Finding the
exact values of these bounds is therefore a natural problem of interest.

Traditionally, these values are obtained using results from the Kronecker density
theorem, or Diophantine approximation. For an introduction to the Kronecker density
theorem, see [1]. For discussions on its applications to this problem, refer to the
online discussion threads [3], which includes insights from contributors like Prahlad
Vaidyanathan and André Nicholas. These approaches analyze the distribution of
sets like {a + bπ | a, b ∈ Z} and its implications for trigonometric sequences.
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In this paper, we offer an alternative elementary proof that does not rely on advanced
number-theoretic methods. Since this problem belong to real analysis, we believe
it deserves a proof grounded purely in analytical techniques. Our approach remains
accessible to readers with an advanced calculus background, where lim sup and lim inf

are typically introduced.

Elementary proofs are valuable for making mathematical results more accessible
to students and researchers unfamiliar with advanced techniques. A new or
simplified perspective can enhance understanding, particularly in educational contexts.
Furthermore, even for a well-known result, a novel method can offer fresh insights or
inspire applications in related areas. In particular, the behavior of cos(n) and sin(n) is
closely tied to the distribution of n (mod 2π) (a consequence of the irrationality of π).
Our approach sheds light on this connection in a direct and intuitive way.

To establish our main results, we first recall the following fundamental facts about the
limit superior and limit inferior of a bounded sequence.

Theorem 1. If {xn}∞n=1 is a bounded sequence, then there exists a subsequence
{xnk

}∞k=1 such that
lim
k→∞

xnk
= lim sup

n→∞
xn.

Similarly, there exists a (possibly different) subsequence {xmk
}∞k=1 such that

lim
k→∞

xmk
= lim inf

n→∞
xn.

Proof. See Theorem 2.3.4., page 75 of [2].

Proposition 1. Suppose {xn}∞n=1 is a bounded sequence and {xnk
}∞k=1 is a

subsequence. Then

lim inf
n→∞

xn ≤ lim inf
k→∞

xnk
≤ lim sup

k→∞
xnk

≤ lim sup
n→∞

xn.

Proof. See Proposition 2.3.6., page 77 of [2].

Now let us prove the limit superior of cos(n) first.

Theorem 2. lim sup
n→∞

cos(n) = 1.

Proof. The sequence {cos(n)}∞n=1 is bounded; hence lim sup
n→∞

cos(n) = a ∈ [−1, 1]

exists. Our goal is to show a ≥ 1, which will force a = 1.
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First, we prove that a ≥ 1

2
. For all k ∈ N, let uk = [2kπ] ∈ N, where [ · ] is

the nearest integer function. By the Mean Value Theorem, there exists c between uk

and 2kπ such that | cos(uk) − 1| = | cos(uk) − cos(2kπ)| = | cos′(c)(uk − 2kπ)| =
| − sin(c)| · |uk − 2kπ| ≤ 1 · 1

2
=

1

2
. Thus, by the triangle inequality, we obtain

cos(uk) ≥ 1 − | cos(uk) − 1| ≥ 1 − 1

2
=

1

2
. Applying Proposition 1, we obtain

a = lim sup
n→∞

cos(n) ≥ lim sup
k→∞

cos(uk) ≥
1

2
.

Next, by Theorem 1, there exists a subsequence {cos(nk)} such that lim
k→∞

cos(nk) = a.

Using the identity sin2(nk)+cos2(nk) = 1, we conclude that lim
k→∞

| sin(nk)| =
√
1− a2.

Thus, we have two cases

• There exists a further subsequence nkl such that lim
l→∞

sin(nkl) =
√
1− a2,

• Alternatively, lim
k→∞

sin(nk) = −
√
1− a2.

For simplicity, we assume (without loss of generality) that lim
k→∞

sin(nk) = ±
√
1− a2.

Using the sum-to-product formula, for all m ∈ N, we have cos(nk − m) =

cos(nk) cos(m)+sin(nk) sin(m). Taking limits, we get lim
k→∞

cos(nk−m) = a cos(m)±
√
1− a2 sin(m).

For all m ∈ N, since nk ≥ k, we know nk − m ≥ k − m ≥ 1 when k ≥ m + 1,
meaning that {nk − m}∞k=m+1 is a subsequence of {n}. Therefore, by Proposition 1,
the convergent subsequence {cos(nk − m)}∞k=m+1 must have its limit no greater than
a = lim sup

n→∞
cos(n). That is,

a cos(m)±
√
1− a2 sin(m) ≤ a,∀m ∈ N (1)

In particular, for m = n1, n2, . . . , repeatedly applying (1) yields

a cos(nk)±
√
1− a2 sin(nk) ≤ a,∀k ∈ N. (2)

Letting k → ∞ in (2), we have a ·a+(±
√
1− a2) ·(±

√
1− a2) = a2+1−a2 = 1 ≤ a,

as desired.

Next, we prove the limit superior of sin(n).

Theorem 3. lim sup
n→∞

sin(n) = 1.
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Proof. The sequence {sin(n)}∞n=1 is bounded; hence, lim sup
n→∞

sin(n) = b ∈ [−1, 1]

exists. Our goal is to show b ≥ a, which implies b = 1 since we have already established
a = 1.

Using a similar argument as before, we set vk = [2kπ +
π

2
] ∈ N, which allows us to

conclude that b ≥ 1

2
.

