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Abstract

The P versus NP problem, a conjecture formulated by Stephen Cook in 1971, is one of
the deepest and most challenging problems in contemporary mathematics and
theoretical computer science. A concise mathematical formulation of the problem
reads: is P = NP. In longer phrasing, this asks: given a problem instance, if some
additional data can be recognized fast enough as logically implying the existence of a
solution (to the instance), then can a solution be computed fast enough without the aid
of any such additional data? In this article we explain why P #NP.

Keywords: Algorithm; polynomial time; certificate; maximal clique; Moon-Moser
graph; power set. Mathematics Subject Classification 2020: 03C70, 05C69, 11Y16,
68W40

1 Introduction

More on terminologies, symbols and notations used in this article can be found in [3], [5] or
[7]. Throughout this article, N will denote the set of positive integers, W the set of non-negative
integers (i.e., W = NU{0}), Z the set of integers and R the set of real numbers.

This article is organised as follows: Section 1 deals with some salient points on algorithms, the
problem classes P and NP, proposed solutions and feasible solutions. Section 2 presents graph
theoretical concepts essential for the objective of the article. Section 3 presents the main
problem and Section 4 deals with an algorithm, both instrumental in proving P #NP. Section
5 outlines proof that this problem is in NP but not in P.
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1.1 Algorithms

An algorithm is any well-defined computational procedure that takes finitely many quantities
as input and produces finitely many quantities as output. An algorithm is thus a sequence of
well-defined computational steps transforming the input into the output [3].

An instance (also called input instance or problem instance) of a problem is an input satisfying
all the constraints in the problem statement needed to compute a solution to the problem [3].
For example, suppose the problem is to arrange a given finite sequence of positive integers in
non-descending order. Then any list consisting of finitely many positive integers is an instance
of this problem. One instance is: 32, 10, 18, 31, 17, 10, 17, 7, 10.

How the size (or length) of the instance is defined depends on the problem Q being studied [3].
For example, if Q is the problem seen in the preceding paragraph, then the size of the instance
given there is n = 9 (since all the repetitions have to be counted in). More examples of instances
and input sizes are in (A-1) through (A-4) of Appendix A.

A “step” in an algorithm is a primitive operation executed by the algorithm. In dealing with
any algorithm, there is a presupposition that every primitive operation to be executed by the
algorithm is unambiguously defined. Since we furnish algorithms only in lines of pseudocodes,
we adopt the following point of view for the notion of number of steps [3]: we assume that
each execution of the jth line of the pseudocode takes tj steps (meaning, tj primitive operations).

From a computational point of view, given a problem Q, it is natural to ask if there exists, or
can be developed, an algorithm that can process any given instance of Q to a required extent in
such a way that the number of steps taken by the algorithm is bounded by a fixed polynomial
in the size of the given instance [2]. Such an algorithm is said to process the input instance in
polynomial time (or run in polynomial time; or take polynomial time to process) and is
therefore called a polynomial-time algorithm. Note that an algorithm is deemed to run in
polynomial time only vis-'a-vis a specified problem Q; in other words, the phrase ‘the
algorithm ALG runs in polynomial time’ really means that there is a specified problem Q such
that ALG processes each instance of Q in polynomial time.

When we say the number of steps taken by an algorithm is bounded by a fixed polynomial in
the variable n, what we mean is: there exists a polynomial f (n) that is fixed for Q (meaning, in
turn, that the instance X of Q can vary but f (n) does not, so long as the problem Q does not)
such that given two instances (of Q) of sizes nl1 and n2, the number of steps taken by the
algorithm is at most f (n1) to process the nl-sized instance and at most f (n2) for the n2-sized
instance.

For the purposes of this article, we consider two types of algorithms: solve-type algorithms
(that find a solution, or correctly establish the absence of any solution, to each input instance)
and check-type algorithms (that do not find solutions but only check out whether any additional
input that is claimed to be a solution to an instance is really so). One crucial difference between
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these two types is: a solve-type algorithm needs only the instance of the problem as input
whereas a check-type algorithm needs the instance as well as an additional input in the form of
a “proposed solution” or “attempted solution” (called so since it might be a solution or not). A
solution to an instance is also called a feasible solution. A solve-type algorithm is also called
an exact algorithm.

Every algorithm considered in this article is assumed, or if necessary shown to be, correct in
the sense that given an input instance, the algorithm halts with an output that is correct [3].

1.2 Certificate candidates and certificates

In this article, we consider two classes of problems that are important in the context of
algorithms: P and NP. Informally, the class P consists of those problems that are solvable in
polynomial time [2, 3]. This means to each problem in this class there exists a polynomial-time
algorithm that solves each instance of the problem.

The class NP consists of those problems that are “verifiable” in polynomial time [3]. What is
meant by calling a problem “verifiable” is that if, in addition to an instance of the problem, we
are somehow given a “certificate” of a solution, then we could verify, using a check-type
algorithm running in polynomial time, that the certificate is indeed a solution, or logically
implies (i.e., confirms) the existence of a solution, to the given instance.

It is clear that a certificate is also an input component. Also, a certificate only begins as a
proposed solution, and might or might not turn out to be a feasible solution [6]. We therefore
wish to distinguish between these two situations.

To this end we define a certificate candidate. A certificate candidate is a component that is input
along with the problem instance under consideration, the intention (of the user) being to test
whether or not the certificate candidate confirms the existence of a solution to the instance. So
a certificate candidate is a proposed solution that accompanies the instance.

Let Q be the problem under consideration, X a problem instance of size n and C (X) the
certificate candidate that accompanies X. The result of running an appropriate algorithm on X
and C (X) will be exactly one of the following three:

1.2(i) C (X) is per se a solution to X (i.e., the proposed solution turns out to be a feasible
solution). 1.2(ii) C (X) per se is not a solution but it logically implies the existence of a solution,
whether or not the implied solution is subsequently made explicit (i.e., the proposed solution,
though not a feasible solution by itself, confirms the existence of a feasible solution). 1.2(ii1)
Neither is C (X) a solution nor does it logically imply the existence of a solution.

