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Abstract 

In the existing literature of information theory, there is a huge availability of 

measures of fuzzy entropies each with its own merits and limitations. Keeping 

in view the flexibility in the system and application areas and by using the 

concept of fuzzy set we have introduced some new generalized trigonometric, 

hyperbolic and exponential measures of fuzzy entropy and fuzzy directed 

divergence. 
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1. Introduction 

Uncertainty and fuzziness are the basic nature of human thinking and of many real 

world objectives. Fuzziness is found in our decision, in our language and in the way 

we process information. The main use of information is to remove uncertainty and 

fuzziness. In fact, we measure information supplied by the amount of probabilistic 

uncertainty removed in an experiment and the measure of uncertainty removed is also 

called as a measure of information while measure of fuzziness is the measure of 

vagueness and ambiguity of uncertainties. Shannon [2] used “entropy” to measure 

uncertain degree of the randomness in a probability distribution. Let X is a discrete 

random variable with probability distribution 𝑃 = (𝑝1,𝑝2, … . . , 𝑝𝑛) in an experiment. 

The information contained in this experiment is given by 

𝐻(𝑃) = − ∑ 𝑝𝑖𝑙𝑜𝑔𝑝𝑖
𝑛
𝑖=1                                              (1) 
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Which is well known Shannon entropy. 

The concept of entropy has been widely used in different areas, e.g. communication 

theory, statistical mechanics, finance, pattern recognition, and neural network etc. 

Fuzzy set theory developed by Lofti A. Zadeh [8] has found wide applications in 

many areas of science and technology, e.g. clustering, image processing, decision 

making etc. because of its capability to model non-statistical imprecision or vague 

concepts. 

It may be recalled that a fuzzy subset A in U (universe of discourse) is characterized 

by a membership function 𝜇𝐴: 𝑈 → [0,1] which represents the grade of membership of 

𝑥 ∈ 𝑈 𝑖𝑛 𝐴 as follows 

 𝜇𝐴(𝑥) = 0 𝑖𝑓 𝑥 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝐴,  

𝑎𝑛𝑑 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑛𝑜 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 

= 1 𝑖𝑓 𝑥  𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝐴 𝑎𝑛𝑑 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑛𝑜 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 

= 0.5 𝑖𝑓 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 

      In fact 𝜇𝐴(𝑥) associates with each 𝑥 ∈ 𝑈  a grade of membership in the set A. 

When 𝜇𝐴(𝑥)  is valued in {0,1}  it is the characteristic function of a crisp (i.e. 

nonfuzzy) set. Since 𝜇𝐴(𝑥)  and 1 − 𝜇𝐴(𝑥)  gives the same degree of fuzziness, 

therefore, corresponding to the entropy due to Shannon [2], De Luca and Termini [1] 

suggested the following measure of fuzzy entropy: 

 

𝐻(𝐴) = −[∑ 𝜇𝐴(𝑥𝑖)𝑙𝑜𝑔𝜇𝐴(𝑥𝑖)  +  ∑ (1 − 𝜇𝐴(𝑥𝑖))𝑙𝑜𝑔(1 − 𝜇𝐴(𝑥𝑖))𝑛
𝑖=1  𝑛

𝑖=1 ]    (2) 

  

    De Luca and Termini introduced a set of properties and these properties are widely 

accepted as a criterion for defining any new fuzzy entropy. In fuzzy set theory, the 

entropy is a measure of fuzziness which expresses the amount of average 

ambiguity/difficulty in making a decision whether an element 

belongs to a set or not. So, a measure of average fuzziness in a fuzzy set should have 

at least the following properties to be valid fuzzy entropy: 

i) 𝐻(𝐴)  = 0 when 𝜇𝐴(𝑥𝑖) = 0 𝑜𝑟 1. 
ii) 𝐻(𝐴)  increases as 𝜇𝐴(𝑥𝑖) increases from 0 to 0.5. 

iii) 𝐻(𝐴)  decreases as 𝜇𝐴(𝑥𝑖) increases from 0.5 to 1. 

iv) 𝐻(𝐴) = 𝐻(𝐴̅), i.e.  𝜇𝐴(𝑥𝑖) = 1 − 𝜇𝐴(𝑥𝑖) 

v) 𝐻(𝐴) is a concave function of  𝜇𝐴(𝑥𝑖). 

