

An Elementary Proof on the Limit Superior and Limit Inferior of $\cos(n)$ and $\sin(n)$

Qingquan Wu

*West Texas A & M University, College of Engineering
2501 4th Ave, Canyon, TX 79016, USA
Email: qwu@wtamu.edu*

Abstract

We present an elementary proof of $\limsup_{n \rightarrow \infty} \cos(n) = \limsup_{n \rightarrow \infty} \sin(n) = 1$, and $\liminf_{n \rightarrow \infty} \cos(n) = \liminf_{n \rightarrow \infty} \sin(n) = -1$. Our approach avoids the use of the Kronecker density theorem, equidistribution theorem, or any concepts from Diophantine approximations, providing a more direct and accessible argument.

Given the oscillatory nature of $\cos(x)$ and $\sin(x)$, it is natural to expect that the sequences $\{\cos(n)\}_{n=1}^{\infty}$ and $\{\sin(n)\}_{n=1}^{\infty}$ do not converge to a single limit. However, since they are bounded within $[-1, 1]$, their \limsup and \liminf values exist and are finite.

The inequalities $\liminf_{n \rightarrow \infty} \cos(n) < \limsup_{n \rightarrow \infty} \cos(n)$, and similarly for $\sin(n)$, highlights the presence of distinct accumulation points due to their oscillatory nature. Finding the exact values of these bounds is therefore a natural problem of interest.

Traditionally, these values are obtained using results from the Kronecker density theorem, or Diophantine approximation. For an introduction to the Kronecker density theorem, see [1]. For discussions on its applications to this problem, refer to the online discussion threads [3], which includes insights from contributors like Prahlad Vaidyanathan and André Nicholas. These approaches analyze the distribution of sets like $\{a + b\pi \mid a, b \in \mathbb{Z}\}$ and its implications for trigonometric sequences.

In this paper, we offer an alternative elementary proof that does not rely on advanced number-theoretic methods. Since this problem belongs to real analysis, we believe it deserves a proof grounded purely in analytical techniques. Our approach remains accessible to readers with an advanced calculus background, where \limsup and \liminf are typically introduced.

Elementary proofs are valuable for making mathematical results more accessible to students and researchers unfamiliar with advanced techniques. A new or simplified perspective can enhance understanding, particularly in educational contexts. Furthermore, even for a well-known result, a novel method can offer fresh insights or inspire applications in related areas. In particular, the behavior of $\cos(n)$ and $\sin(n)$ is closely tied to the distribution of $n \pmod{2\pi}$ (a consequence of the irrationality of π). Our approach sheds light on this connection in a direct and intuitive way.

To establish our main results, we first recall the following fundamental facts about the limit superior and limit inferior of a bounded sequence.

Theorem 1. *If $\{x_n\}_{n=1}^{\infty}$ is a bounded sequence, then there exists a subsequence $\{x_{n_k}\}_{k=1}^{\infty}$ such that*

$$\lim_{k \rightarrow \infty} x_{n_k} = \limsup_{n \rightarrow \infty} x_n.$$

Similarly, there exists a (possibly different) subsequence $\{x_{m_k}\}_{k=1}^{\infty}$ such that

$$\lim_{k \rightarrow \infty} x_{m_k} = \liminf_{n \rightarrow \infty} x_n.$$

Proof. See Theorem 2.3.4., page 75 of [2]. □

Proposition 1. *Suppose $\{x_n\}_{n=1}^{\infty}$ is a bounded sequence and $\{x_{n_k}\}_{k=1}^{\infty}$ is a subsequence. Then*

$$\liminf_{n \rightarrow \infty} x_n \leq \liminf_{k \rightarrow \infty} x_{n_k} \leq \limsup_{k \rightarrow \infty} x_{n_k} \leq \limsup_{n \rightarrow \infty} x_n.$$

Proof. See Proposition 2.3.6., page 77 of [2]. □

Now let us prove the limit superior of $\cos(n)$ first.

Theorem 2. $\limsup_{n \rightarrow \infty} \cos(n) = 1$.