Henceforth, if any certificate candidate C (X) obeys 1.2(i) or 1.2(i1), then we will say ‘C (X)
yields a solution (to X)’. And by saying ‘C (X) does not yield a solution (to X)’ we will mean
that C (X) obeys 1.2(ii1). Examples to distinguish a certificate candidate obeying 1.2(i) from
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one obeying 1.2(ii) are in (B-1) through (B-3) of Appendix

B.

Next, “checking out” a certificate candidate is different from “verifying” it. To verify a
certificate candidate C (X) is to have a check-type algorithm establish that C (X) yields a
solution to the instance X. If a certificate candidate is thus verified then it is a certificate (of a
solution); else it is just a certificate candidate. If a certificate candidate becomes a certificate,
then we will say either ‘the certificate candidate is verified’ or ‘the certificate is verified’. Such
a verification is tantamount to saying “YES” to the question whether the instance X has a
solution.

On the other hand, to check out C (X) is to have a check-type algorithm decide whether or not
C (X) yields a solution to X. If the algorithm checking out C (X) decides that C (X) does not
yield a solution then this decision is tantamount to saying “NO” to the question whether X can
be solved with the aid of C (X). This “NO” is not a conclusive response to whether X has a
solution, but only rules that the certificate candidate C (X) is not a certificate. Thus:

1.2(iv) “verifying” requires a certificate candidate that yields a solution to the given instance
whereas “checking out” calls for only a certificate candidate that is not required to have any
additional properties / features; and 1.2(v) an algorithm is deemed to have verified a certificate
candidate C (X) (meaning, C (X) is deemed to have become a certificate) only when C (X) is
shown (by the algorithm) to yield a solution to X.

So, while a certificate candidate is only a proposed solution, a certificate is a feasible solution.
In other words, every certificate is a certificate candidate in the first place but not every
certificate candidate becomes a certificate. Further, a verification of a certificate candidate
necessarily begins as an exercise of a check-type algorithm checking out the candidate but
every exercise of checking out a candidate need not culminate in verification.

Thus, certificates (feasible solutions) are special cases of certificate candidates (proposed
solutions).

As noted in the penultimate paragraph of Subsection 1.1, an algorithm is said to solve an
instance X of a problem Q if the algorithm produces a solution (to X) if one exists or correctly
establishes the absence of a solution otherwise, in either case without the need for any
certificate candidate. If an algorithm solves each instance of Q then the algorithm is said to
solve Q. An algorithm that solves a problem instance X and an algorithm that only checks out
a certificate candidate C (X) differ primarily in the following aspect: in the former, the input is
(X, n) and the output is a conclusive response to the question of a solution to X while in the
latter, the input is (X, n, C (X)) and the output is an affirmative or a negative response to the
question whether C (X) yields a solution to X. Note that in each of these cases, finitely many
additional components in the input are allowed.
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Now rises the question whether the algorithm that checks out a given certificate candidate does
so in polynomial time, for this is crucial in finding out if the concerned problem is in NP. This
underlines the importance of the certificate candidate in this context. Given a problem Q, what
are needed to decide that Q can be included in NP? We need: one, a check-type algorithm -call
it AL (Q) -and two, to each instance X (of Q), a certificate candidate C (X) that is verified by
AL (Q) in polynomial time (in n, the size of X).

1.3 Remarks on algorithms recognizing feasible solutions

An algorithm is said to recognize a feasible solution if the algorithm verifies that the input
certificate candidate is a certificate. In the context of NP, such recognition needs to be done in
polynomial time.

Let X be an instance of a problem Q and ALG be the algorithm designed to check if an input
certificate candidate is a certificate. Suppose C1 and C2 are two distinct certificate candidates.
Also suppose that both C1 and C2 are feasible solutions to X.

It is desirable that ALG checks out C1 or C2, whichever is input with X. However, owing to
the design of ALG the following might ensue: 1.3(i) ALG recognizes the feasible solution C1
in polynomial time and 1.3(ii) ALG fails, or takes worse than polynomial time (perhaps,
exponential or factorial time [3, 9]), to recognize the feasible solution C2.

Then C2, despite being a feasible solution, is not useful in deciding if Q is in NP. So only
candidates that can be checked out by the algorithm in polynomial time should be used. To
aver that Q is in NP, for each instance of Q we only need one candidate that ALG recognizes
as a feasible solution in polynomial time, even if there exist other feasible solutions that ALG
does not recognize at all or does not recognize in polynomial time.

1.4 The exercise of looking for certificates

If a problem Q is given, then it is not difficult to come up with an instance X of a desired size
n and a certificate candidate. But the same cannot be said for a certificate, even if an algorithm
is available. Then how can a certificate, if at all one exists, be obtained?

Recall the part of the informal explanation of the class NP that goes ‘...if, in addition to an
instance of the problem, we are somehow given a “certificate” of a solution, then we could
verify...” (in the second paragraph of Subsection 1.2). The operative word there is ‘somehow.’
This clearly indicates there are no hard and fast rules as to the source of a certificate candidate
or its form or the process of obtaining it; only every certificate candidate must rest on irrefutable
theory that is relevant to the problem. Indeed, given an arbitrary problem instance, it is not
known how to identify a certificate [6]. So it is not known how to identify a certificate candidate
that will turn out to be a certificate. A certificate candidate C (X) could be readily available
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(i.e., prepared beforehand by someone) or could be compiled as and when the need arises.
Preparing C (X) could take any amount of time polynomial or worse. But the time to prepare
C (X) will not be included in the time required for the algorithm to check out C (X). This is
because whoever prepares C (X) is allowed to do any immense amount of calculation
beforehand, and only the results of that calculation need be written on C (X) [9].