Kullback and Leibler [7] obtained the measure of directed divergence of probability 

distribution  

𝑃 = (𝑝1,𝑝2, … . . , 𝑝𝑛) from the probability distribution 𝑄 = (𝑞1,𝑞2, … . . , 𝑞𝑛) as 

𝐷(𝑃: 𝑄) = ∑ 𝑝𝑖
𝑛
𝑖=1 𝑙𝑜𝑔

𝑝𝑖

𝑞𝑖
                                            (3) 
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           Let A and B be two standard fuzzy sets with same supporting points 

𝑥1,𝑥2, … . . , 𝑥𝑛 and with fuzzy 

vectors 𝜇𝐴(𝑥1), 𝜇𝐴(𝑥2), … . . , 𝜇𝐴(𝑥𝑛)  and 𝜇𝐵(𝑥1), 𝜇𝐵(𝑥2), … . . , 𝜇𝐵(𝑥𝑛) . The simplest 

measure of fuzzy directed divergence as suggested by Bhandari and Pal (1993), is 

𝐷(𝐴: 𝐵) = ∑ 𝜇𝐴(𝑥𝑖)

𝑛

𝑖=1

𝑙𝑜𝑔
𝜇𝐴(𝑥𝑖)

𝜇𝐵(𝑥𝑖)
 

+ ∑ (1 − 𝜇𝐴(𝑥𝑖))𝑛
𝑖=1 𝑙𝑜𝑔

(1−𝜇𝐴(𝑥𝑖))

(1−𝜇𝐵(𝑥𝑖))
                                    (4) 

satisfying the conditions: 

i) 𝐷(𝐴: 𝐵) ≥ 0 

ii) 𝐷(𝐴: 𝐵) = 0 𝑖𝑓𝑓 𝐴 = 𝐵 

iii) 𝐷(𝐴: 𝐵) = 𝐷(𝐵: 𝐴) 

iv) 𝐷(𝐴: 𝐵) is a convex function of 𝜇𝐴(𝑥𝑖) 

later kapur [5],[6] introduced a number of trigonometric hyperbolic and exponential 

measures of fuzzy entropy and fuzzy directed divergence. In section 2 and 3 we 

introduce some new trigonometric, hyperbolic and exponential measures of fuzzy 

entropy and measures of fuzzy directed divergence.   

 

2. New Measures of Fuzzy Entropy 

2.1 Trigonometric Measure of Fuzzy Entropy 

Consider the function 𝑠𝑖𝑛𝜋𝑥 where 0 ≤ 𝑥 ≤ 1, is a convex function which gives us  

𝐻1(𝐴) = ∑ 𝑠𝑖𝑛 (
𝜋

𝜇𝐴(𝑥𝑖)
)𝑛

𝑖=1 + ∑ 𝑠𝑖𝑛 (
𝜋

(1−𝜇𝐴(𝑥𝑖))
)𝑛

𝑖=1                          (5) 

is a new measure of fuzzy entropy. 

in particular for 𝛽 ≤ 𝜋 

𝐻2(𝐴) = ∑ 𝑠𝑖𝑛 (
𝛽

𝜇𝐴(𝑥𝑖)
)𝑛

𝑖=1 + ∑ 𝑠𝑖𝑛 (
𝛽

(1−𝜇𝐴(𝑥𝑖))
) − 𝑠𝑖𝑛𝛽𝑛

𝑖=1               (6) 

is also a new measure of fuzzy entropy. 

(5) is a special case of (6) when 𝛽 = 𝜋. 

Another special case of (6) arises when 𝛽 =
𝜋

2
 we get 

𝐻3(𝐴) = 𝐻2(𝐴) = ∑ 𝑠𝑖𝑛 (
𝜋

2𝜇𝐴(𝑥𝑖)
)

𝑛

𝑖=1

 

+ ∑ 𝑠𝑖𝑛 (
𝜋

2(1−𝜇𝐴(𝑥𝑖))
) − 1𝑛

𝑖=1              (7) 

Another trigonometric measure of fuzzy entropy is 
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𝐻4(𝐴) = ∑ 𝑠𝑖𝑛 (
𝛽

𝜇𝐴(𝑥𝑖)
+ 𝛼)𝑛

𝑖=1 + ∑ 𝑠𝑖𝑛 (
𝛽

(1−𝜇𝐴(𝑥𝑖))
+ 𝛼) − 𝑠𝑖𝑛(𝛽 + 𝛼)𝑛

𝑖=1                (8) 

(8) reduces to (6) when 𝛼 = 0. 

(8) reduces to (7) when 𝛼 = 0, 𝛽 =
𝜋

2
. 

(8) reduces to (5) when 𝛼 = 0, 𝛽 = 𝜋. 

(8) is a 2-parameter measure of fuzzy entropy. 

