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Abstract

In the existing literature of information theory, there is a huge availability of
measures of fuzzy entropies each with its own merits and limitations. Keeping
in view the flexibility in the system and application areas and by using the
concept of fuzzy set we have introduced some new generalized trigonometric,
hyperbolic and exponential measures of fuzzy entropy and fuzzy directed
divergence.
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1. Introduction

Uncertainty and fuzziness are the basic nature of human thinking and of many real
world objectives. Fuzziness is found in our decision, in our language and in the way
we process information. The main use of information is to remove uncertainty and
fuzziness. In fact, we measure information supplied by the amount of probabilistic
uncertainty removed in an experiment and the measure of uncertainty removed is also
called as a measure of information while measure of fuzziness is the measure of
vagueness and ambiguity of uncertainties. Shannon [2] used “entropy” to measure
uncertain degree of the randomness in a probability distribution. Let X is a discrete
random variable with probability distribution P = (pl,pz, .....,pn) in an experiment.
The information contained in this experiment is given by

H(P) = — Yi_1pilogp; 1)
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Which is well known Shannon entropy.

The concept of entropy has been widely used in different areas, e.g. communication
theory, statistical mechanics, finance, pattern recognition, and neural network etc.
Fuzzy set theory developed by Lofti A. Zadeh [8] has found wide applications in
many areas of science and technology, e.g. clustering, image processing, decision
making etc. because of its capability to model non-statistical imprecision or vague
concepts.

It may be recalled that a fuzzy subset A in U (universe of discourse) is characterized
by a membership function p,: U — [0,1] which represents the grade of membership of
x € U in A as follows

Ua(x) = 0if x does not belongs to A,
and there is no uncertainty
= 1if x belongs to A and there is no uncertainty
= 0.5 if maximum uncertainty

In fact u,(x) associates with each x € U a grade of membership in the set A.
When p,(x) is valued in {0,1} it is the characteristic function of a crisp (i.e.
nonfuzzy) set. Since u,(x) and 1 — uyu(x) gives the same degree of fuzziness,
therefore, corresponding to the entropy due to Shannon [2], De Luca and Termini [1]
suggested the following measure of fuzzy entropy:

H(A) = =27y ma(edlogua () + X7y (1 — pa(x))log(1 — pa(x)) ] (2

De Luca and Termini introduced a set of properties and these properties are widely
accepted as a criterion for defining any new fuzzy entropy. In fuzzy set theory, the
entropy is a measure of fuzziness which expresses the amount of average
ambiguity/difficulty in making a decision whether an element

belongs to a set or not. So, a measure of average fuzziness in a fuzzy set should have
at least the following properties to be valid fuzzy entropy:

i) H(A) =0when uy(x;)) =0or1.
i) H(A) increases as u,(x;) increases from 0 to 0.5.
iii) H(A) decreases as puu(x;) increases from 0.5 to 1.

iv) H(A) = H(A),ie paCx) =1—pa(x;)
v) H(A) is a concave function of 4 (x;).

Kullback and Leibler [7] obtained the measure of directed divergence of probability
distribution

P = (pypa, ....., ) from the probability distribution Q = (q1 gz, ....., qn) @S
D(P:Q) = XiL, pilog (3)
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Let A and B be two standard fuzzy sets with same supporting points
X1 Xp ..., Xy and with fuzzy

vectors g (x1), pta(x2), -, ta () and pp(x1), tp(x2), ..., g (x) . The simplest
measure of fuzzy directed divergence as suggested by Bhandari and Pal (1993), is

oY C ta(x;)
D(A:B) = Z pale) log L2
no(1_ . (1-pa(xd)
+ Zl:l(l :uA(xl)) log (1_ﬂB(xi)) (4)

satisfying the conditions:

i) D(A:B)=0

i) D(A:B)=0iff A=B

iii) D(A:B) =D(B:A)

iv) D(A:B) is a convex function of 4 (x;)

later kapur [5],[6] introduced a number of trigonometric hyperbolic and exponential
measures of fuzzy entropy and fuzzy directed divergence. In section 2 and 3 we
introduce some new trigonometric, hyperbolic and exponential measures of fuzzy
entropy and measures of fuzzy directed divergence.

2. New Measures of Fuzzy Entropy
2.1 Trigonometric Measure of Fuzzy Entropy

Consider the function sinmx where 0 < x < 1, is a convex function which gives us

=YY" sin(— nosin(—"——
Hi(A) = Y sin (uA(xi)) + YL, sin ((l—uA(xi))> (5)
is a new measure of fuzzy entropy.

in particular for g < m

H,(A) = Y=, sin (%xl)) + YL, sin (%) — sinf (6)
is also a new measure of fuzzy entropy.

(5) is a special case of (6) when g = m.

Another special case of (6) arises when 8 = gwe get

n

H;(A) = H,(A) = Z sin (zu:(xi))

+ Y sin (m) -1 (7

Another trigonometric measure of fuzzy entropy is
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H,(A) =Y sin (#A/(gxi) + a) + YL sin (m + a) —sin(f + a) (8)

(8) reduces to (6) when a = 0.