In any quest for finding out whether a problem is in NP, one assumption (on the quester’s part)
is that given an instance of the problem there is a non-vacuous class of certificate candidates
corresponding to this instance.

1.5 Remarks on P and NP

The class P is contained in the class NP [2, 3]. But it is not known whether these two classes
are the same -and this is the crux of the famous problem “Is P = NP?” (also called the “P versus
NP” problem).

One approach to this problem is trying to prove NP is contained in P; this, if successful, gives
P = NP. An opposite approach is finding or formulating a problem that falls in NP but cannot
be in P (thereby establishing P #NP), even if such a problem is artificially formulated [8].

Any problem in NP can be solved by exhaustive search (also called perebor, meaning “brute-
force search” [8]). But steps in exhaustive search grow to forbiddingly large numbers even for
a moderate growth in the size of the instance. Though decades of extensive efforts to settle the
P versus NP question have produced algorithms that take significantly fewer steps than
exhaustive search for problems in NP, an exact polynomial-time algorithm for any of these
problems is yet to be. As a consequence, it is now commonly believed that P #NP [10].

1.6 Atomic sub-outputs

Let S be a solution to a problem instance X. Suppose S consists of finitely many definite and
distinguishable objects Y1,...,Yk (for some k € N) that are to be computed in a sequence. Then
each of these k objects is an atomic sub-output of S.

For example, if the problem is to compute the set of all positive integers g less than a given
positive integer m such that q is a perfect square, then the set S = {1, 4, 9, 16} is a solution to
the instance m = 20 of this problem. Each of the four elements of S is an atomic sub-output of
S. Sis the only solution to the instance m = 20. The instance m = 1 has no solution.

Now consider a problem Q such that:
1.6(i) each instance of Q has a solution and

1.6(ii) each solution to a given instance (of size n) of Q consists of matomic sub-outputs (to be
computed in a sequence) for some m € R with m> 1.
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Any algorithm that outputs a solution to a given instance of Q has to compute all the matomic
sub-outputs that the solution comprises. Then as the instance size n increases, the number of
steps taken by an algorithm cannot be bounded above by any polynomial in n. Consequently,
if Q is in NP then it follows immediately that P # NP. To confirm that Q is in NP, we need a
check-type algorithm -call it AL (Q) -such that to each instance X of Q there must be obtainable
at least one certificate candidate C (X) that is verified by AL (Q), in polynomial time, to yield
a solution to X. Such a C (X) can be obtained from anywhere or prepared anyhow but once it
is input along with X and n then from that point AL (Q) should need to do only a polynomial
amount of computations to verify C (X).

We present such a problem in Section 3. The problem involves sets of maximal cliques of
Moon-Moser graphs. The necessary verifications (using an appropriate polynomial-time
algorithm) are in Section 4 and Section 5.

1.7 Remarks on capabilities of algorithms

There are computational capabilities algorithms are known to possess, and literature abounds
with discussions on such capabilities. And there are capabilities that supposedly cannot be
possessed by any algorithm, at least as of now. For instance, to date there is no known algorithm
with the capability to carry out exhaustive search in polynomial time for an arbitrary input.
Discussing these capabilities is not in the scope of this article. Suffice it to say that facts /
suppositions about capabilities of algorithms rest on established theories. These theories may
advance and then there may come along algorithms with new capabilities. We deal with the P
versus NP problem in the framework of capabilities of algorithms at present.

In the preceding discussions, only informal definitions of algorithm, P and NP have been used.
Their formal definitions are in [2, 3].

2 Essential graph theory

LetneWandb e N. Letr € Wand 0 <r<b — 1. Then the equation r = n (modb) will mean
that r is the remainder upon dividing n by b; so will the expression n =r (modb). In particular,
if r =0 then n is divisible by b.

A set is a collection of definite and distinguishable objects [3, 7]. Each object in a set is an
element or a member of the set. It is taken for granted that if X is a given set then there is a
well-formed definition that decides

conclusively whether or not two given elements of X are distinct. Also, such a definition is
made explicit when necessary. There is a unique set that contains no members, and this is the
empty set, denoted by .

The cardinality (or, size) of a set X is the number of elements in X, and is denoted by |X|.
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Obviously |X[|> 0. If |X|e W then X is a finite set; else X is an infinite set.

2.1 Cabals and Moon-Moser graphs

An undirected simple loop-free graph G is an ordered pair G =(V, E) where V is a nhonempty
finite set and E is a set of subsets of V such that |A| = 2 for each A € E. Each element of V is a
vertex of G and each element of E is an edge of G. The expressions x € V and x € G will both
mean that x is a vertex of G. Similarly, {X, y}€ G and {x, y}€ E will both mean {x, y} is an
edge of G.

Let G =(V, E) be a graph. The order of G is denoted by |G| and is defined as |G| = |V |. Two
distinct vertices x and y of G are adjacent if {x, y}€ E. If M is a nonempty subset of V then M
is a clique of G if either [M| =1 or the vertices of M are pairwise adjacent when |[M| > 1. A
clique M is a maximal clique of G if M is not a proper subset of any clique of G. G is complete
if V is a clique of G. Obviously every graph has at least one maximal clique.

Every graph considered in this article is assumed undirected, simple and loop-free and of order
at least 1.

M (G) will denote set of all the maximal cliques of G. If M €M (G) and M2 €M (G) then My
and M are distinct if and only if M1 and M are distinct subsets of V. Also, u (G) will denote
IM (G)|, the number of maximal cliques of G.