If we put ∝=
𝜋

2
 we get  

𝐻5(𝐴) = ∑ 𝑐𝑜𝑠 (
𝛽

𝜇𝐴(𝑥𝑖)
) + ∑ 𝑐𝑜𝑠 (

𝛽

(1−𝜇𝐴(𝑥𝑖))
) − 𝑐𝑜𝑠𝛽𝑛

𝑖=1    𝑛
𝑖=1                                     (9) 

is a new measure of fuzzy entropy. Clearly above given measures of fuzzy entropy are 

satisfying all the properties which are given in section 1. So these are valid measures 

of fuzzy entropy.  

 

2.2 Hyperbolic Measure of Fuzzy Entropy 

𝑠𝑖𝑛ℎ𝑥, 𝑐𝑜𝑠ℎ𝑥, 𝑡𝑎𝑛ℎ𝑥  where 0 ≤ 𝑥 ≤ 1  are  all convex functions and gives us 

following valid measures of fuzzy entropy 

𝐻6(𝐴) = 𝑠𝑖𝑛ℎ𝛽 − ∑ 𝑠𝑖𝑛ℎ (
𝛽

𝜇𝐴(𝑥𝑖)
)𝑛

𝑖=1 − ∑ 𝑠𝑖𝑛ℎ (
𝛽

(1−𝜇𝐴(𝑥𝑖))
)𝑛

𝑖=1                     (10) 

𝐻7(𝐴) = 𝑐𝑜𝑠ℎ𝛽 − ∑ 𝑐𝑜𝑠ℎ (
𝛽

𝜇𝐴(𝑥𝑖)
)𝑛

𝑖=1 − ∑ 𝑐𝑜𝑠ℎ (
𝛽

(1−𝜇𝐴(𝑥𝑖))
)𝑛

𝑖=1                     (11) 

𝐻8(𝐴) = 𝑡𝑎𝑛ℎ𝛽 − ∑ 𝑡𝑎𝑛ℎ (
𝛽

𝜇𝐴(𝑥𝑖)
)𝑛

𝑖=1 − ∑ 𝑡𝑎𝑛ℎ (
𝛽

(1−𝜇𝐴(𝑥𝑖))
)𝑛

𝑖=1                     (12) 

Since 𝑥𝑚𝑠𝑖𝑛ℎ𝑥, 𝑥𝑚𝑐𝑜𝑠ℎ𝑥, 𝑥𝑚𝑡𝑎𝑛ℎ𝑥 are also convex functions for 𝑚 ≥ 1, we get the 

following additional measures of fuzzy entropy. 

𝐻9(𝐴) = 𝑠𝑖𝑛ℎ𝛽 − ∑
1

𝜇𝐴
𝑚(𝑥𝑖)

𝑠𝑖𝑛ℎ (
𝛽

𝜇𝐴(𝑥𝑖)
)𝑛

𝑖=1 − ∑
1

(1−𝜇𝐴(𝑥𝑖))
𝑚 𝑠𝑖𝑛ℎ (

𝛽

(1−𝜇𝐴(𝑥𝑖))
)𝑛

𝑖=1  (13) 

𝐻10(𝐴) = 𝑐𝑜𝑠ℎ𝛽 − ∑
1

𝜇𝐴
𝑚(𝑥𝑖)

𝑐𝑜𝑠ℎ (
𝛽

𝜇𝐴(𝑥𝑖)
)𝑛

𝑖=1 − ∑
1

(1−𝜇𝐴(𝑥𝑖))
𝑚 𝑐𝑜𝑠ℎ (

𝛽

(1−𝜇𝐴(𝑥𝑖))
)𝑛

𝑖=1          (14) 

𝐻11(𝐴) = 𝑡𝑎𝑛ℎ𝛽 − ∑
1

𝜇𝐴
𝑚(𝑥𝑖)

𝑡𝑎𝑛ℎ (
𝛽

𝜇𝐴(𝑥𝑖)
)𝑛

𝑖=1 − ∑
1

(1−𝜇𝐴(𝑥𝑖))
𝑚 𝑡𝑎𝑛ℎ (

𝛽

(1−𝜇𝐴(𝑥𝑖))
)𝑛

𝑖=1         (15) 

 

2.3 Exponential Measures of Fuzzy Entropy  

Since 𝑥𝑚𝑒𝑎𝑥 is a convex function when 𝑚 ≥ 1, 𝑥 > 0 we get the measure of fuzzy 

entropy 

𝐻12(𝐴) = 𝑒𝑎 − ∑
1

𝜇𝐴
𝑚(𝑥𝑖)

