Global Journal of Pure and Applied Mathematics.

ISSN 0973-1768 Volume 21, Number 1 (2025), pp. 75-80
©Research India Publications
https://dx.doi.org/10.37622/GJPAM/21.1.2025.75-80

An Elementary Proof on the Limit Superior and Limit

Inferior of cos(n) and sin(n)

Qingquan Wu

West Texas A & M University, College of Engineering
2501 4th Ave, Canyon, TX 79016, USA
Email: gwu@wtamu.edu

Abstract
We present an elementary proof of limsup cos(n) = limsupsin(n) = 1,
n—oo n—oo
and liminf cos(n) = liminfsin(n) = —1. Our approach avoids the use of
n—o0 n—o0

the Kronecker density theorem, equidistribution theorem, or any concepts from
Diophantine approximations, providing a more direct and accessible argument.

Given the oscillatory nature of cos(z) and sin(x), it is natural to expect that the
sequences {cos(n)}>2, and {sin(n)}°, do not converge to a single limit. However,
since they are bounded within [—1, 1], their limsup and lim inf values exist and are
finite.

The inequalities lim inf cos(n) < limsup cos(n), and similarly for sin(n), highlights

n—o00 n—00

the presence of distinct accumulation points due to their oscillatory nature. Finding the
exact values of these bounds is therefore a natural problem of interest.

Traditionally, these values are obtained using results from the Kronecker density
theorem, or Diophantine approximation. For an introduction to the Kronecker density
theorem, see [1]. For discussions on its applications to this problem, refer to the
online discussion threads [3], which includes insights from contributors like Prahlad
Vaidyanathan and André Nicholas. These approaches analyze the distribution of
sets like {a + br | a,b € 7Z} and its implications for trigonometric sequences.
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In this paper, we offer an alternative elementary proof that does not rely on advanced
number-theoretic methods. Since this problem belong to real analysis, we believe
it deserves a proof grounded purely in analytical techniques. Our approach remains
accessible to readers with an advanced calculus background, where lim sup and lim inf
are typically introduced.

Elementary proofs are valuable for making mathematical results more accessible
to students and researchers unfamiliar with advanced techniques. @A new or
simplified perspective can enhance understanding, particularly in educational contexts.
Furthermore, even for a well-known result, a novel method can offer fresh insights or
inspire applications in related areas. In particular, the behavior of cos(n) and sin(n) is
closely tied to the distribution of n (mod 27) (a consequence of the irrationality of 7).
Our approach sheds light on this connection in a direct and intuitive way.

To establish our main results, we first recall the following fundamental facts about the
limit superior and limit inferior of a bounded sequence.

Theorem 1. If {x,}°2, is a bounded sequence, then there exists a subsequence
{2, }32, such that

lim z,, = limsup z,.
k—oo n—o0

Similarly, there exists a (possibly different) subsequence {x,,, }3>, such that

lim z,,, = liminfzx,.
k—o0 n— 00

Proof. See Theorem 2.3.4., page 75 of [2]. O]

Proposition 1. Suppose {x,}°, is a bounded sequence and {x,, };>, is a
subsequence. Then

liminf z,, <liminfz,, <limsupz,, <limsupz,.
n—00 k—o0 k—oo n—00

Proof. See Proposition 2.3.6., page 77 of [2]. U

Now let us prove the limit superior of cos(n) first.

Theorem 2. lim sup cos(n) = 1.

n—oo

Proof. The sequence {cos(n)}5°, is bounded; hence limsupcos(n) = a € [—1,1]
n—0o0
exists. Our goal is to show a > 1, which will force a = 1.
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1
First, we prove that a > —. For all £ € N, let uy = [2k7] € N, where [ - | is
the nearest integer function. By the Mean Value Theorem, there exists ¢ between wy
and 2k7 such that | cos(ug) — 1| = | cos(uy) — cos(2km)| = |cos'(c)(uy — 2km)| =

| — sin(c)| - |up — 2kw| < 1-

1
3 7 Thus, by the triangle inequality, we obtain
>

1 1
cos(ug) > 1 —|cos(uy) — 1 1 - 5= 5 Applying Proposition 1, we obtain
1
a = limsup cos(n) > limsup cos(ug) > .
n—00 k—ro0 2

Next, by Theorem 1, there exists a subsequence {cos(ny)} such that khm cos(ng) = a.
—00

Using the identity sin®(ny,)+cos?(ny,) = 1, we conclude that klim |sin(ng)| = V1 — a?.
—00
Thus, we have two cases

* There exists a further subsequence ny, such that lim sin(ng,) = V1 — a?,

=00

* Alternatively, klim sin(ny) = —v1 — a?.
—00

For simplicity, we assume (without loss of generality) that klim sin(ng) = £vV1 — a?.
—00
Using the sum-to-product formula, for all m € N, we have cos(n, — m) =
cos(ny) cos(m)+sin(ny) sin(m). Taking limits, we get klim cos(ng—m) = acos(m)=+
—00

V1 — a?sin(m).

For all m € N, since np, > k, weknownp, —m > k—m > 1whenk > m + 1,
meaning that {n, — m}32 ., is a subsequence of {n}. Therefore, by Proposition 1,

the convergent subsequence {cos(n; — m)}32,, , must have its limit no greater than

a = lim sup cos(n). That is,
n—oo

acos(m) £ V1 —a?sin(m) < a,¥m e N (1)

In particular, for m = ny, no, ..., repeatedly applying (1) yields

acos(ng) £ V1 —a?sin(ng) < a,Vk € N. (2)

Letting k — ooin (2), we have a-a+ (V1 — a?)- (£V1 —a?) = a*+1-a®> =1 < q,
as desired. O

Next, we prove the limit superior of sin(n).

