
Global Journal of Pure and Applied Mathematics.

ISSN 0973-1768 Volume 21, Number 1 (2025), pp. 51-73

©Research India Publications

http://www.ripublication.com/gjpam.htm

A PROBLEM IN MOON-MOSER GRAPHS TO SHOW P ≠NP

R. Dharmarajan1,* and D. Ramachandran2

Niels Abel Foundation, Palakkad 678011, Kerala, India.

Copyright (from 2024) R. Dharmarajan

Abstract

The P versus NP problem, a conjecture formulated by Stephen Cook in 1971, is one of

the deepest and most challenging problems in contemporary mathematics and

theoretical computer science. A concise mathematical formulation of the problem

reads: is P = NP. In longer phrasing, this asks: given a problem instance, if some

additional data can be recognized fast enough as logically implying the existence of a

solution (to the instance), then can a solution be computed fast enough without the aid

of any such additional data? In this article we explain why P ≠NP.

Keywords: Algorithm; polynomial time; certificate; maximal clique; Moon-Moser

graph; power set. Mathematics Subject Classification 2020: 03C70, 05C69, 11Y16,

68W40

1 Introduction

More on terminologies, symbols and notations used in this article can be found in [3], [5] or

[7]. Throughout this article, N will denote the set of positive integers, W the set of non-negative

integers (i.e., W = N∪{0}), Z the set of integers and R the set of real numbers.

This article is organised as follows: Section 1 deals with some salient points on algorithms, the

problem classes P and NP, proposed solutions and feasible solutions. Section 2 presents graph

theoretical concepts essential for the objective of the article. Section 3 presents the main

problem and Section 4 deals with an algorithm, both instrumental in proving P ≠NP. Section

5 outlines proof that this problem is in NP but not in P.

52 R. Dharmarajan and D. Ramachandran

1.1 Algorithms

An algorithm is any well-defined computational procedure that takes finitely many quantities

as input and produces finitely many quantities as output. An algorithm is thus a sequence of

well-defined computational steps transforming the input into the output [3].

An instance (also called input instance or problem instance) of a problem is an input satisfying

all the constraints in the problem statement needed to compute a solution to the problem [3].

For example, suppose the problem is to arrange a given finite sequence of positive integers in

non-descending order. Then any list consisting of finitely many positive integers is an instance

of this problem. One instance is: 32, 10, 18, 31, 17, 10, 17, 7, 10.

How the size (or length) of the instance is defined depends on the problem Q being studied [3].

For example, if Q is the problem seen in the preceding paragraph, then the size of the instance

given there is n = 9 (since all the repetitions have to be counted in). More examples of instances

and input sizes are in (A-1) through (A-4) of Appendix A.

A “step” in an algorithm is a primitive operation executed by the algorithm. In dealing with

any algorithm, there is a presupposition that every primitive operation to be executed by the

algorithm is unambiguously defined. Since we furnish algorithms only in lines of pseudocodes,

we adopt the following point of view for the notion of number of steps [3]: we assume that

each execution of the jth line of the pseudocode takes tj steps (meaning, tj primitive operations).

From a computational point of view, given a problem Q, it is natural to ask if there exists, or

can be developed, an algorithm that can process any given instance of Q to a required extent in

such a way that the number of steps taken by the algorithm is bounded by a fixed polynomial

in the size of the given instance [2]. Such an algorithm is said to process the input instance in

polynomial time (or run in polynomial time; or take polynomial time to process) and is

therefore called a polynomial-time algorithm. Note that an algorithm is deemed to run in

polynomial time only vis-`a-vis a specified problem Q; in other words, the phrase ‘the

algorithm ALG runs in polynomial time’ really means that there is a specified problem Q such

that ALG processes each instance of Q in polynomial time.

When we say the number of steps taken by an algorithm is bounded by a fixed polynomial in

the variable n, what we mean is: there exists a polynomial f (n) that is fixed for Q (meaning, in

turn, that the instance X of Q can vary but f (n) does not, so long as the problem Q does not)

such that given two instances (of Q) of sizes n1 and n2, the number of steps taken by the

algorithm is at most f (n1) to process the n1-sized instance and at most f (n2) for the n2-sized

instance.

For the purposes of this article, we consider two types of algorithms: solve-type algorithms

(that find a solution, or correctly establish the absence of any solution, to each input instance)

and check-type algorithms (that do not find solutions but only check out whether any additional

input that is claimed to be a solution to an instance is really so). One crucial difference between

A PROBLEM IN MOON-MOSER GRAPHS TO SHOW P ≠NP 53

these two types is: a solve-type algorithm needs only the instance of the problem as input

whereas a check-type algorithm needs the instance as well as an additional input in the form of

a “proposed solution” or “attempted solution” (called so since it might be a solution or not). A

solution to an instance is also called a feasible solution. A solve-type algorithm is also called

an exact algorithm.

Every algorithm considered in this article is assumed, or if necessary shown to be, correct in

the sense that given an input instance, the algorithm halts with an output that is correct [3].

1.2 Certificate candidates and certificates

In this article, we consider two classes of problems that are important in the context of

algorithms: P and NP. Informally, the class P consists of those problems that are solvable in

polynomial time [2, 3]. This means to each problem in this class there exists a polynomial-time

algorithm that solves each instance of the problem.

The class NP consists of those problems that are “verifiable” in polynomial time [3]. What is

meant by calling a problem “verifiable” is that if, in addition to an instance of the problem, we

are somehow given a “certificate” of a solution, then we could verify, using a check-type

algorithm running in polynomial time, that the certificate is indeed a solution, or logically

implies (i.e., confirms) the existence of a solution, to the given instance.

It is clear that a certificate is also an input component. Also, a certificate only begins as a

proposed solution, and might or might not turn out to be a feasible solution [6]. We therefore

wish to distinguish between these two situations.

To this end we define a certificate candidate. A certificate candidate is a component that is input

along with the problem instance under consideration, the intention (of the user) being to test

whether or not the certificate candidate confirms the existence of a solution to the instance. So

a certificate candidate is a proposed solution that accompanies the instance.

Let Q be the problem under consideration, X a problem instance of size n and C (X) the

certificate candidate that accompanies X. The result of running an appropriate algorithm on X

and C (X) will be exactly one of the following three:

1.2(i) C (X) is per se a solution to X (i.e., the proposed solution turns out to be a feasible

solution). 1.2(ii) C (X) per se is not a solution but it logically implies the existence of a solution,

whether or not the implied solution is subsequently made explicit (i.e., the proposed solution,

though not a feasible solution by itself, confirms the existence of a feasible solution). 1.2(iii)

Neither is C (X) a solution nor does it logically imply the existence of a solution.

Henceforth, if any certificate candidate C (X) obeys 1.2(i) or 1.2(ii), then we will say ‘C (X)

yields a solution (to X)’. And by saying ‘C (X) does not yield a solution (to X)’ we will mean

that C (X) obeys 1.2(iii). Examples to distinguish a certificate candidate obeying 1.2(i) from

54 R. Dharmarajan and D. Ramachandran

one obeying 1.2(ii) are in (B-1) through (B-3) of Appendix

B.