𝑛
𝑖=1 𝑒

𝑎

𝜇𝐴(𝑥𝑖) − ∑
1

(1−𝜇𝐴(𝑥𝑖))
𝑚

𝑛
𝑖=1 𝑒

𝑎

(1−𝜇𝐴(𝑥𝑖))                            (16) 
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3. New Measures of Fuzzy Directed Divergence 

3.1 New Hyperbolic Measures of Fuzzy Directed Divergence 

Using the convexity of 𝑠𝑖𝑛ℎ𝑥, 𝑐𝑜𝑠ℎ𝑥, 𝑡𝑎𝑛ℎ𝑥  we get the following measures of 

hyperbolic fuzzy directed divergence. 

𝐷1(𝐴: 𝐵) = ∑
1

𝜇𝐵(𝑥𝑖)

𝑛

𝑖=1

𝑠𝑖𝑛ℎ (𝛽
𝜇𝐵(𝑥𝑖)

𝜇𝐴(𝑥𝑖)
) + ∑ (

1

1 − 𝜇𝐵(𝑥𝑖)
)

𝑛

𝑖=1

𝑠𝑖𝑛ℎ (𝛽
(1 − 𝜇𝐵(𝑥𝑖))

(1 − 𝜇𝐴(𝑥𝑖))
) 

−
1

𝜇𝐵(𝑥𝑖)
𝑠𝑖𝑛ℎ𝛽 − (

1

1−𝜇𝐵(𝑥𝑖)
) 𝑠𝑖𝑛ℎ𝛽                                     (17) 

𝐷2(𝐴: 𝐵) = ∑
1

𝜇𝐵(𝑥𝑖)

𝑛

𝑖=1

𝑐𝑜𝑠ℎ (𝛽
𝜇𝐵(𝑥𝑖)

𝜇𝐴(𝑥𝑖)
) + ∑ (

1

1 − 𝜇𝐵(𝑥𝑖)
)

𝑛

𝑖=1

𝑐𝑜𝑠ℎ (𝛽
(1 − 𝜇𝐵(𝑥𝑖))

(1 − 𝜇𝐴(𝑥𝑖))
) 

−
1

𝜇𝐵(𝑥𝑖)
𝑐𝑜𝑠ℎ𝛽 − (

1

1−𝜇𝐵(𝑥𝑖)
) 𝑐𝑜𝑠ℎ𝛽                                    (18) 

𝐷3(𝐴: 𝐵) = ∑
1

𝜇𝐵(𝑥𝑖)

𝑛

𝑖=1

𝑡𝑎𝑛ℎ (𝛽
𝜇𝐵(𝑥𝑖)

𝜇𝐴(𝑥𝑖)
) + ∑ (

1

1 − 𝜇𝐵(𝑥𝑖)
)

𝑛

𝑖=1

𝑡𝑎𝑛ℎ (𝛽
(1 − 𝜇𝐵(𝑥𝑖))

(1 − 𝜇𝐴(𝑥𝑖))
) 

−
1

𝜇𝐵(𝑥𝑖)
𝑡𝑎𝑛ℎ𝛽 − (

1

1−𝜇𝐵(𝑥𝑖)
) 𝑡𝑎𝑛ℎ𝛽                                    (19) 

 

Again since 𝑥𝑚𝑠𝑖𝑛ℎ𝑥, 𝑥𝑚𝑐𝑜𝑠ℎ𝑥, 𝑥𝑚𝑡𝑎𝑛ℎ𝑥 are also convex functions for 𝑚 ≥ 1, we 

get the following more general hyperbolic measures of fuzzy directed divergence. 

𝐷4(𝐴: 𝐵) = ∑
1

𝜇𝐴
𝑚(𝑥𝑖)𝜇𝐵

1−𝑚(𝑥𝑖)

𝑛

𝑖=1

𝑠𝑖𝑛ℎ (𝛽
𝜇𝐵(𝑥𝑖)

𝜇𝐴(𝑥𝑖)
)

+ ∑
1

(1 − 𝜇𝐴(𝑥𝑖))
𝑚

(1 − 𝜇𝐵(𝑥𝑖))
1−𝑚

𝑛

𝑖=1

 

𝑠𝑖𝑛ℎ (𝛽
(1−𝜇𝐵(𝑥𝑖))

(1−𝜇𝐴(𝑥𝑖))
) −

1

𝜇𝐵(𝑥𝑖)
𝑠𝑖𝑛ℎ𝛽 −

1

(1−𝜇𝐵(𝑥𝑖))
𝑠𝑖𝑛ℎ𝛽                (20) 