Theorem 3. limsupsin(n) = 1.
n—oo
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Proof. The sequence {sin(n)}°2, is bounded; hence, limsupsin(n) = b € [—1,1]
n—oo

exists. Our goal is to show b > a, which implies b = 1 since we have already established

a=1.

Using a similar argument as before, we set v, = [2km + g] € N, which allows us to

1
conclude that b > 3

By Theorem 1, we can find a subsequence {sin(my)} such that klim sin(my) = b.
—00

Similarly, we can assume lim cos(my) = £V 1 — b2

k—o0
Using the sum-to-product formula, for all m € N, we have the identities sin(m; +
m) = sin(my) cos(m) £ cos(my) sin(m). Taking limits, we get klim sin(my £m) =
—00
bcos(m) + klim cos(my,) sin(m). Again, applying Proposition 1,
—00

bcos(m) + lim cos(my) sin(m) < b. 3)

k—o0

Since sin(m) # 0, there are four possible cases:

lim cos(my) = V1 — b2, sin(m) > 0;

k—o0

e lim cos(myg) = V1 —0?, sin(m) < 0;

k—o0

* lim cos(my) = —V 1 — b2, sin(m) > 0;

k—o0

* lim cos(mg) = —V 1 —0?, sin(m) < 0.

k—o0

Selecting the + sign in (3) for the first and the last cases, and the — sign in (3) for the
two remaining cases, we obtain

beos(m) + V1 —0?|sin(m)| < b,¥Ym € N. 4)

This implies v/1 — b? | sin(m)| < b(1 — cos(m)). Dividing both sides by the positive
number | sin(m)

, we have

T_bQSbl—cos(m) :b|1_COS(m)|:b|tan(m)| 5)

| sin(m)| sin(m) 2

by the double-angle formulae cos(z) =1 — 2 sinZ(g) and sin(z) = 2 sin(g) cos(g).
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Since both sides of inequality (5) are non-negative, squaring gives 1 —b? < b? tan%%),
which implies 1 < b*(1 + tanz(%)) = sec%%). Thus, we have COSQ(%) < b

Taking the square-root, we obtain

COS(%) < ‘COS(%)‘ <b,Vm € N. (6)

In particular, for m = 2n4, 2ns, . .., repeatedly applying (6) yields

2
COS(%) = cos(ng) < b,Vk € N. (7)

Taking limits as £ — oo in (7), we conclude that 1 = a < b. Thus b = 1, completing
the proof. ]

Finally, let us prove the limit inferior results.

Theorem 4. lim inf cos(n) = liminfsin(n) = —1.
n—oo n— o0

Proof. The proof for these two cases are similar, so we will only show lim inf cos(n) =
n—oo
—1.

The sequence {cos(n)}52, is bounded; hence, lim inf sin(n) = ¢ € [—1, 1] exists. Our
n—oo

goal is to show ¢ < 0, |¢| > 1, which will imply ¢ = —1.
1
Similar to the proof on a > 2 for all k£ € N, we set wy, = [2k7 + 7] € N to establish
1
that c < ——.
2

By Theorem 1, we can find a subsequence {cos((;)} such that klim cos(l) = c. Similar
—00

to the previous analysis in the proof of Theorem 2, we can assume klim sin(l) =
—00
+v1 -2

Using the sum-to-product formula, for all m € N, we have the identities cos(l; £ m) =
cos(lx) cos(m) F sin(lx) sin(m). Taking limits, we get klim cos(l £ m) = ccos(m) F
—00

klim sin(lx) sin(m). Again, by Proposition 1, we have
—00

ccos(m) F kh_}lrgo sin(lx) sin(m) > c. (8)

Since sin(m) # 0,there are four possible cases:

 lim sin(ly) = V1 — ¢2, sin(m) > 0;

k—o0
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e lim sin(ly) = V1 — ¢2, sin(m) < 0;

k—o0

. klim sin(ly) = =V 1 — ¢2, sin(m) > 0;
—00

. klim sin(ly) = —v1 — 2, sin(m) < 0.
—00

Selecting the — sign in (8) for the first and the last cases, and the + sign in (8) for the
two remaining cases, we have

ccos(m) — V1 — % |sin(m)| > ¢,¥Vm € N. )

This implies —v/1 — ¢2 | sin(m)| > ¢(1 — cos(m)). Dividing both sides by the positive
number |sin(m)|, we have

— 1-— 1-—
JVI_—2 > ¢ .COS(m) _ C’ : COS<m>’ _ C‘ tan(ﬂ)\. (10)
| sin(m)| sin(m) 2
Since both sides of inequality (10) are non-positive, squaring gives 1—c? < ¢? tanQ(%),

which implies 1 < ¢*(1 + tanQ(%)) = ¢ secz(%). Thus, we have COSQ(%) <

Taking the square-root, we obtain

cos(%) < |cos(%)| < |c|,¥m € N. (11)

In particular, for m = 2n4, 2n,, . . ., repeatedly applying (11) yields
2n

cos(Tk) = cos(ng) < |c|,Vk € N. (12)
Taking limits as & — oo in (12), we conclude that 1 = a < |¢[. Thus ¢ = —1,
completing the proof. ]
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