Next, “checking out” a certificate candidate is different from “verifying” it. To verify a

certificate candidate C (X) is to have a check-type algorithm establish that C (X) yields a

solution to the instance X. If a certificate candidate is thus verified then it is a certificate (of a

solution); else it is just a certificate candidate. If a certificate candidate becomes a certificate,

then we will say either ‘the certificate candidate is verified’ or ‘the certificate is verified’. Such

a verification is tantamount to saying “YES” to the question whether the instance X has a

solution.

On the other hand, to check out C (X) is to have a check-type algorithm decide whether or not

C (X) yields a solution to X. If the algorithm checking out C (X) decides that C (X) does not

yield a solution then this decision is tantamount to saying “NO” to the question whether X can

be solved with the aid of C (X). This “NO” is not a conclusive response to whether X has a

solution, but only rules that the certificate candidate C (X) is not a certificate. Thus:

1.2(iv) “verifying” requires a certificate candidate that yields a solution to the given instance

whereas “checking out” calls for only a certificate candidate that is not required to have any

additional properties / features; and 1.2(v) an algorithm is deemed to have verified a certificate

candidate C (X) (meaning, C (X) is deemed to have become a certificate) only when C (X) is

shown (by the algorithm) to yield a solution to X.

So, while a certificate candidate is only a proposed solution, a certificate is a feasible solution.

In other words, every certificate is a certificate candidate in the first place but not every

certificate candidate becomes a certificate. Further, a verification of a certificate candidate

necessarily begins as an exercise of a check-type algorithm checking out the candidate but

every exercise of checking out a candidate need not culminate in verification.

Thus, certificates (feasible solutions) are special cases of certificate candidates (proposed

solutions).

As noted in the penultimate paragraph of Subsection 1.1, an algorithm is said to solve an

instance X of a problem Q if the algorithm produces a solution (to X) if one exists or correctly

establishes the absence of a solution otherwise, in either case without the need for any

certificate candidate. If an algorithm solves each instance of Q then the algorithm is said to

solve Q. An algorithm that solves a problem instance X and an algorithm that only checks out

a certificate candidate C (X) differ primarily in the following aspect: in the former, the input is

(X, n) and the output is a conclusive response to the question of a solution to X while in the

latter, the input is (X, n, C (X)) and the output is an affirmative or a negative response to the

question whether C (X) yields a solution to X. Note that in each of these cases, finitely many

additional components in the input are allowed.

A PROBLEM IN MOON-MOSER GRAPHS TO SHOW P ≠NP 55

Now rises the question whether the algorithm that checks out a given certificate candidate does

so in polynomial time, for this is crucial in finding out if the concerned problem is in NP. This

underlines the importance of the certificate candidate in this context. Given a problem Q, what

are needed to decide that Q can be included in NP? We need: one, a check-type algorithm -call

it AL (Q) -and two, to each instance X (of Q), a certificate candidate C (X) that is verified by

AL (Q) in polynomial time (in n, the size of X).

1.3 Remarks on algorithms recognizing feasible solutions

An algorithm is said to recognize a feasible solution if the algorithm verifies that the input

certificate candidate is a certificate. In the context of NP, such recognition needs to be done in

polynomial time.

Let X be an instance of a problem Q and ALG be the algorithm designed to check if an input

certificate candidate is a certificate. Suppose C1 and C2 are two distinct certificate candidates.

Also suppose that both C1 and C2 are feasible solutions to X.

It is desirable that ALG checks out C1 or C2, whichever is input with X. However, owing to

the design of ALG the following might ensue: 1.3(i) ALG recognizes the feasible solution C1

in polynomial time and 1.3(ii) ALG fails, or takes worse than polynomial time (perhaps,

exponential or factorial time [3, 9]), to recognize the feasible solution C2.

Then C2, despite being a feasible solution, is not useful in deciding if Q is in NP. So only

candidates that can be checked out by the algorithm in polynomial time should be used. To

aver that Q is in NP, for each instance of Q we only need one candidate that ALG recognizes

as a feasible solution in polynomial time, even if there exist other feasible solutions that ALG

does not recognize at all or does not recognize in polynomial time.

1.4 The exercise of looking for certificates

If a problem Q is given, then it is not difficult to come up with an instance X of a desired size

n and a certificate candidate. But the same cannot be said for a certificate, even if an algorithm

is available. Then how can a certificate, if at all one exists, be obtained?

Recall the part of the informal explanation of the class NP that goes ‘...if, in addition to an

instance of the problem, we are somehow given a “certificate” of a solution, then we could

verify...’ (in the second paragraph of Subsection 1.2). The operative word there is ‘somehow.’

This clearly indicates there are no hard and fast rules as to the source of a certificate candidate

or its form or the process of obtaining it; only every certificate candidate must rest on irrefutable

theory that is relevant to the problem. Indeed, given an arbitrary problem instance, it is not

known how to identify a certificate [6]. So it is not known how to identify a certificate candidate

that will turn out to be a certificate. A certificate candidate C (X) could be readily available

56 R. Dharmarajan and D. Ramachandran

(i.e., prepared beforehand by someone) or could be compiled as and when the need arises.

Preparing C (X) could take any amount of time polynomial or worse. But the time to prepare

C (X) will not be included in the time required for the algorithm to check out C (X). This is

because whoever prepares C (X) is allowed to do any immense amount of calculation

beforehand, and only the results of that calculation need be written on C (X) [9].

In any quest for finding out whether a problem is in NP, one assumption (on the quester’s part)

is that given an instance of the problem there is a non-vacuous class of certificate candidates

corresponding to this instance.

1.5 Remarks on P and NP

The class P is contained in the class NP [2, 3]. But it is not known whether these two classes

are the same -and this is the crux of the famous problem “Is P = NP?” (also called the “P versus

NP” problem).

One approach to this problem is trying to prove NP is contained in P; this, if successful, gives

P = NP. An opposite approach is finding or formulating a problem that falls in NP but cannot

be in P (thereby establishing P ≠NP), even if such a problem is artificially formulated [8].

Any problem in NP can be solved by exhaustive search (also called perebor, meaning “brute-

force search” [8]). But steps in exhaustive search grow to forbiddingly large numbers even for

a moderate growth in the size of the instance. Though decades of extensive efforts to settle the

P versus NP question have produced algorithms that take significantly fewer steps than

exhaustive search for problems in NP, an exact polynomial-time algorithm for any of these

problems is yet to be. As a consequence, it is now commonly believed that P ≠NP [10].

1.6 Atomic sub-outputs

Let S be a solution to a problem instance X. Suppose S consists of finitely many definite and

distinguishable objects Y1,...,Yk (for some k ∈ N) that are to be computed in a sequence. Then

each of these k objects is an atomic sub-output of S.

For example, if the problem is to compute the set of all positive integers q less than a given

positive integer m such that q is a perfect square, then the set S = {1, 4, 9, 16} is a solution to

the instance m = 20 of this problem. Each of the four elements of S is an atomic sub-output of

S. S is the only solution to the instance m = 20. The instance m = 1 has no solution.

Now consider a problem Q such that:

1.6(i) each instance of Q has a solution and

1.6(ii) each solution to a given instance (of size n) of Q consists of matomic sub-outputs (to be

computed in a sequence) for some m ∈ R with m> 1.