A cabal of M (G) (or a cabal from G; or, simply, a cabal, if the graph the cabal comes from is
understood from the context) is a nonempty subset S of M (G) with the following property:
exists k € N such that |A| = k for every A €S. Such a cabal will also be called a k-cabal of M
(G) (or a k-cabal from G; or, simply, a k-cabal). A k-cabal is maximal if it is not a proper subset
of any k-cabal. Obviously, if k and m are two distinct positive integers, then there can be a k-
cabal and an m-cabal of M (G). Also, if there is a k-cabal from G then there is a maximal k-
cabal from G since M (G) is a finite set.

If S is given to be a cabal of M (G) then it will be understood that S is a k-cabal for some unique
k € N.

For t € N, we define the set Lt (G) as Lt (G)= {A €M (G): |A| = t}. Clearly, each nonempty Lt
(G) is a cabal of M (G).

Proposition 2.1. Let G be a graph and |G| = n. Then:
(i) Lt (G) is nonempty for at least one t €{1,...,n} and Lt (G)= ¢ for t>n.
(ii) If t, s € N with t £ s then Lt (G) NLs (G)=¢

(iii) For each k € N such that there is a k-cabal of M (G), there is exactly one maximal k-cabal,
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namely, Lk (G).
Proof. (i) and (ii) follow immediately from the definition of M (G) and Lt (G).

(iii) Suppose there were two distinct maximal k-cabals Ak and Bk for this k. Then neither of
these two is a proper subset of the other. Also, each is a proper subset of Ak UBKk. Further, Ak
UBK is a k-cabal. But this immediately contradicts the maximality of Ak and BK.

Next, the set Lk (G) is clearly a k-cabal. Lk (G) is also a maximal k-cabal since every maximal
clique A (of G) such that |A| = k is a member of Lk (G).

For the remainder of this section, assume G =(V, E) and |G| = n. The following results on pu (G)
are due to Moon and Moser (see [4]):

(i) 1 (G) <3" if n = 0(mod3),
(i) p (G) <4.30°93 if n = 1(mod3) and
(iii) p (G) <2.30725 jf n = 2(mod3).

The dot (.) to the right of the inequality symbols in (ii) and (iii) denotes multiplication of real
numbers. G is a Moon-Moser graph if it satisfies any of the following:

(MMO0) n = 0(mod3) and p (G) = 3",

(MM1) n = 1(mod3) and p (G) = 4.3973

(MM2) n =2(mod3) and p (G) = 2.3273

Specifically, G is an MMO graph if it satisfies (MMO0), an MM1 graph if it satisfies (MM1) and
an MM2 graph if it satisfies (MM2).

A graph G1 = (V1, E1) is isomorphic to a graph G2 = (V2, E2) (written G1 = Gy) if there exists
a bijective map f : V1 — V2 with the following property: {x, y}€ Ei if and only if { f (x) , f
(Y)}€ Ea.

6% will denote the set of all the MMO graphs, G the set of all the MM1 graphs and G,
the set of all the MM2 graphs. For each j =0, 1, 2, two members G and H of G,E,’,)V, are deemed

distinct if and only if G is not isomorphic to H. Clearly G,\(;LDG,\%Z ¢ whenever i and j are

distinct elements of {0, 1, 2}.

We define Gvm = G,\(,,O,\),,UGIE}&UGS&. Then Gwmum is the set of all the Moon-Moser graphs. For
each . n € N—{1}, there exists only one Moon-Moser graph of order n (upto isomorphism) [4].

For each j €{0, 1, 2}, GA(,IJA),I is an infinite set.
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Proposition 2.2. Let G =(V, E) €Gmm and |G| =n > 2. Then:

(1) M|<n — 1 for every clique M of G.

(i) M (G)=L1(G) U --ULp-1 (G) and W (G)=|L1 (G)| + -+ + |La-1 (G)].
Proof.

(1) If G were complete, then V would be the only maximal clique of G, from which p (G) = 1.
This would mean (ia) 1=3"2if n = 0(mod3), (ib) 1=4.3""%? if n = 1(mod3) or (ic) 1=2.3"2"3
if n = 2(mod3). (ia) is false since n > 2. If n = 1(mod3) then n > 4, from which we have 1 =
(G) > 4, clearly impossible, thus ruling out (ib). If n = 2(mod3) then n > 2, giving 1 = p (G) >
2, again an impossibility, and so (ic) is false.

(ii) Straightforward, since Lt (G)= ¢ if t > n and Lt (G) NLs (G)= ¢ whenever t and s are distinct
elements of {1,....n — 1}.

Proposition 2.3. Let G and n be as in Proposition 2.2.

n/
(i) If n = 0(mod3) then |Lk (G)i 2 for some Li (G) €M (G).

4'3(71—4-)/3
n-—1
23023

(ii) If n = 1(mod3) then [Lk (G)> for some Lk (G) €M (G).

(iii) If n=2(mod3) then |Lk (G)> for some Lk (G) €M (G).

n-1

Note. In (i), (ii) and (iii) above, k depends on G and k €{1,...,n — 1}.

- . . n/3
Proof. (i) Suppose the conclusion were false -i.e., |Lk (G)| < ijfor eachk=1,....n— 1. Invoking

n/
Proposition 2.2(ii), we get M (G)| = |L1 (G)| + - + |[Ln—1 (G)| <(n — 1) iTi resulting in
(G) <3n/3thatin

turn contradicts G EG,%,

A similar reasoning proves each of (ii) and (iii).

Proposition 2.4. Let N(0) = {3n: n € N}, N(1) = {3n +1: n € N} and
N(2) ={3n +2: n € W}.

.\ 313 . .
Q) iTl cannot be bounded above by anb for any positive real constants a and b as n increases
over NO

43093

(i)

—— cannot be bounded above by anb for any positive real constants a and b as n
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increases over N@:

(i) cannot be bounded above by anb for any positive real constants a and b as n
mcreases over N@)

2.3(n-2)

Proof.