Proof. The sequence $\{\cos(n)\}_{n=1}^{\infty}$ is bounded; hence $\limsup_{n \rightarrow \infty} \cos(n) = a \in [-1, 1]$ exists. Our goal is to show $a \geq 1$, which will force $a = 1$.

First, we prove that $a \geq \frac{1}{2}$. For all $k \in \mathbb{N}$, let $u_k = [2k\pi] \in \mathbb{N}$, where $[\cdot]$ is the nearest integer function. By the Mean Value Theorem, there exists c between u_k and $2k\pi$ such that $|\cos(u_k) - 1| = |\cos(u_k) - \cos(2k\pi)| = |\cos'(c)(u_k - 2k\pi)| = |-\sin(c)| \cdot |u_k - 2k\pi| \leq 1 \cdot \frac{1}{2} = \frac{1}{2}$. Thus, by the triangle inequality, we obtain $\cos(u_k) \geq 1 - |\cos(u_k) - 1| \geq 1 - \frac{1}{2} = \frac{1}{2}$. Applying Proposition 1, we obtain $a = \limsup_{n \rightarrow \infty} \cos(n) \geq \limsup_{k \rightarrow \infty} \cos(u_k) \geq \frac{1}{2}$.

Next, by Theorem 1, there exists a subsequence $\{\cos(n_k)\}$ such that $\lim_{k \rightarrow \infty} \cos(n_k) = a$.

Using the identity $\sin^2(n_k) + \cos^2(n_k) = 1$, we conclude that $\lim_{k \rightarrow \infty} |\sin(n_k)| = \sqrt{1 - a^2}$. Thus, we have two cases

- There exists a further subsequence n_{k_l} such that $\lim_{l \rightarrow \infty} \sin(n_{k_l}) = \sqrt{1 - a^2}$,
- Alternatively, $\lim_{k \rightarrow \infty} \sin(n_k) = -\sqrt{1 - a^2}$.

For simplicity, we assume (without loss of generality) that $\lim_{k \rightarrow \infty} \sin(n_k) = \pm\sqrt{1 - a^2}$.

Using the sum-to-product formula, for all $m \in \mathbb{N}$, we have $\cos(n_k - m) = \cos(n_k) \cos(m) + \sin(n_k) \sin(m)$. Taking limits, we get $\lim_{k \rightarrow \infty} \cos(n_k - m) = a \cos(m) \pm \sqrt{1 - a^2} \sin(m)$.

For all $m \in \mathbb{N}$, since $n_k \geq k$, we know $n_k - m \geq k - m \geq 1$ when $k \geq m + 1$, meaning that $\{n_k - m\}_{k=m+1}^{\infty}$ is a subsequence of $\{n\}$. Therefore, by Proposition 1, the convergent subsequence $\{\cos(n_k - m)\}_{k=m+1}^{\infty}$ must have its limit no greater than $a = \limsup_{n \rightarrow \infty} \cos(n)$. That is,

$$a \cos(m) \pm \sqrt{1 - a^2} \sin(m) \leq a, \forall m \in \mathbb{N} \quad (1)$$

In particular, for $m = n_1, n_2, \dots$, repeatedly applying (1) yields

$$a \cos(n_k) \pm \sqrt{1 - a^2} \sin(n_k) \leq a, \forall k \in \mathbb{N}. \quad (2)$$

Letting $k \rightarrow \infty$ in (2), we have $a \cdot a + (\pm\sqrt{1 - a^2}) \cdot (\pm\sqrt{1 - a^2}) = a^2 + 1 - a^2 = 1 \leq a$, as desired. \square

Next, we prove the limit superior of $\sin(n)$.

Theorem 3. $\limsup_{n \rightarrow \infty} \sin(n) = 1$.

Proof. The sequence $\{\sin(n)\}_{n=1}^{\infty}$ is bounded; hence, $\limsup_{n \rightarrow \infty} \sin(n) = b \in [-1, 1]$ exists. Our goal is to show $b \geq a$, which implies $b = 1$ since we have already established $a = 1$.