A PROBLEM IN MOON-MOSER GRAPHS TO SHOW P ≠NP 57

Any algorithm that outputs a solution to a given instance of Q has to compute all the matomic

sub-outputs that the solution comprises. Then as the instance size n increases, the number of

steps taken by an algorithm cannot be bounded above by any polynomial in n. Consequently,

if Q is in NP then it follows immediately that P ≠ NP. To confirm that Q is in NP, we need a

check-type algorithm -call it AL (Q) -such that to each instance X of Q there must be obtainable

at least one certificate candidate C (X) that is verified by AL (Q), in polynomial time, to yield

a solution to X. Such a C (X) can be obtained from anywhere or prepared anyhow but once it

is input along with X and n then from that point AL (Q) should need to do only a polynomial

amount of computations to verify C (X).

We present such a problem in Section 3. The problem involves sets of maximal cliques of

Moon-Moser graphs. The necessary verifications (using an appropriate polynomial-time

algorithm) are in Section 4 and Section 5.

1.7 Remarks on capabilities of algorithms

There are computational capabilities algorithms are known to possess, and literature abounds

with discussions on such capabilities. And there are capabilities that supposedly cannot be

possessed by any algorithm, at least as of now. For instance, to date there is no known algorithm

with the capability to carry out exhaustive search in polynomial time for an arbitrary input.

Discussing these capabilities is not in the scope of this article. Suffice it to say that facts /

suppositions about capabilities of algorithms rest on established theories. These theories may

advance and then there may come along algorithms with new capabilities. We deal with the P

versus NP problem in the framework of capabilities of algorithms at present.

In the preceding discussions, only informal definitions of algorithm, P and NP have been used.

Their formal definitions are in [2, 3].

2 Essential graph theory

Let n ∈ W and b ∈ N. Let r ∈ W and 0 ≤ r ≤ b − 1. Then the equation r = n (modb) will mean

that r is the remainder upon dividing n by b; so will the expression n ≡ r (modb). In particular,

if r = 0 then n is divisible by b.

A set is a collection of definite and distinguishable objects [3, 7]. Each object in a set is an

element or a member of the set. It is taken for granted that if X is a given set then there is a

well-formed definition that decides

conclusively whether or not two given elements of X are distinct. Also, such a definition is

made explicit when necessary. There is a unique set that contains no members, and this is the

empty set, denoted by φ.

The cardinality (or, size) of a set X is the number of elements in X, and is denoted by |X|.

58 R. Dharmarajan and D. Ramachandran

Obviously |X|≥ 0. If |X|∈ W then X is a finite set; else X is an infinite set.

2.1 Cabals and Moon-Moser graphs

An undirected simple loop-free graph G is an ordered pair G =(V, E) where V is a nonempty

finite set and E is a set of subsets of V such that |A| = 2 for each A ∈ E. Each element of V is a

vertex of G and each element of E is an edge of G. The expressions x ∈ V and x ∈ G will both

mean that x is a vertex of G. Similarly, {x, y}∈ G and {x, y}∈ E will both mean {x, y} is an

edge of G.

Let G =(V, E) be a graph. The order of G is denoted by |G| and is defined as |G| = |V |. Two

distinct vertices x and y of G are adjacent if {x, y}∈ E. If M is a nonempty subset of V then M

is a clique of G if either |M| =1 or the vertices of M are pairwise adjacent when |M| > 1. A

clique M is a maximal clique of G if M is not a proper subset of any clique of G. G is complete

if V is a clique of G. Obviously every graph has at least one maximal clique.

Every graph considered in this article is assumed undirected, simple and loop-free and of order

at least 1.

M (G) will denote set of all the maximal cliques of G. If M1 ∈M (G) and M2 ∈M (G) then M1

and M2 are distinct if and only if M1 and M2 are distinct subsets of V. Also, µ (G) will denote

|M (G)|, the number of maximal cliques of G.

A cabal of M (G) (or a cabal from G; or, simply, a cabal, if the graph the cabal comes from is

understood from the context) is a nonempty subset S of M (G) with the following property:

exists k ∈ N such that |A| = k for every A ∈S. Such a cabal will also be called a k-cabal of M

(G) (or a k-cabal from G; or, simply, a k-cabal). A k-cabal is maximal if it is not a proper subset

of any k-cabal. Obviously, if k and m are two distinct positive integers, then there can be a k-

cabal and an m-cabal of M (G). Also, if there is a k-cabal from G then there is a maximal k-

cabal from G since M (G) is a finite set.

If S is given to be a cabal of M (G) then it will be understood that S is a k-cabal for some unique

k ∈ N.

For t ∈ N, we define the set Lt (G) as Lt (G)= {A ∈M (G): |A| = t}. Clearly, each nonempty Lt

(G) is a cabal of M (G).

Proposition 2.1. Let G be a graph and |G| = n. Then:

(i) Lt (G) is nonempty for at least one t ∈{1,...,n} and Lt (G)= φ for t>n.

(ii) If t, s ∈ N with t ≠. s then Lt (G) ∩Ls (G)= φ

(iii) For each k ∈ N such that there is a k-cabal of M (G), there is exactly one maximal k-cabal,

A PROBLEM IN MOON-MOSER GRAPHS TO SHOW P ≠NP 59

namely, Lk (G).

Proof. (i) and (ii) follow immediately from the definition of M (G) and Lt (G).

(iii) Suppose there were two distinct maximal k-cabals Ak and Bk for this k. Then neither of

these two is a proper subset of the other. Also, each is a proper subset of Ak ∪Bk. Further, Ak

∪Bk is a k-cabal. But this immediately contradicts the maximality of Ak and Bk.

Next, the set Lk (G) is clearly a k-cabal. Lk (G) is also a maximal k-cabal since every maximal

clique A (of G) such that |A| = k is a member of Lk (G).

For the remainder of this section, assume G =(V, E) and |G| = n. The following results on µ (G)

are due to Moon and Moser (see [4]):

(i) µ (G) ≤ 3n/3 if n ≡ 0(mod3),

(ii) µ (G) ≤ 4.3(n−4)/3 if n ≡ 1(mod3) and

(iii) µ (G) ≤ 2.3(n−2)/3 if n ≡ 2(mod3).

The dot (.) to the right of the inequality symbols in (ii) and (iii) denotes multiplication of real

numbers. G is a Moon-Moser graph if it satisfies any of the following:

(MM0) n ≡ 0(mod3) and µ (G) = 3n/3 .

(MM1) n ≡ 1(mod3) and µ (G) = 4.3(n−4)/3

(MM2) n ≡ 2(mod3) and µ (G) = 2.3(n−2)/3

Specifically, G is an MM0 graph if it satisfies (MM0), an MM1 graph if it satisfies (MM1) and

an MM2 graph if it satisfies (MM2).