By Theorem 1, we can find a subsequence {sin(mk)} such that lim
k→∞

sin(mk) = b.

Similarly, we can assume lim
k→∞

cos(mk) = ±
√
1− b2.

Using the sum-to-product formula, for all m ∈ N, we have the identities sin(mk ±
m) = sin(mk) cos(m) ± cos(mk) sin(m). Taking limits, we get lim

k→∞
sin(mk ± m) =

b cos(m)± lim
k→∞

cos(mk) sin(m). Again, applying Proposition 1,

b cos(m)± lim
k→∞

cos(mk) sin(m) ≤ b. (3)

Since sin(m) ̸= 0, there are four possible cases:

• lim
k→∞

cos(mk) =
√
1− b2, sin(m) > 0;

• lim
k→∞

cos(mk) =
√
1− b2, sin(m) < 0;

• lim
k→∞

cos(mk) = −
√
1− b2, sin(m) > 0;

• lim
k→∞

cos(mk) = −
√
1− b2, sin(m) < 0.

Selecting the + sign in (3) for the first and the last cases, and the − sign in (3) for the
two remaining cases, we obtain

b cos(m) +
√
1− b2 | sin(m)| ≤ b,∀m ∈ N. (4)

This implies
√
1− b2 | sin(m)| ≤ b(1 − cos(m)). Dividing both sides by the positive

number | sin(m)|, we have

√
1− b2 ≤ b

1− cos(m)

| sin(m)|
= b|1− cos(m)

sin(m)
| = b| tan(m

2
)| (5)

by the double-angle formulae cos(x) = 1− 2 sin2(
x

2
) and sin(x) = 2 sin(

x

2
) cos(

x

2
).
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Since both sides of inequality (5) are non-negative, squaring gives 1−b2 ≤ b2 tan2(
m

2
),

which implies 1 ≤ b2(1 + tan2(
m

2
)) = b2 sec2(

m

2
). Thus, we have cos2(

m

2
) ≤ b2.

Taking the square-root, we obtain

cos(
m

2
) ≤ | cos(m

2
)| ≤ b,∀m ∈ N. (6)

In particular, for m = 2n1, 2n2, . . . , repeatedly applying (6) yields

cos(
2nk

2
) = cos(nk) ≤ b,∀k ∈ N. (7)

Taking limits as k → ∞ in (7), we conclude that 1 = a ≤ b. Thus b = 1, completing
the proof.

Finally, let us prove the limit inferior results.

Theorem 4. lim inf
n→∞

cos(n) = lim inf
n→∞

sin(n) = −1.

Proof. The proof for these two cases are similar, so we will only show lim inf
n→∞

cos(n) =

−1.

The sequence {cos(n)}∞n=1 is bounded; hence, lim inf
n→∞

sin(n) = c ∈ [−1, 1] exists. Our

goal is to show c < 0, |c| ≥ 1, which will imply c = −1.

Similar to the proof on a ≥ 1

2
, for all k ∈ N, we set wk = [2kπ + π] ∈ N to establish

that c ≤ −1

2
.

By Theorem 1, we can find a subsequence {cos(lk)} such that lim
k→∞

cos(lk) = c. Similar

to the previous analysis in the proof of Theorem 2, we can assume lim
k→∞

sin(lk) =

±
√
1− c2.

Using the sum-to-product formula, for all m ∈ N, we have the identities cos(lk ±m) =

cos(lk) cos(m)∓ sin(lk) sin(m). Taking limits, we get lim
k→∞

cos(lk ±m) = c cos(m)∓
lim
k→∞

sin(lk) sin(m). Again, by Proposition 1, we have

c cos(m)∓ lim
k→∞

sin(lk) sin(m) ≥ c. (8)

Since sin(m) ̸= 0,there are four possible cases:

• lim
k→∞

sin(lk) =
√
1− c2, sin(m) > 0;
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• lim
k→∞

sin(lk) =
√
1− c2, sin(m) < 0;

• lim
k→∞

sin(lk) = −
√
1− c2, sin(m) > 0;

• lim
k→∞

sin(lk) = −
√
1− c2, sin(m) < 0.

Selecting the − sign in (8) for the first and the last cases, and the + sign in (8) for the
two remaining cases, we have

c cos(m)−
√
1− c2 | sin(m)| ≥ c, ∀m ∈ N. (9)

This implies −
√
1− c2 | sin(m)| ≥ c(1− cos(m)). Dividing both sides by the positive

number | sin(m)|, we have

−
√
1− c2 ≥ c

1− cos(m)

| sin(m)|
= c|1− cos(m)

sin(m)
| = c| tan(m

2
)|. (10)

Since both sides of inequality (10) are non-positive, squaring gives 1−c2 ≤ c2 tan2(
m

2
),

which implies 1 ≤ c2(1 + tan2(
m

2
)) = c2 sec2(

m

2
). Thus, we have cos2(

m

2
) ≤ c2.

Taking the square-root, we obtain

cos(
m

2
) ≤ | cos(m

2
)| ≤ |c|, ∀m ∈ N. (11)

In particular, for m = 2n1, 2n2, . . . , repeatedly applying (11) yields

cos(
2nk

2
) = cos(nk) ≤ |c|,∀k ∈ N. (12)

Taking limits as k → ∞ in (12), we conclude that 1 = a ≤ |c|. Thus c = −1,
completing the proof.
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