(8) reduces to (7) when @ = 0,8 = g
(8) reduces to (5) when @ = 0,8 = .

(8) is a 2-parameter measure of fuzzy entropy.

If we put o= gwe get

Hs(A) =YL, cos (uAfxi)) + v, cos ((1_:71))) — cosP 9)

is a new measure of fuzzy entropy. Clearly above given measures of fuzzy entropy are
satisfying all the properties which are given in section 1. So these are valid measures
of fuzzy entropy.

2.2 Hyperbolic Measure of Fuzzy Entropy

sinhx, coshx,tanhx where 0 < x <1 are all convex functions and gives us
following valid measures of fuzzy entropy

. NN o B_\_yn __B

H6(A) - Slnhﬁ Zi:l Slnh (HA(xi)) =1 Slnh ((1—HA(Xi))) (10)
7 =1 na(xy) =1 (1-naxp)
— _yn -2k ——

Hg(A) = tanhp — };-, tanh (MA(xi)) i=1 tanh ((1—#A(xi))> 12

Since x™sinhx, x™coshx, x™tanhx are also convex functions for m > 1, we get the
following additional measures of fuzzy entropy.

Ho(A) = sinhff — Xi=, pa™(x;) sinh (#A(xi)) = -pae))™ sinh ((1—#A(xi))> (13)
_ _yn 1 B _yn __ 1 B
Hyo(A4) = coshf = %=y Ha™ () cosh (uA(xi)) =1 (1—pa )™ cosh ((1—ﬂA(xi))) (14)
Hy;1(A) = tanhp — 3 ;tanh( b ) —yn. — L _tanh (—B ) (15)
11 =1, ,m(x) ua(xy) =1 (1—;4A(xi))m (1-ua(xp)

2.3 Exponential Measures of Fuzzy Entropy

Since x™e%* is a convex function when m > 1,x > 0 we get the measure of fuzzy
entropy
a

1 7 (in) _yn 1 (1-pra(xp)
ua™(0x) e =1 (1—#A(xi))m € (16)

Hi;(A) = e — ?=1




Some New Generalized Trigonometric, Hyperbolic... 777

3. New Measures of Fuzzy Directed Divergence
3.1 New Hyperbolic Measures of Fuzzy Directed Divergence

Using the convexity of sinhx,coshx,tanhx we get the following measures of
hyperbolic fuzzy directed divergence.

N G N L M>
Dy(4:B) = Z PREA R (ﬁ uA<xi>>+;<1—u3(xo)”"h(ﬁ (1 = ka )

= o S8 = () sinhs (17)

D)= Y s cos (#2268 15" (Lo (5 2000
~ e COShE (= Ha(x )) coshfs (18)

~ Gy LnhB - (1 ) tanhp (19)

Again since x™sinhx, x™coshx, x™tanhx are also convex functions form > 1, we
get the following more general hyperbolic measures of fuzzy directed divergence.

o 1 . g (x;)
D,(A:B) = ; L G g ™ (xy) sinh <ﬁ 1Ly (xi)>

n

1
+ m 1-m
Z (1 - HA(xi)) (1 — UB (xi))

=1

. (1—u3(xi)))_ 1.
sinh ('B (1—iaG0)) ~ mmoen SIRB =

—(1 PRES) sinhf (20)

o 1 g (x;)
D5 (A B) = ; ,UAm(xi),uBl_m(xi) cosh <B ,uA(xi)>

n

1
+ m 1-m
; (1 - #A(xi)) (1 ] (xi))

(1_#B(xi))>_ 1 _ 1
cosh (ﬁ (rat)) ~ rae0 S0P — ipaen) COSHP (21)
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n

o 1 te (x;)
Dg (A:B) = z ,LlAm(xi):uBl_m(xi) tanh <ﬁ i (xi)>

i=1

1
+ -m
; (1 - #A(xi))m(l - .uB(xi))l

(1—ﬂ3(xi))) 1 _
tanh (,B (1—iaGio) peS) tanhp

(1—u13 ) LB (22)

3.2 New Exponential Measures of Fuzzy Directed Divergence

Since x™e®* is a convex function when m > 1, x > 0 we get the following measures
of fuzzy directed divergence

n
1 a(#s(xi))
D (A: B =Z Ve
WAB) = ) R
(1-pup(xp)

+iZn1 ( - ea<m>_ea

1, ()" (1= pp(x)) "

i=1

(23)
Special case for m=0 and m=1 are
ep(x) a (=15 (1))
. = yn a(u (xi)) n 1 <(1-ﬂA(xi)) _pa
Dy (4: B) = T Z‘=1(1—u3<xi>)e ¢ (24)
1B (xy) 1-pp(x;)
. —yn 1 a( Xi) n 1 a( —up(x; )_ a
Dy(4:B) = izlﬂA(xi)e Hal) 4 Bl (1—MA(xi))e eelti—e (25)

4. Conclusion

In section 2 and 3 by using the convexity of some trigonometric, hyperbolic and
exponential function and satisfying the conditions of fuzzy entropy and fuzzy directed
divergence we get some new trigonometric, hyperbolic and exponential measures of
fuzzy entropy and fuzzy directed divergence.
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