A graph G1 = (V1, E1) is isomorphic to a graph G2 = (V2, E2) (written G1 ≅ G2) if there exists

a bijective map 𝑓 : V1 → V2 with the following property: {x, y}∈ E1 if and only if { f (x) , f
(y)}∈ E2.

𝐺𝑀𝑀
(0)

 will denote the set of all the MM0 graphs, 𝐺𝑀𝑀
(1)

 the set of all the MM1 graphs and 𝐺𝑀𝑀
(2)

the set of all the MM2 graphs. For each j =0, 1, 2, two members G and H of 𝐺𝑀𝑀
(𝑗)

 are deemed

distinct if and only if G is not isomorphic to H. Clearly 𝐺𝑀𝑀
(𝑖)

∩𝐺𝑀𝑀
(𝑗)

= φ whenever i and j are

distinct elements of {0, 1, 2}.

We define GMM = 𝐺𝑀𝑀
(0)

∪𝐺𝑀𝑀
(1)

∪𝐺𝑀𝑀
(2)

. Then GMM is the set of all the Moon-Moser graphs. For

each . n ∈ N−{1}, there exists only one Moon-Moser graph of order n (upto isomorphism) [4].

For each j ∈{0, 1, 2}, 𝐺𝑀𝑀
(𝑗)

 is an infinite set.

60 R. Dharmarajan and D. Ramachandran

Proposition 2.2. Let G =(V, E) ∈GMM and |G| = n ≥ 2. Then:

(i) |M|≤ n − 1 for every clique M of G.

(ii) M (G)= L1 (G) ∪· ··∪Ln−1 (G) and µ (G)= |L1 (G)| + ··· + |Ln−1 (G)|.

Proof.

(i) If G were complete, then V would be the only maximal clique of G, from which µ (G) = 1.

This would mean (ia) 1=3n/3 if n ≡ 0(mod3), (ib) 1=4.3(n−4)/3 if n ≡ 1(mod3) or (ic) 1=2.3(n−2)/3

if n ≡ 2(mod3). (ia) is false since n ≥ 2. If n ≡ 1(mod3) then n ≥ 4, from which we have 1 = µ

(G) ≥ 4, clearly impossible, thus ruling out (ib). If n ≡ 2(mod3) then n ≥ 2, giving 1 = µ (G) ≥

2, again an impossibility, and so (ic) is false.

(ii) Straightforward, since Lt (G)= φ if t ≥ n and Lt (G) ∩Ls (G)= φ whenever t and s are distinct

elements of {1,...,n − 1}.

Proposition 2.3. Let G and n be as in Proposition 2.2.

(i) If n ≡ 0(mod3) then |Lk (G)|≥
3𝑛/3

𝑛−1
 for some Lk (G) ⊆M (G).

(ii) If n ≡ 1(mod3) then |Lk (G)|≥
4.3(𝑛−4)/3

𝑛−1
 for some Lk (G) ⊆M (G).

(iii) If n ≡ 2(mod3) then |Lk (G)|≥
2.3(𝑛−2)/3

𝑛−1
 for some Lk (G) ⊆M (G).

Note. In (i), (ii) and (iii) above, k depends on G and k ∈{1,...,n − 1}.

Proof. (i) Suppose the conclusion were false -i.e., |Lk (G)| <
3𝑛/3

𝑛−1
for each k =1,...,n − 1. Invoking

Proposition 2.2(ii), we get |M (G)| = |L1 (G)| + ··· + |Ln−1 (G)| < (n − 1)
3𝑛/3

𝑛−1
, resulting in µ

(G) < 3n/3 that in

turn contradicts G ∈𝐺𝑀𝑀
(0)

A similar reasoning proves each of (ii) and (iii).

Proposition 2.4. Let N(0) = {3n : n ∈ N}, N(1) = {3n +1: n ∈ N} and

N(2) = {3n +2: n ∈ W}.

(i)
3𝑛/3

𝑛−1
 cannot be bounded above by anb for any positive real constants a and b as n increases

over N(0).

(ii)
4.3(𝑛−4)/3

𝑛−1
 cannot be bounded above by anb for any positive real constants a and b as n

A PROBLEM IN MOON-MOSER GRAPHS TO SHOW P ≠NP 61

increases over N(1).

(iii)
2.3(𝑛−2)/3

𝑛−1
 cannot be bounded above by anb for any positive real constants a and b as n

increases over N(2).

Proof.

(i) Suppose the conclusion were false. Then there would exist real constants c> 1 and d> 1 such

that
3𝑛/3

𝑛−1
 ≤ cnd for all n ∈ N(0). Then 3n/3 < cnd+1 . This leads to

𝑛

3
 < (d + 1) log (cn), giving

𝑛

log(𝑐𝑛)
 < 3(d + 1)

(where log denotes logarithm to base 3). But this contradicts the fact that
𝑛

log(𝑐𝑛)
 is unbounded

above as n increases over N(0).

(ii) If
4.3(𝑛−4)/3

𝑛−1
≤ cnd for real constants c > 1 and d > 1 (and for all n ∈ N(1)) then

3(𝑛−4)/3

𝑛−1
 < cnd,

giving 3(n−4)/3 < cnd+1, leading to
𝑛−4

log(𝑐𝑛)
 < 3(d + 1), contrary to the fact that

𝑛−4

log(𝑐𝑛)
 is unbounded

above as n increases over N(1).

(iii) If
2.3(𝑛−4)/3

𝑛−1
 ≤ cnd for real constants c > 1 and d > 1 (and for all n ∈ N(2)) then

𝑛−2

log(𝑐𝑛)
 < 3(d

+ 1) would ensue, contradicting that
𝑛−2

log(𝑐𝑛)
 is unbounded above as n increases over N(2).

2.2 Discrete intervals in N

For set union (∪) and set intersection (∩), please see [7]. Let a and b be real numbers with a <

b. The interval [a, b) in R is defined as [a, b)= {x ∈ R : a ≤ x < b}.

The set N[a, b) is defined as N[a, b)= N∩ [a, b)= {q ∈ N : a ≤ q <b}, and will be called a discrete

interval in N.

Let x ∈ R. The ceiling of x is denoted by [x] and is defined to be the smallest integer q such

that q ≥ x. Obviously, x ∈ Z if and only if x = [x].

Proposition 2.5. For n ∈ N− {1}, we define the positive integer Ωn as follows:

Ωn =3n/3 if n ≡ 0(mod3), Ωn =4.3(n−4)/3 if n ≡ 1(mod3) and Ωn =2.3(n−2)/3 if n ≡ 2(mod3).

(i) If n ≤ 4 then Ωn = n.

(ii) If n ≥ 5 then Ωn > n.

62 R. Dharmarajan and D. Ramachandran

Proof. (i) If n = 2 then Ωn = 2.3(𝑛−2)/3= 2 = n. If n = 3 then Ωn = 3n/3 =3= n. If n = 4 then Ωn

=4.3(n−4)/3 = 4 = n.

(ii) Each n ∈ N− {1} is of the form n =3q or n =3q +1 or n =3q + 2 for appropriate q ∈ N. So

the statement (to prove) can be named P (q) instead of P (n). We use induction on q to prove P

(q).