(1) Suppose the conclusion were false. Then there would exist real constants ¢> 1 and d> 1 such
that # < cn® for all n € N, Then 3n/3 < cn®?! . This leads to g < (d + 1) log (cn), giving
<3(d+1)

log(cn)

is unbounded

(where log denotes logarithm to base 3). But this contradicts the fact that logr(lcn)

above as n increases over N©,

(ii) If 2

giving 3(““”/3 < cn’*, leading to

—4)/3 (n—4)/3
> < cn? for real constants ¢ > 1 and d > 1 (and for all n € N(l)) then 3—1 <cnd,

< 3(d + 1), contrary to the fact that ) is unbounded

above as n increases over N@,

(i) If

+1) would ensue, contradicting that

(n~
237797 < e for real constants ¢ > 1 and d > 1 (and for all n € N®@) then —— S < 3(d

) is unbounded above as n increases over N(Z)

2.2 Discrete intervals in N

For set union (U) and set intersection (N), please see [7]. Let a and b be real numbers with a <
b. The interval [a, b) in R is defined as [a, b)= {x € R : a <x <b}.

The set N[a, b) is defined as N[a, b)=NN [a, b)= {q € N : a<q <b}, and will be called a discrete
interval in N.

Let x € R. The ceiling of x is denoted by [x] and is defined to be the smallest integer q such
that q > x. Obviously, x € Z if and only if x = [x].

Proposition 2.5. For n € N— {1}, we define the positive integer Qn as follows:

Qn =3"3 if n = 0(mod3), Qn =4.30"93 if n = 1(mod3) and Qn =2.3"23 if n = 2(mod3).
(i) If n < 4 then Qq = .

(i) If n > 5 then Qn > n.
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Proof. (i) If n = 2 then Qn = 2.3(""2)/3=2 =n_If n = 3 then Qn = 3"3=3=n. If n = 4 then Q,
=4.307983 =4 =,

(if) Each n € N— {1} is of the form n =3q or n =3q +1 or n =3q + 2 for appropriate g € N. So
the statement (to prove) can be named P (q) instead of P (n). We use induction on q to prove P

().

Case 1: n = 0(mod3). Write n =3q. Here q € N and q > 2.
For @ =2, n=6. Then Q, =3"% =9 > n, proving P (q) for q = 2.

Induction hypothesis: Assume P (q) is true for @ = m; i.e., for n =3m, Qn > 3m (meaning, 3™
>3m). Forq=m+ 1, n =3m + 3. Then Qn = 3™1=3.3™ > 3.3m by induction hypothesis, giving
Qn >9m = 3m +6m > 3m +3=n since m > 1.

Case 2: n = 1(mod3). Write n =3q + 1. Here q € N and q > 2.
For q=2,n=7. Then Q, =4.3"%3 =12 > n, proving P (q) for q = 2.

Induction hypothesis: Assume P (q) is true for ¢ = m, i.e., for n =3m +1, Q, =4.3™"' > 3m +
1.

For g =m + 1, n =3m + 4. Then Q, =4.3™ =3.4.3™! > 3 (3m + 1) by induction hypothesis,
giving Qn > 9m +3=3m +4+6m — 1 > 3m +4=n since m > 1.

Case 3: n =2(mod3). Write n =3q + 2. Here q € N and q > 1.
For q=1,n=5. Then Qn =2.3""23 =6 >n, proving P (q) for q = 1.

Induction hypothesis: Assume P (q) is true for = m; i.e., for n =3m +2, Q, =2.3™ > 3m + 2.

For q=m+ 1, n =3m + 5. Then Q, = 2.3™* =3.2.3™ > 3 (3m + 2) by induction hypothesis,
giving Qn >9m +6 =3m + 5 + 6m +1 > 3m +5=n since m > 0.

This completes the induction, proving (ii).

Proposition 2.6. Let Q, be as in Proposition 2.5. To each n € N— {1}, there corresponds a
smallest sn € N (depending on n) such that :Tn <1l
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Proof. Take sn = [%].

Proposition 2.7. Let n € N, n > 5 and sn be the smallest positive integer corresponding to n
such that 22 < 1.

Sn

Then N[1, Q, + 1) equals the union

Qn Qn | ) |Qn Qn) |Qn Qn | Qn
—,( ))UN ( ) ( ) U UN ,— UN—,.Qn+
);

i.e., N[1,Qn+1)=

U%{N[of_z)n%)} UN[% — 1)UN[Q" Q, +1 )

Proof. Let D;j denote N[OH) , ) forj=1,..,sn— 1.

Also let Y1 = N[ )ande—N [ ,Q, +1 )

Clearly ﬁ<n(;"_1)<n(:”_2)<---<%<%<%<Qn+1,
uY,.

So

This, together with N [%‘Qn + 1): N1, On + 1). leads to N[1, Qn +1) =

US}:{N[UHW o } N[Q” UN[Qn Q, +1 )

Proposition 2.8. Let n € N and n > 5. The s, + 1 discrete intervals Dj (j =1,....sn — 1), Y1 and
Y2 seen in the proof of Proposition 2.7 are pairwise disjoint.

Proof. Let k and r be distinct elements of {1,....sn — 1}, with k < r. Then k +1 < r and so

Q Q Q,
[ , )N [ _) ¢, whence Dr N Dk = ¢.
(r+Dn m™ (G+Dn jn
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Next, Y1 N Y2=¢ since%<%< On+1.

Finally, Dj N (Y1 U Y2) = ¢ for each j €{1,...,5n — 1} since

Q Q
meDj::>m<7"andmeY1uY2::>m27".

Corollary 2.9. Let G €Gwvm and |G| =n > 5. Let S be a cabal of M (G) and |S|=t. Then t is an
element of exactly one of the s, + 1 discrete intervals Dj (j =1,...,sn — 1), Y1 and Y2 (seen in the
proof of Proposition 2.7) where s, corresponds to n as in Proposition 2.6.