Using a similar argument as before, we set $v_k = [2k\pi + \frac{\pi}{2}] \in \mathbb{N}$, which allows us to conclude that $b \geq \frac{1}{2}$.

By Theorem 1, we can find a subsequence $\{\sin(m_k)\}$ such that $\lim_{k \rightarrow \infty} \sin(m_k) = b$. Similarly, we can assume $\lim_{k \rightarrow \infty} \cos(m_k) = \pm\sqrt{1 - b^2}$.

Using the sum-to-product formula, for all $m \in \mathbb{N}$, we have the identities $\sin(m_k \pm m) = \sin(m_k) \cos(m) \pm \cos(m_k) \sin(m)$. Taking limits, we get $\lim_{k \rightarrow \infty} \sin(m_k \pm m) = b \cos(m) \pm \lim_{k \rightarrow \infty} \cos(m_k) \sin(m)$. Again, applying Proposition 1,

$$b \cos(m) \pm \lim_{k \rightarrow \infty} \cos(m_k) \sin(m) \leq b. \quad (3)$$

Since $\sin(m) \neq 0$, there are four possible cases:

- $\lim_{k \rightarrow \infty} \cos(m_k) = \sqrt{1 - b^2}$, $\sin(m) > 0$;
- $\lim_{k \rightarrow \infty} \cos(m_k) = \sqrt{1 - b^2}$, $\sin(m) < 0$;
- $\lim_{k \rightarrow \infty} \cos(m_k) = -\sqrt{1 - b^2}$, $\sin(m) > 0$;
- $\lim_{k \rightarrow \infty} \cos(m_k) = -\sqrt{1 - b^2}$, $\sin(m) < 0$.

Selecting the + sign in (3) for the first and the last cases, and the - sign in (3) for the two remaining cases, we obtain

$$b \cos(m) + \sqrt{1 - b^2} |\sin(m)| \leq b, \forall m \in \mathbb{N}. \quad (4)$$

This implies $\sqrt{1 - b^2} |\sin(m)| \leq b(1 - \cos(m))$. Dividing both sides by the positive number $|\sin(m)|$, we have

$$\sqrt{1 - b^2} \leq b \frac{1 - \cos(m)}{|\sin(m)|} = b \left| \frac{1 - \cos(m)}{\sin(m)} \right| = b \left| \tan\left(\frac{m}{2}\right) \right| \quad (5)$$

by the double-angle formulae $\cos(x) = 1 - 2 \sin^2(\frac{x}{2})$ and $\sin(x) = 2 \sin(\frac{x}{2}) \cos(\frac{x}{2})$.

Since both sides of inequality (5) are non-negative, squaring gives $1 - b^2 \leq b^2 \tan^2(\frac{m}{2})$, which implies $1 \leq b^2(1 + \tan^2(\frac{m}{2})) = b^2 \sec^2(\frac{m}{2})$. Thus, we have $\cos^2(\frac{m}{2}) \leq b^2$. Taking the square-root, we obtain

$$\cos(\frac{m}{2}) \leq |\cos(\frac{m}{2})| \leq b, \forall m \in \mathbb{N}. \quad (6)$$

In particular, for $m = 2n_1, 2n_2, \dots$, repeatedly applying (6) yields

$$\cos(\frac{2n_k}{2}) = \cos(n_k) \leq b, \forall k \in \mathbb{N}. \quad (7)$$

Taking limits as $k \rightarrow \infty$ in (7), we conclude that $1 = a \leq b$. Thus $b = 1$, completing the proof. \square

Finally, let us prove the limit inferior results.

Theorem 4. $\liminf_{n \rightarrow \infty} \cos(n) = \liminf_{n \rightarrow \infty} \sin(n) = -1$.

Proof. The proof for these two cases are similar, so we will only show $\liminf_{n \rightarrow \infty} \cos(n) = -1$.

The sequence $\{\cos(n)\}_{n=1}^{\infty}$ is bounded; hence, $\liminf_{n \rightarrow \infty} \sin(n) = c \in [-1, 1]$ exists. Our goal is to show $c < 0$, $|c| \geq 1$, which will imply $c = -1$.