Case 1: n ≡ 0(mod3). Write n =3q. Here q ∈ N and q ≥ 2.

For q = 2, n = 6. Then Ωn =3n/3 =9 > n, proving P (q) for q = 2.

Induction hypothesis: Assume P (q) is true for q = m; i.e., for n =3m, Ωn > 3m (meaning, 3m

> 3m). For q = m + 1, n =3m + 3. Then Ωn = 3m+1 =3.3m > 3.3m by induction hypothesis, giving

Ωn > 9m = 3m +6m > 3m +3= n since m ≥ 1.

Case 2: n ≡ 1(mod3). Write n =3q + 1. Here q ∈ N and q ≥ 2.

For q = 2, n = 7. Then Ωn =4.3(n−4)/3 = 12 > n, proving P (q) for q = 2.

Induction hypothesis: Assume P (q) is true for q = m, i.e., for n =3m +1, Ωn =4.3m−1 > 3m +

1.

For q = m + 1, n =3m + 4. Then Ωn =4.3m =3.4.3m−1 > 3 (3m + 1) by induction hypothesis,

giving Ωn > 9m +3=3m +4+6m − 1 > 3m +4= n since m ≥ 1.

Case 3: n ≡ 2(mod3). Write n =3q + 2. Here q ∈ N and q ≥ 1.

For q = 1, n = 5. Then Ωn =2.3(n−2)/3 =6 >n, proving P (q) for q = 1.

Induction hypothesis: Assume P (q) is true for q = m; i.e., for n =3m +2, Ωn =2.3m > 3m + 2.

For q = m + 1, n =3m + 5. Then Ωn = 2.3m+1 =3.2.3m > 3 (3m + 2) by induction hypothesis,

giving Ωn > 9m +6 = 3m + 5 + 6m +1 > 3m +5= n since m ≥ 0.

This completes the induction, proving (ii).

Proposition 2.6. Let Ωn be as in Proposition 2.5. To each n ∈ N− {1}, there corresponds a

smallest sn ∈ N (depending on n) such that
Ωn

𝑛𝑠𝑛
 ≤ 1.

A PROBLEM IN MOON-MOSER GRAPHS TO SHOW P ≠NP 63

Proof. Take sn = [
Ω𝑛

𝑛
].

Proposition 2.7. Let n ∈ N, n ≥ 5 and sn be the smallest positive integer corresponding to n

such that
Ω𝑛

𝑛𝑠𝑛
 ≤ 1.

Then N[1, Ωn + 1) equals the union

ℕ [Ω𝑛

𝑛𝑠𝑛
 ,

Ω𝑛

𝑛(𝑠𝑛−1)
) ∪ ℕ [Ω𝑛

𝑛(𝑠𝑛−1)
 ,

Ω𝑛

𝑛(𝑠𝑛−2)
) ∪ ∪ ℕ [Ω𝑛

2𝑛
 ,

Ω𝑛

𝑛
) ∪ ℕ [Ω𝑛

𝑛
 ,

Ω𝑛

𝑛−1
) ∪ ℕ[Ω𝑛

𝑛−1
 , Ω𝑛 +

1);

i.e., N[1, Ωn +1) =

⋃
𝑠𝑛−1

𝑗=1
{ℕ[Ω𝑛

(𝑗+1)𝑛
,

Ω𝑛

𝑗𝑛
) } ∪ ℕ [Ω𝑛

𝑛
 ,

Ω𝑛

𝑛−1
) ∪ ℕ[Ω𝑛

𝑛−1
 , Ω𝑛 + 1).

Proof. Let Dj denote ℕ[Ω𝑛

(𝑗+1)𝑛
, Ω𝑛

𝑗𝑛
), for j =1,...,sn − 1.

Also let Y1 = ℕ [Ω𝑛

𝑛
 ,

Ω𝑛

𝑛−1
) and Y2 = ℕ [Ω𝑛

𝑛−1
 , Ω𝑛 + 1).

Clearly
Ω𝑛

𝑛𝑠𝑛
 <

Ω𝑛

𝑛(𝑠𝑛−1)
 <

Ω𝑛

𝑛(𝑠𝑛−2)
 < ··· <

Ω𝑛

2𝑛
 <

Ω𝑛

𝑛
 <

Ω𝑛

𝑛−1
 < Ωn + 1,

from which , [Ω𝑛

𝑛𝑠𝑛
, Ωn + 1)= (⋃

𝑠𝑛−1

𝑗=1
 𝐷𝑗) ∪ 𝑌1 ∪ 𝑌2.

So [Ω𝑛

𝑛𝑠𝑛
, Ωn + 1)= (⋃

𝑠𝑛−1

𝑗=1
 ℕ ∩ 𝐷𝑗) ∪ (ℕ ∩ 𝑌1) ∪ (ℕ ∩ 𝑌

2
)

This, together with N [Ω𝑛

𝑛𝑠𝑛
, Ωn + 1)= ℕ1, Ωn + 1). leads to N[1, Ωn +1) =

⋃
𝑠𝑛−1

𝑗=1
{ℕ[Ω𝑛

(𝑗+1)𝑛
,

Ω𝑛

𝑗𝑛
) } ∪ ℕ [Ω𝑛

𝑛
 ,

Ω𝑛

𝑛−1
) ∪ ℕ[Ω𝑛

𝑛−1
 , Ω𝑛 + 1).

Proposition 2.8. Let n ∈ N and n ≥ 5. The sn + 1 discrete intervals Dj (j =1,...,sn − 1), Y1 and

Y2 seen in the proof of Proposition 2.7 are pairwise disjoint.

Proof. Let k and r be distinct elements of {1,...,sn − 1}, with k < r. Then k +1 ≤ r and so

[
Ω𝑛

(𝑟+1)𝑛

,
Ω𝑛

𝑟𝑛

) ∩ [
Ω𝑛

(𝑗+1)𝑛

,
Ω𝑛

𝑗𝑛

) = φ, whence Dr ∩ Dk = φ.

64 R. Dharmarajan and D. Ramachandran

Next, Y1 ∩ Y2 = φ since
Ω𝑛

𝑛
 <

Ω𝑛

𝑛−1
< Ωn + 1.

Finally, Dj ∩ (Y1 ∪ Y2) = φ for each j ∈{1,...,sn − 1} since

m ∈ Dj =⇒ m <
Ω𝑛

𝑛
 and m ∈ Y1 ∪ Y2 =⇒ m ≥

Ω𝑛

𝑛
.

Corollary 2.9. Let G ∈GMM and |G| = n ≥ 5. Let S be a cabal of M (G) and |S| = t. Then t is an

element of exactly one of the sn + 1 discrete intervals Dj (j =1,...,sn − 1), Y1 and Y2 (seen in the

proof of Proposition 2.7) where sn corresponds to n as in Proposition 2.6.

Proof. Consequence of Proposition 2.7, Proposition 2.8 and the obvious fact that 1 ≤ |T| ≤ Ωn

for every cabal T from G.