Proof. Consequence of Proposition 2.7, Proposition 2.8 and the obvious fact that 1 < |T| < Qn
for every cabal T from G.

2.3 Quasi-partition and anchor number

Consider the sy + 1 discrete intervals Dj (j =1,....5s» — 1), Y1 and Y2 seen in the proof of

Proposition 2.7. Their left ends are defined as follows: the left end of Dj is (jf:)n forj=1,...,5n

— 1; that of Y1 is and that of Y2 is %

Let G eGmm and |G| =n > 5. Let sn correspond to n as in Proposition 2.6. The expression N[1,

Qn +1) =Y1 U Y2 U (U 5;2—11 Dj) is the quasi-partition of N[1, Qn + 1) by these discrete

intervals. (Some of these sn +1

discrete intervals may be empty; hence the term ‘quasi-partition’.)

Let S be a cabal from G. The anchor number of S relative to the above quasi-partition of N[1,
Qn + 1) is denoted by a (S) and is defined to be the left end of the unique discrete interval
(among Y1, Y2, Dj for j =1,...,5n — 1) to which |S]| belongs (see Corollary 2.9).

Sn—

Note. The only quasi-partition of N[1, Qs + 1) considered in this article is N[1, on +1) = Y1 U
Y2 U (U j=11 Dj) where Dj (j =1,...,sn — 1), Y1 and Y3 are as in the proof of Proposition 2.7.

Henceforth, if S is a cabal from G then a (S) will mean only the anchor number of S relative to
the above quasi-partition of N[1, Qn + 1).

Proposition 2.10. Let G €Gmwm and |G[> 5. Then:

Ma(T)< % for every cabal T from G and
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(ii) there exists a cabal S from G such that a (S)= %
Proof. (i) follows from the fact that 1 < |T| < Qn for every cabal T from G.

(i1) By Proposition 2.3, there is a maximal cabal Lk (G) from G such that Lk (G)> % Thena
(L (G) ==

n—

Corollary 2.11. Let G be as in Proposition 2.10. There exists a cabal S from G such that a (S)
> a (T) for every cabal T from G.

3 The problem MAXANCHOR (MM)

A variant of a problem Q is a formulation of Q that seeks a desired type of solution without
altering the import of Q. Types of variants that are widely studied and used are: optimization,
computation and decision.

An optimization variant of Q is a formulation of Q that asks for a solution of an optimum
measure (which is either the maximum or the minimum of the concerned measure) to each
instance of Q [1].

A computation variant of Q is a formulation that asks for a solution (to each instance of Q)
subject to finitely many conditions.

A decision variant of Q is a formulation of Q in which each instance admits either a ‘yes’ or a
‘no’ answer. The basic ingredients [1] of a decision variant are: the set of instances, the set of
proposed solutions (i.e., certificate candidates) and the predicate that decides whether a
proposed solution yields a feasible solution.

In the context of the P versus NP problem, we shall be concerned with optimization and
decision variants only. It is common to formulate an optimization problem Q as a decision
problem to find out if Q is in NP.

The following is an optimization problem that we name MAXANCHOR (MM): If G eGum
and |G| =n > 5 then find a maximal cabal Lk (G) of M (G) such that a (L« (G)) >a (S) for every
cabal S from G.

A decision variant of MAXANCHOR(MM)

Inputs: (i) Problem instance G €Gmwm ,

(ii) instance size n = |G| > 5,
(iii) r = n (mod3),
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(iv) fc : {0, 1, 2} — R defined by:

fe(0) =22, fo(1) =

2.3(7’1—2)/3

(n-4)/3
4'3n and fc(2) =

-1 n-1

Question: Does there exist a maximal cabal Lk (G) of M (G) such that a (Lx (G)) = fc (1),
where r = n (mod3)?

Certificate candidate: C (G) =r.

Output: YES (meaning such a desired cabal Lk (G) exists) or NO (no such cabal L (G) exists),
as appropriate.

Note. It is mandatory that the inputs (i) through (iv) and C (G) be free from any error, as also
that they be logically consistent with one another.

In Section 4, we outline an algorithm (in pseudocodes) that we name GMM MAXANCHOR
and prove what are required to verify that MAXANCHOR (MM) is in NP.

4 Algorithm Gum MAXANCHOR

The following algorithm will be referred to as Gum MAXANCHOR. The inputis (G, n, 1, f6,C
(G)). G, n, 1, fcand C (G), as well as the decision question and the required output, are given
in the decision variant of MAXANCHOR (MM) outlined in Section 3.

Algorithm Guv MAXANCHOR
BEGIN
1.ifr=0

2. then print “G €6 <. Decision: YES, there exists Lk (G) <M (G)

such that a (L (G))= 2= and STOP

3.elseifr=1

4. then print “G € G % Decision: YES, there exists Lk (G) cM (G)
such that a (Lk (G))="and STOP

5. else print “G €G G % . Decision: YES, there exists Lk (G) cM (G)
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such that a (Lk (G))="and STOP
6. endif
7. endif
STOP

Note: In the above pseudo-code, excluding BEGIN and STOP, the instructions have been
numbered 1 through

7. The numbered instructions will be referred to as line 1 through line 7.

Proposition 4.1. The algorithm Gmm MAXANCHOR is feasible (i.e., terminates in a finite
number of steps) and correct.

Proof. The algorithm makes decisions based on whether r =0, 1 or 2. Each of these checks for
r clearly terminates in a finite number of steps.

The possible outputs are all accounted for in three lines of the algorithm -namely, lines 2, 4 and
5. So the algorithm returns only finitely many outputs. Printing each decision clearly terminates
in a finite number of steps.

Consequently, Gum MAXANCHOR is feasible. Next, we assert its correctness.