Similar to the proof on $a \geq \frac{1}{2}$, for all $k \in \mathbb{N}$, we set $w_k = [2k\pi + \pi] \in \mathbb{N}$ to establish that $c \leq -\frac{1}{2}$.

By Theorem 1, we can find a subsequence $\{\cos(l_k)\}$ such that $\lim_{k \rightarrow \infty} \cos(l_k) = c$. Similar to the previous analysis in the proof of Theorem 2, we can assume $\lim_{k \rightarrow \infty} \sin(l_k) = \pm\sqrt{1 - c^2}$.

Using the sum-to-product formula, for all $m \in \mathbb{N}$, we have the identities $\cos(l_k \pm m) = \cos(l_k) \cos(m) \mp \sin(l_k) \sin(m)$. Taking limits, we get $\lim_{k \rightarrow \infty} \cos(l_k \pm m) = c \cos(m) \mp \lim_{k \rightarrow \infty} \sin(l_k) \sin(m)$. Again, by Proposition 1, we have

$$c \cos(m) \mp \lim_{k \rightarrow \infty} \sin(l_k) \sin(m) \geq c. \quad (8)$$

Since $\sin(m) \neq 0$, there are four possible cases:

- $\lim_{k \rightarrow \infty} \sin(l_k) = \sqrt{1 - c^2}$, $\sin(m) > 0$;

- $\lim_{k \rightarrow \infty} \sin(l_k) = \sqrt{1 - c^2}$, $\sin(m) < 0$;
- $\lim_{k \rightarrow \infty} \sin(l_k) = -\sqrt{1 - c^2}$, $\sin(m) > 0$;
- $\lim_{k \rightarrow \infty} \sin(l_k) = -\sqrt{1 - c^2}$, $\sin(m) < 0$.

Selecting the $-$ sign in (8) for the first and the last cases, and the $+$ sign in (8) for the two remaining cases, we have

$$c \cos(m) - \sqrt{1 - c^2} |\sin(m)| \geq c, \forall m \in \mathbb{N}. \quad (9)$$

This implies $-\sqrt{1 - c^2} |\sin(m)| \geq c(1 - \cos(m))$. Dividing both sides by the positive number $|\sin(m)|$, we have

$$-\sqrt{1 - c^2} \geq c \frac{1 - \cos(m)}{|\sin(m)|} = c \left| \frac{1 - \cos(m)}{\sin(m)} \right| = c \left| \tan\left(\frac{m}{2}\right) \right|. \quad (10)$$

Since both sides of inequality (10) are non-positive, squaring gives $1 - c^2 \leq c^2 \tan^2\left(\frac{m}{2}\right)$, which implies $1 \leq c^2(1 + \tan^2\left(\frac{m}{2}\right)) = c^2 \sec^2\left(\frac{m}{2}\right)$. Thus, we have $\cos^2\left(\frac{m}{2}\right) \leq c^2$. Taking the square-root, we obtain

$$\cos\left(\frac{m}{2}\right) \leq \left| \cos\left(\frac{m}{2}\right) \right| \leq |c|, \forall m \in \mathbb{N}. \quad (11)$$

In particular, for $m = 2n_1, 2n_2, \dots$, repeatedly applying (11) yields

$$\cos\left(\frac{2n_k}{2}\right) = \cos(n_k) \leq |c|, \forall k \in \mathbb{N}. \quad (12)$$

Taking limits as $k \rightarrow \infty$ in (12), we conclude that $1 = a \leq |c|$. Thus $c = -1$, completing the proof. \square

REFERENCES

- [1] G.H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers. Sixth edition (2008). Oxford University Press. Revised by D. R. Heath-Brown and J. H. Silverman.
- [2] J. Lebl, Basic Analysis I: Introduction to Real Analysis, version 6.1 (2024), Jirí Lebl. Available at <https://www.jirka.org/ra/realanal.pdf>.
- [3] OnlinePlatform. <https://math.stackexchange.com/questions/484131/what-is-sup-sinn>