2.3 Quasi-partition and anchor number

Consider the sn + 1 discrete intervals Dj (j =1,...,sn − 1), Y1 and Y2 seen in the proof of

Proposition 2.7. Their left ends are defined as follows: the left end of Dj is
Ω𝑛

(𝑗+1)𝑛
 for j =1,...,sn

− 1; that of Y1 is and that of Y2 is
Ω𝑛

𝑛−1
.

Let G ∈GMM and |G| = n ≥ 5. Let sn correspond to n as in Proposition 2.6. The expression N[1,

Ωn +1) = Y1 ∪ Y2 ∪ (⋃
𝑠𝑛−1

𝑗=1
 𝐷𝑗) is the quasi-partition of N[1, Ωn + 1) by these discrete

intervals. (Some of these sn +1

discrete intervals may be empty; hence the term ‘quasi-partition’.)

Let S be a cabal from G. The anchor number of S relative to the above quasi-partition of N[1,

Ωn + 1) is denoted by a (S) and is defined to be the left end of the unique discrete interval

(among Y1, Y2, Dj for j =1,...,sn − 1) to which |S| belongs (see Corollary 2.9).

Note. The only quasi-partition of N[1, Ωn + 1) considered in this article is N[1, Ωn +1) = Y1 ∪

Y2 ∪ (⋃
𝑠𝑛−1

𝑗=1
 𝐷𝑗) where Dj (j =1,...,sn − 1), Y1 and Y2 are as in the proof of Proposition 2.7.

Henceforth, if S is a cabal from G then a (S) will mean only the anchor number of S relative to

the above quasi-partition of N[1, Ωn + 1).

Proposition 2.10. Let G ∈GMM and |G|≥ 5. Then:

(i) a (T) ≤
Ω𝑛

𝑛−1
 for every cabal T from G and

A PROBLEM IN MOON-MOSER GRAPHS TO SHOW P ≠NP 65

(ii) there exists a cabal S from G such that a (S)=
Ω𝑛

𝑛−1
.

Proof. (i) follows from the fact that 1 ≤ |T| ≤ Ωn for every cabal T from G.

(ii) By Proposition 2.3, there is a maximal cabal Lk (G) from G such that |Lk (G)|≥
Ω𝑛

𝑛−1
. Then a

(Lk (G)) =
Ω𝑛

𝑛−1

Corollary 2.11. Let G be as in Proposition 2.10. There exists a cabal S from G such that a (S)

≥ a (T) for every cabal T from G.

3 The problem MAXANCHOR (MM)

A variant of a problem 𝑄 is a formulation of 𝑄 that seeks a desired type of solution without

altering the import of 𝑄. Types of variants that are widely studied and used are: optimization,

computation and decision.

An optimization variant of 𝑄 is a formulation of 𝑄 that asks for a solution of an optimum

measure (which is either the maximum or the minimum of the concerned measure) to each

instance of 𝑄 [1].

A computation variant of 𝑄 is a formulation that asks for a solution (to each instance of 𝑄)

subject to finitely many conditions.

A decision variant of 𝑄 is a formulation of 𝑄 in which each instance admits either a ‘yes’ or a

‘no’ answer. The basic ingredients [1] of a decision variant are: the set of instances, the set of

proposed solutions (i.e., certificate candidates) and the predicate that decides whether a

proposed solution yields a feasible solution.

In the context of the P versus NP problem, we shall be concerned with optimization and

decision variants only. It is common to formulate an optimization problem Q as a decision

problem to find out if 𝑄 is in NP.

The following is an optimization problem that we name MAXANCHOR (MM): If G ∈GMM

and |G| = n ≥ 5 then find a maximal cabal Lk (G) of M (G) such that a (Lk (G)) ≥ a (S) for every

cabal S from G.

A decision variant of MAXANCHOR(MM)

Inputs: (i) Problem instance G ∈GMM ,

(ii) instance size n = |G| ≥ 5,

(iii) r = n (mod3),

66 R. Dharmarajan and D. Ramachandran

(iv) fG : {0, 1, 2}→ R defined by:

𝑓G(0) =
3𝑛/3

𝑛−1
 , 𝑓G(1) =

4.3(𝑛−4)/3

𝑛−1
 and 𝑓G(2) =

2.3(𝑛−2)/3

𝑛−1
 .

Question: Does there exist a maximal cabal Lk (G) of M (G) such that a (Lk (G)) = 𝑓G (r),

where r = n (mod3)?

Certificate candidate: C (G) = r.

Output: YES (meaning such a desired cabal Lk (G) exists) or NO (no such cabal Lk (G) exists),

as appropriate.

Note. It is mandatory that the inputs (i) through (iv) and C (G) be free from any error, as also

that they be logically consistent with one another.

In Section 4, we outline an algorithm (in pseudocodes) that we name GMM MAXANCHOR

and prove what are required to verify that MAXANCHOR (MM) is in NP.

4 Algorithm GMM MAXANCHOR

The following algorithm will be referred to as GMM MAXANCHOR. The input is (G, n, r, 𝑓G,C

(G)). G, n, r, 𝑓G and C (G), as well as the decision question and the required output, are given

in the decision variant of MAXANCHOR (MM) outlined in Section 3.

Algorithm GMM MAXANCHOR

BEGIN

1. if r =0

2. then print “G ∈𝐺
(0)

𝑀𝑀
 . Decision: YES, there exists Lk (G) ⊂M (G)

 such that a (Lk (G))=
3𝑛/3

𝑛−1
”and STOP

3. else if r =1

4. then print “G ∈ 𝐺
(1)

𝑀𝑀
 . Decision: YES, there exists Lk (G) ⊂M (G)

 such that a (Lk (G))= ”and STOP

5. else print “G ∈G 𝐺
(2)

𝑀𝑀
 . Decision: YES, there exists Lk (G) ⊂M (G)

A PROBLEM IN MOON-MOSER GRAPHS TO SHOW P ≠NP 67

 such that a (Lk (G))= ”and STOP

6. endif

7. endif

STOP

Note: In the above pseudo-code, excluding BEGIN and STOP, the instructions have been

numbered 1 through

7. The numbered instructions will be referred to as line 1 through line 7.

Proposition 4.1. The algorithm GMM MAXANCHOR is feasible (i.e., terminates in a finite

number of steps) and correct.

Proof. The algorithm makes decisions based on whether r = 0, 1 or 2. Each of these checks for

r clearly terminates in a finite number of steps.

The possible outputs are all accounted for in three lines of the algorithm -namely, lines 2, 4 and

5. So the algorithm returns only finitely many outputs. Printing each decision clearly terminates

in a finite number of steps.

Consequently, GMM MAXANCHOR is feasible. Next, we assert its correctness.

If r = 0 then by line 2 the algorithm decides YES. This output is correct by Proposition 2.3(i).

If r = 1 then by line 4 the algorithm decides YES. This output is correct by Proposition 2.3(ii).

If r = 2 then by line 5 the algorithm decides YES. This output is correct by Proposition 2.3(iii).

Proposition 4.2. Given an input (G, n, r, 𝑓G, C (G)), GMM MAXANCHOR runs in polynomial

time in n.