𝐷5(𝐴: 𝐵) = ∑
1

𝜇𝐴
𝑚(𝑥𝑖)𝜇𝐵

1−𝑚(𝑥𝑖)

𝑛

𝑖=1

𝑐𝑜𝑠ℎ (𝛽
𝜇𝐵(𝑥𝑖)

𝜇𝐴(𝑥𝑖)
)

+ ∑
1

(1 − 𝜇𝐴(𝑥𝑖))
𝑚

(1 − 𝜇𝐵(𝑥𝑖))
1−𝑚

𝑛

𝑖=1

 

𝑐𝑜𝑠ℎ (𝛽
(1−𝜇𝐵(𝑥𝑖))

(1−𝜇𝐴(𝑥𝑖))
) −

1

𝜇𝐵(𝑥𝑖)
𝑐𝑜𝑠ℎ𝛽 −

1

(1−𝜇𝐵(𝑥𝑖))
𝑐𝑜𝑠ℎ𝛽               (21) 
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𝐷6(𝐴: 𝐵) = ∑
1

𝜇𝐴
𝑚(𝑥𝑖)𝜇𝐵

1−𝑚(𝑥𝑖)

𝑛

𝑖=1

𝑡𝑎𝑛ℎ (𝛽
𝜇𝐵(𝑥𝑖)

𝜇𝐴(𝑥𝑖)
)

+ ∑
1

(1 − 𝜇𝐴(𝑥𝑖))
𝑚

(1 − 𝜇𝐵(𝑥𝑖))
1−𝑚

𝑛

𝑖=1

 

𝑡𝑎𝑛ℎ (𝛽
(1−𝜇𝐵(𝑥𝑖))

(1−𝜇𝐴(𝑥𝑖))
) −

1

𝜇𝐵(𝑥𝑖)
𝑡𝑎𝑛ℎ𝛽 −

1

(1−𝜇𝐵(𝑥𝑖))
𝑡𝑎𝑛ℎ𝛽                  (22) 

 

3.2 New Exponential Measures of Fuzzy Directed Divergence  

Since 𝑥𝑚𝑒𝑎𝑥 is a convex function when 𝑚 ≥ 1, 𝑥 > 0 we get the following measures 

of fuzzy directed divergence 

𝐷7(𝐴: 𝐵) = ∑
1

𝜇𝐴
𝑚(𝑥𝑖)𝜇𝐵

1−𝑚(𝑥𝑖)

𝑛

𝑖=1

𝑒
𝑎(

𝜇𝐵(𝑥𝑖)
𝜇𝐴(𝑥𝑖)

)

+ ∑
1

(1 − 𝜇𝐴(𝑥𝑖))
𝑚

(1 − 𝜇𝐵(𝑥𝑖))
1−𝑚

𝑛

𝑖=1

𝑒
𝑎(

(1−𝜇𝐵(𝑥𝑖))

(1−𝜇𝐴(𝑥𝑖))
)

−𝑒𝑎 

(23) 

Special case for m=0 and m=1 are 

𝐷8(𝐴: 𝐵) = ∑
1

𝜇𝐵(𝑥𝑖)
𝑛
𝑖=1 𝑒

𝑎(
𝜇𝐵(𝑥𝑖)

𝜇𝐴(𝑥𝑖)
)

+ ∑
1

(1−𝜇𝐵(𝑥𝑖))

𝑛
𝑖=1 𝑒

𝑎(
(1−𝜇𝐵(𝑥𝑖))

(1−𝜇𝐴(𝑥𝑖))
)

−𝑒𝑎                      (24) 

𝐷9(𝐴: 𝐵) = ∑
1

𝜇𝐴(𝑥𝑖)
𝑛
𝑖=1 𝑒

𝑎(
𝜇𝐵(𝑥𝑖)

𝜇𝐴(𝑥𝑖)
)

+ ∑
1

(1−𝜇𝐴(𝑥𝑖))

𝑛
𝑖=1 𝑒

𝑎(
1−𝜇𝐴(𝑥𝑖)

1−𝜇𝐵(𝑥𝑖)
)
−𝑒𝑎                         (25) 

 

4. Conclusion  

In section 2 and 3 by using the convexity of some trigonometric, hyperbolic and 

exponential function and satisfying the conditions of fuzzy entropy and fuzzy directed 

divergence we get some new trigonometric, hyperbolic and exponential measures of 

fuzzy entropy and fuzzy directed divergence. 
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