If r = 0 then by line 2 the algorithm decides YES. This output is correct by Proposition 2.3(i).
If r = 1 then by line 4 the algorithm decides YES. This output is correct by Proposition 2.3(ii).
If r =2 then by line 5 the algorithm decides YES. This output is correct by Proposition 2.3(iii).

Proposition 4.2. Given an input (G, n, 1, f¢, C (G)), Gum MAXANCHOR runs in polynomial
time in n.

Proof. The total number (say, Tmm) of steps executed by the algorithm Gum MAXANCHOR
is the sum of the numbers of steps for all the lines executed. Suppose that one execution of the
line j requires tj steps and that this line is executed exactly rj times. Then trj is the number of
steps consumed by the line j in one execution of the algorithm.

In one execution of the algorithm, each line is executed once if at all. Hence, for j =1,..., 7, tjr;
=1.

We suppose each endif line takes constant time, independent of n.

The number of steps required for checking the value r takes from {0, 1, 2} is bounded by n2.
Likewise for the output of the decision (lines 2, 4 and 5). So the number of steps required for
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each of the five lines other than the endif lines is bounded above by n?, whence Tmm < 5n? + 2.

Proposition 4.3. To each instance G of MAXANCHOR (MM) there is a certificate that is
verified by Gum MAXANCHOR in polynomial time in the size (n) of G.

Proof. C (G) =r (where r = n (mod3)) is the required certificate.

5. MAXANCHOR(MM), P (FIN), the class NP and the class P
Proposition 5.1. MAXANCHOR (MM) is in NP.

Proof. Let G be a given instance of MAXANCHOR (MM) with |G| = n > 5. The next
requirements are a check-type algorithm and a certificate candidate that is verified in
polynomial time by this algorithm to confirm the existence of a solution to G.

The required algorithm is Gum MAXANCHOR (Section 4) and an appropriate certificate
candidate is C (G) = r (Proposition 4.2 and Proposition 4.3), where r = n (mod3).

Proposition 5.2. MAXANCHOR (MM) is not in P.

Proof. Let A be a given feasible algorithm that outputs a desired maximal cabal Lk (G) of M

(G) (where G is the given instance, with |G| =n > 5) as required in the optimization variant of
MAXANCHOR (MM) (Section 3).

Let |Lk (G)| = s. The s members of Lk (G) are the atomic sub-outputs of this solution to the
instance G. Name these sub-outputs Ms,...,Ms in the order that A follows in computing Lk (G).

n/
Case 1: n = 0(mod3). Here s > i—_i (see Proposition 2.3(i), Proposition 2.10 and Corollary
2.11).

Forj=l,...,s — 1, having taken t; steps for only the computation of M;, suppose A takes another
ti+1 steps to compute M;+1; in other words, once A executes tj steps to compute M; then
beginning with the next step A executes tj+1 steps to compute Mj+1, allowing that any of the
already-computed sub-outputs M through M; may be used anywhere in the computation of
Mj+1. Obviously, then, each t;> 1 and ts > 1. If T (Lk) is the total number of steps taken by A
to compute and output the maximal cliques M1 through 3n/3 Ms, then T (Lk) >t1 + --- +ts>s

n/3 .. . . L .
> iTl By Proposition 2.4(i), A cannot run in polynomial time, and the conclusion follows.
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(n-4)/3

Case 2: n = I(mod3). Here s 24'3n_1 (see Proposition 2.3(ii), Proposition 2.10 and Corollary
(n-4)/

2.11). Rea- soning as in the proof of Case 1 leadsto T (Lk) >t1 + -+ + ts > s> 43" The

conclusion follows by Proposition 2.4(ii).

(n-2)/3
Case 3: n = 2(mod3). Here s > 22

2.11).

(see Proposition 2.3(iii), Proposition 2.10 and Corollary

n—1

2.3(?'1—2)/3

Reasoning as in the proof of Case 1 leadsto T (Lk) >t1 + -+ +ts>s> . The conclusion

follows by Proposition 2.4(iii).

6. Conclusion
P #NP follows from Proposition 5.1 and Proposition 5.2.

There is a caveat, though. The optimization variants of the problems MAXANCHOR (MM)
and P (FIN) require computations that take exponential number of steps, as can be gauged from
the proof of Proposition 5.2, leading to a thought that no algorithm is likely to possess the
capability to compute exponential (or worse) number of atomic sub-outputs of the solution to
any instance of either problem in polynomial time. But what if underlying theories get
advanced sufficiently so that algorithms with this capability are designed? Would it imply that
exhaustive search could be done in polynomial time? Then would P = NP ensue? This is a moot
point. However, at present, surveys ([10], for one) seem to favour the opinion that no algorithm
is ever likely to have such a capability. This seems to justify the conclusion above.
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Appendix
A. Examples of input instances and input sizes

(A-1) If the problem is to find whether a positive integer r> 1 is composite, then each r € N—
{1} is an instance. The input size of an instance r is [log(r)].

(A-2) If the problem is to reorder (permute) the digits of a given positive integer r > 10, with
the reordering subject to finitely many conditions, then each positive integer r > 10 is an
instance. Its size is n is the number of digits in r (with all the repetitions counted in).
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(A-3) Let G =(V,E) beagraphand S c V with S # ¢.Then S is an independent set of G if no
two elements of S are adjacent in G. Suppose |G| =2p (where p € N) and the problem is to find
whether G contains an independent set of cardinality p. Then each graph of even order is an
instance. The input size can be the |V | or |V [+|E|.

(A-4) Suppose it is required to find whether a given finite string X of English lowercase
alphabets can be reordered to obtain a meaningful English word. Then the size of an instance
is the number of characters (with all the repetitions counted in) that constitute the instance. The
instance tatotirni is of size n = 9.