Proof. The total number (say, TMM) of steps executed by the algorithm GMM MAXANCHOR

is the sum of the numbers of steps for all the lines executed. Suppose that one execution of the

line j requires tj steps and that this line is executed exactly rj times. Then tjrj is the number of

steps consumed by the line j in one execution of the algorithm.

In one execution of the algorithm, each line is executed once if at all. Hence, for j =1,..., 7, tjrj

= tj .

We suppose each endif line takes constant time, independent of n.

The number of steps required for checking the value r takes from {0, 1, 2} is bounded by n2.

Likewise for the output of the decision (lines 2, 4 and 5). So the number of steps required for

68 R. Dharmarajan and D. Ramachandran

each of the five lines other than the endif lines is bounded above by n2, whence TMM ≤ 5n2 + 2.

Proposition 4.3. To each instance G of MAXANCHOR (MM) there is a certificate that is

verified by GMM MAXANCHOR in polynomial time in the size (n) of G.

Proof. C (G) = r (where r = n (mod3)) is the required certificate.

5. MAXANCHOR(MM), P (FIN), the class NP and the class P

Proposition 5.1. MAXANCHOR (MM) is in NP.

Proof. Let G be a given instance of MAXANCHOR (MM) with |G| = n ≥ 5. The next

requirements are a check-type algorithm and a certificate candidate that is verified in

polynomial time by this algorithm to confirm the existence of a solution to G.

The required algorithm is GMM MAXANCHOR (Section 4) and an appropriate certificate

candidate is C (G) = r (Proposition 4.2 and Proposition 4.3), where r = n (mod3).

Proposition 5.2. MAXANCHOR (MM) is not in P.

Proof. Let A be a given feasible algorithm that outputs a desired maximal cabal Lk (G) of M

(G) (where G is the given instance, with |G| = n ≥ 5) as required in the optimization variant of

MAXANCHOR (MM) (Section 3).

Let |Lk (G)| = s. The s members of Lk (G) are the atomic sub-outputs of this solution to the

instance G. Name these sub-outputs M1,...,Ms in the order that A follows in computing Lk (G).

Case 1: n ≡ 0(mod3). Here s ≥
3𝑛/3

𝑛−1
 (see Proposition 2.3(i), Proposition 2.10 and Corollary

2.11).

For j =1,...,s − 1, having taken tj steps for only the computation of Mj , suppose A takes another

tj+1 steps to compute Mj+1; in other words, once A executes tj steps to compute Mj then

beginning with the next step A executes tj+1 steps to compute Mj+1, allowing that any of the

already-computed sub-outputs M1 through Mj may be used anywhere in the computation of

Mj+1. Obviously, then, each tj ≥ 1 and ts ≥ 1. If T (Lk) is the total number of steps taken by A

to compute and output the maximal cliques M1 through 3n/3 Ms, then T (Lk) ≥ t1 + ··· + ts ≥ s

≥
3𝑛/3

𝑛−1
. By Proposition 2.4(i), A cannot run in polynomial time, and the conclusion follows.

A PROBLEM IN MOON-MOSER GRAPHS TO SHOW P ≠NP 69

Case 2: n ≡ 1(mod3). Here s ≥
4.3(𝑛−4)/3

𝑛−1
 (see Proposition 2.3(ii), Proposition 2.10 and Corollary

2.11). Rea- soning as in the proof of Case 1 leads to T (Lk) ≥ t1 + ··· + ts ≥ s ≥
4.3(𝑛−4)/3

𝑛−1
. The

conclusion follows by Proposition 2.4(ii).

Case 3: n ≡ 2(mod3). Here s ≥
2.3(𝑛−2)/3

𝑛−1
 (see Proposition 2.3(iii), Proposition 2.10 and Corollary

2.11).

Reasoning as in the proof of Case 1 leads to T (Lk) ≥ t1 + ··· + ts ≥ s ≥
2.3(𝑛−2)/3

𝑛−1
. The conclusion

follows by Proposition 2.4(iii).

6. Conclusion

P ≠NP follows from Proposition 5.1 and Proposition 5.2.

There is a caveat, though. The optimization variants of the problems MAXANCHOR (MM)

and P (FIN) require computations that take exponential number of steps, as can be gauged from

the proof of Proposition 5.2, leading to a thought that no algorithm is likely to possess the

capability to compute exponential (or worse) number of atomic sub-outputs of the solution to

any instance of either problem in polynomial time. But what if underlying theories get

advanced sufficiently so that algorithms with this capability are designed? Would it imply that

exhaustive search could be done in polynomial time? Then would P = NP ensue? This is a moot

point. However, at present, surveys ([10], for one) seem to favour the opinion that no algorithm

is ever likely to have such a capability. This seems to justify the conclusion above.

Acknowledgements

This research was supported financially by Niels Abel Foundation, Palakkad, Kerala State,

India.

Appendix

A. Examples of input instances and input sizes

(A-1) If the problem is to find whether a positive integer r> 1 is composite, then each r ∈ ℕ−

{1} is an instance. The input size of an instance r is ⌈log(𝑟)⌉.

(A-2) If the problem is to reorder (permute) the digits of a given positive integer r ≥ 10, with

the reordering subject to finitely many conditions, then each positive integer r ≥ 10 is an

instance. Its size is n is the number of digits in r (with all the repetitions counted in).

70 R. Dharmarajan and D. Ramachandran

(A-3) Let G =(V, E) be a graph and S ⊂ V with S ≠ φ.Then S is an independent set of G if no

two elements of S are adjacent in G. Suppose |G| =2p (where p ∈ N) and the problem is to find

whether G contains an independent set of cardinality p. Then each graph of even order is an

instance. The input size can be the |V | or |V |+|E|.

(A-4) Suppose it is required to find whether a given finite string X of English lowercase

alphabets can be reordered to obtain a meaningful English word. Then the size of an instance

is the number of characters (with all the repetitions counted in) that constitute the instance. The

instance tatotirni is of size n = 9.

B. Distinct certificates for the same instance

Each of (B-1) through (B-3) shows that an instance can have two or more distinct certificate

candidates that become certificates. Please see [5] for the following terms in (B-2) and (B-3):

subgraph and induced subgraph.

(B-1) Let G =(V, E) be a graph of order n ≥ 10. A walk in G is a sequence x1,...,xk of (not

necessarily distinct) vertices of G such that xj ≠ xj+1 and {xj ,xj+1}∈ E for each j =1,...,k − 1.

If the edges in a walk are distinct, then the walk is a trail. A trail that begins and ends at the

same vertex is a circuit or closed trail. A trail in G that includes every edge of G is an Eulerian

trail. A circuit in G that includes every edge of G is an Eulerian circuit. G is an Eulerian graph

if it contains an Eulerian circuit.

If the vertices of a walk x1,...,xk are distinct, then the walk is a path; the path in this case is also

called an x1 -xk path. G is connected if there is an x-y path whenever x and y are distinct vertices

of G.

Let x ∈ V . The degree of x in G is denoted by dx and is defined to be the number of vertices

of G that are adjacent to x.

Now assume G is connected and |G| = n, with V = {x1,...,xn}. Consider the question of deciding

if G is Eulerian. Let C1 and C2 be two certificate candidates with C1 being a closed trail in G

and C2 being the sequence dx1, . . . , dxn. Note that each dxj ∈ N (j =1,...,n) since G is connected

[5].

Next, suppose an algorithm (say, ALG1) has, in polynomial time, confirmed that C1 includes

every edge of G. Then C1 is an Eulerian circuit in G -i.e., C1 is per se a solution to the problem

instance G.

Next, suppose another algorithm (say, ALG2) has, in polynomial time, confirmed that each of

the n numbers dx1 through dxn is an even number. Then G is Eulerian ([5], pp.56). So C2,

though not an Eulerian circuit, confirms the existence of an Eulerian circuit in G. Hence C2

yields a solution to the instance G.

A PROBLEM IN MOON-MOSER GRAPHS TO SHOW P ≠NP 71

Thus C1 and C2 are distinct (i.e., C1 ≠ C2) certificate candidates that become certificates for the

instance G.

(B-2) Let G = (V, E) and |G| = n ≥ 10. Suppose it is required to decide if G has an independent

set of a specified cardinality q ∈ N where 2 ≤ q<n. Consider two certificate candidates, C3 and

C4 such that C3 ⊂ V , |C3| = q, C4 ⊂ V and |C4| = n − q.

Next, suppose an algorithm (say, ALG3) has, in polynomial time, verified that no two elements

of C3 are adjacent. Then C3 is an independent set of size q.

Note that the deletion of each element of C4 from G results in the deletion of a non-negative

number of edges from G.

Next, suppose another algorithm (say, ALG4) has, in polynomial time, deleted all the elements

of C4 from G and also confirmed that in this process all the edges of G have been deleted. Then

ALG4 has, in effect, generated the induced subgraph G − C4 of G and also implied that G − C4

has no edges. Clearly G − C4 is of order q, from which it is immediate that V − C4 is an

independent set of size q although C4 need not be an independent set. So C4 may not per se be

a solution but confirms the existence of a solution, namely, V − C4.

Consequently, both C3 and C4 are distinct certificates to confirm that the G indeed has an

independent set of size q.

(B-3) Let G = (V, E) be a graph and let F be a nonempty subset of E. If y ∈ V then y is said to

be covered by F if some edge {y, z} of G is in F.

Let M denote the set of all the vertices of G that are covered by F. The following are immediate:

B-3(i) If {x, y} ∈ F then x ∈ M and y ∈ M, and B-3(ii) if z ∈ V − M then {z, x} ∈ E − F for

each x ∈ V that is adjacent to z in G.

Suppose the question is to decide if a given graph G =(V, E) (of order n ≥ 10) has a clique of a

specified cardinality q ∈ N where 2 ≤ q<n. Consider three certificate candidates W1, W2 and

W3 such that:

B-3(iii) W1 ⊂ V and |W1| = q,

B-3(iv) W2 ⊂ E and |W2| = q (q − 1) /2, and

B-3(v) W3 ⊂ V and |W3| = n − q.

Let M denote the set of all the vertices of G that are covered by W2.

Next, assume an algorithm (say, ALG5) has, in polynomial time, verified that the elements of

W1 are pairwise adjacent in G. Then W1 is a clique of cardinality q and so is per se solution to

the problem instance G.

Next, suppose that another algorithm (say, ALG6) has, in polynomial time, computed M and

also output that |M| = q. It is obvious that W2 is not a clique, but it leads to the clique M of

72 R. Dharmarajan and D. Ramachandran

cardinality q, aided by ALG6. So W2 is per se not a solution but yields a solution (viz., M) to

the instance G.

Further, suppose yet another algorithm (say, ALG7) has, in polynomial time, deleted all the

elements of W3 from G. By this deletion process, ALG7 has generated the subgraph G − W3 of

G. This subgraph has vertex set V − W3.

Let k be the number of edges deleted from G upon deleting all the elements of W3 from G.

Suppose it turns out that |E|− k =
𝑞(𝑞−1)

2
. Then the subgraph G − W3 has order q (since |V −

W3| = q) and has exactly
𝑞(𝑞−1)

2
 edges. So V − W3 is a clique (of G) of cardinality q. So W3 is

per se not a solution but yields a solution, namely, V − W3, to the instance G.

Thus W1, W2 and W3 are distinct certificates to confirm that G indeed has a clique of cardinality

q.

That W2, though not a solution per se (to G), yields a solution is a consequence of the following

proposition.

Proposition Appendix B.1. Let G =(V, E) be a simple graph of order n ≥ 2. Let F ⊆ E and F

≠ 𝜑 Let M be the set of all the vertices of G that are covered by F and let |F | =
𝑞(𝑞−1)

2
 for some

q ∈ N with 2 ≤ q ≤ n. If 2 |M| = q then M is a clique of G.

Proof. Suppose x and y were distinct non-adjacent vertices of M. Then the number of edges of

G that have both the endpoints in M would be less than
𝑞(𝑞−1)

2
, owing to |M| = q. This, in the

light of |F | =
𝑞(𝑞−1)

2
, forces an edge {a, b} of G to be in F for some a ∈ V − M, a patent

impossibility because no vertex in V − M is covered by F . So the vertices of M are pairwise

adjacent.

References

[1] Bovet, D. P. and Crescenzi, P., 1994, Introduction to the theory of complexity, Prentice

Hall, London, UK.

[2] Cook, S., 2000, “The P versus NP problem,” Available online:

 http://www.claymath.org/millennium/P vs NP/pvsNP.pdf.

[3] Cormen, T. H., Leiserson, C. E., Rivest, R. L. and Stein, C., 2009, Introduction to

Algorithms, MIT Press, USA.

[4] Freeth, S. A., 1985, “Compression Methods for Graph Algorithms,” Ph. D. Thesis,

University of Canterbury, New Zealand, pp. 21.

[5] Harris, J. M., Hirst, J. L. and Mossinghoff, M. J., 2008, Combinatorics and Graph Theory,

Springer, New York, USA. Doi: 10.1007/978-0-387-79711-3.

A PROBLEM IN MOON-MOSER GRAPHS TO SHOW P ≠NP 73

[6] Savage, J. E., 1998, Models of Computation, Addison Wesley, Reading, USA.

[7] Stoll, R. R., 2012, Set Theory and Logic, Courier Corporation, USA.

[8] Trakhtenbrot, B. A., 1984, “A Survey of Russian Approaches to Perebor (Brute-Force

Search) Algorithms,” IEEE Ann. Hist. Comput. 6(4), pp. 384-400.

[9] Wilf, H. S., 1994, Algorithms and Complexity, Internet Edition, Summer.

[10] Woeginger, G. J., 2003, “Exact algorithms for NP-hard problems: A survey,”

Combinatorial Optimization -Proc. 5th Intl. Workshop, Aussois, France, pp. 185–207.

——————————————————————

Copyright(from 2024) R. Dharmarajan, Niels Abel Foundation, 7 / 538, “Vidhyashree,”

Karekattu Parambu, Ambikapuram (P.O.), Palakkad 678011, Kerala, India.