B. Distinct certificates for the same instance

Each of (B-1) through (B-3) shows that an instance can have two or more distinct certificate
candidates that become certificates. Please see [5] for the following terms in (B-2) and (B-3):
subgraph and induced subgraph.

(B-1) Let G =(V, E) be a graph of order n > 10. A walk in G is a sequence Xi,...,Xk Of (not
necessarily distinct) vertices of G such that xj # x;+1 and {x; ,xj+1}€ E for each j =1,....k — 1.
If the edges in a walk are distinct, then the walk is a trail. A trail that begins and ends at the
same vertex is a circuit or closed trail. A trail in G that includes every edge of G is an Eulerian
trail. A circuit in G that includes every edge of G is an Eulerian circuit. G is an Eulerian graph
if it contains an Eulerian circuit.

If the vertices of a walk xu,...,Xx are distinct, then the walk is a path; the path in this case is also
called an x1 -xk path. G is connected if there is an x-y path whenever x and y are distinct vertices
of G.

Let x € V. The degree of x in G is denoted by dx and is defined to be the number of vertices
of G that are adjacent to x.

Now assume G is connected and |G| = n, with V = {x,...,.xn}. Consider the question of deciding
if G is Eulerian. Let C1 and Cz be two certificate candidates with C1 being a closed trail in G
and C2 being the sequence dxu, . . ., dxn. Note that each dxj € N (j =1,...,n) since G is connected

[5].
Next, suppose an algorithm (say, ALG:) has, in polynomial time, confirmed that C1 includes

every edge of G. Then Cy is an Eulerian circuit in G -i.e., C; is per se a solution to the problem
instance G.

Next, suppose another algorithm (say, ALG>) has, in polynomial time, confirmed that each of
the n numbers dx: through dx, is an even number. Then G is Eulerian ([5], pp.56). So C,,
though not an Eulerian circuit, confirms the existence of an Eulerian circuit in G. Hence C>
yields a solution to the instance G.
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Thus C1 and C; are distinct (i.e., C1 # C2) certificate candidates that become certificates for the
instance G.

(B-2) Let G =(V, E) and |G| =n > 10. Suppose it is required to decide if G has an independent
set of a specified cardinality q € N where 2 < q<n. Consider two certificate candidates, C3 and
Cssuchthat C3c V,|C3=q,Csc Vand|C4=n—q.

Next, suppose an algorithm (say, ALG3) has, in polynomial time, verified that no two elements
of Cz are adjacent. Then C3 is an independent set of size g.

Note that the deletion of each element of C4 from G results in the deletion of a non-negative
number of edges from G.

Next, suppose another algorithm (say, ALG4) has, in polynomial time, deleted all the elements
of C4 from G and also confirmed that in this process all the edges of G have been deleted. Then
ALG; has, in effect, generated the induced subgraph G — C4 of G and also implied that G — C4
has no edges. Clearly G — C4 is of order q, from which it is immediate that V — C4 is an
independent set of size g although C4 need not be an independent set. So C4 may not per se be
a solution but confirms the existence of a solution, namely, V — Ca.

Consequently, both Cz and Cs are distinct certificates to confirm that the G indeed has an
independent set of size q.

(B-3) Let G = (V, E) be a graph and let F be a nonempty subset of E. If y € V then y is said to
be covered by F if some edge {y, z} of Gisin F.

Let M denote the set of all the vertices of G that are covered by F. The following are immediate:
B-3(i) If {x, y} e Fthenx € M and y € M, and B-3(ii) if z € V — M then {z, x} € E —F for
each x € V that is adjacent to z in G.

Suppose the question is to decide if a given graph G =(V, E) (of order n > 10) has a clique of a
specified cardinality q € N where 2 < q<n. Consider three certificate candidates W1, W> and
W3 such that:

B-3(iii) W1 c V and |W1| = q,

B-3(iv) W2 c Eand W2 =q (q— 1) /2, and

B-3(v) Wz c V and |W3|=n —q.

Let M denote the set of all the vertices of G that are covered by W5.

Next, assume an algorithm (say, ALGs) has, in polynomial time, verified that the elements of
W1 are pairwise adjacent in G. Then W1 is a clique of cardinality q and so is per se solution to
the problem instance G.

Next, suppose that another algorithm (say, ALGe) has, in polynomial time, computed M and
also output that |[M| = g. It is obvious that W> is not a clique, but it leads to the clique M of
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cardinality g, aided by ALGs. So W2 is per se not a solution but yields a solution (viz., M) to
the instance G.

Further, suppose yet another algorithm (say, ALG~) has, in polynomial time, deleted all the
elements of W3 from G. By this deletion process, ALG7 has generated the subgraph G — W3 of
G. This subgraph has vertex set V — Was.

Let k be the number of edges deleted from G upon deleting all the elements of W3 from G.

Suppose it turns out that [E|— k = @. Then the subgraph G — W3 has order q (since [V —

W3| = g) and has exactly @ edges. So V — Wi is a clique (of G) of cardinality g. So W3 is

per se not a solution but yields a solution, namely, V — W3, to the instance G.

Thus W1, W2 and W3 are distinct certificates to confirm that G indeed has a clique of cardinality
q.

That W», though not a solution per se (to G), yields a solution is a consequence of the following
proposition.

Proposition Appendix B.1. Let G =(V, E) be a simple graph of ordern>2. Let F € E and F

# ¢ Let M be the set of all the vertices of G that are covered by F and let |F | = @ for some

g€ Nwith2<q<n.If2 M|=qthen M is a clique of G.

Proof. Suppose x and y were distinct non-adjacent vertices of M. Then the number of edges of

G that have both the endpoints in M would be less than q(qT_l), owing to |M| = g. This, in the

light of |F | = @, forces an edge {a, b} of G to be in F for some a € V — M, a patent

impossibility because no vertex in V — M is covered by F . So the vertices of M are pairwise
adjacent.
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