
Global Journal of Pure and Applied Mathematics. 

ISSN 0973-1768 Volume 20, Number 4 (2024), pp. 695-703 

©Research India Publications 

https://dx.doi.org/10.37622/GJPAM/20.4.2024.695-703 

 

 

Quantum Algorithm for 3-SAT Problem by Shor’s 

Fourier Transform with RAM on QCEngine 

 

Toru Fujimura 

 

Art and Physical Education area security office, University of Tsukuba, 

Ibaraki-branch, Rising Sun Security Service Co., Ltd., 1-1-1, Tennodai, Tsukuba, 

Ibaraki 305-8577, Japan 

 

 

Abstract 

A quantum algorithm for the 3-SAT problem by the Shor’s Fourier transform 

with the RAM on the QCEngine, and its example are reported. When there are 

3 literals with 2 ‘OR’s in each clause, a number of clauses is m, an r-th clause 

(1 ≤ r ≤ m) is Cu,r (x1, x2, x3, … , xn) [u is 20x1 + 21x2 + 22x3 + … + 2n-1xn. x1, x2, 

…, and xn are variables.], and S(u)max is Σr = 1 → m r×Cu,r (x1, x2, x3, … , xn), 

mod(S(u)max) of S(u) [S(u)max is the maximum value of S(u).] is computed, 

next, for u, the quantum Fourier transform is done. The complexity of this 

method is able to be several times. 

Keywords: Quantum algorithm, 3-SAT problem, Shor’s Fourier transform, 

RAM, QCEngine. 

AMS subject classification: Primary 81-08; Secondary 81-10, 68Q12. 

 

1. Introduction 

Cook discussed the complexity of the 3-SAT problem. [1] Quantum computer’s 



696 Toru Fujimura 

 

example of the 3-SAT problem is reported by Johnston, Harrigan, and 

Gimeno-Segovia with QCEngine (free on-line quantum computer simulator). [2] 

Fujimura discussed a quantum algorithm for the 3-SAT problem by the Grover 

iteration with the CCCNOT gate (= control Toffoli gate) on the QCEngine. [3] 

According to my advanced study, when the Shor’s Fourier transform for the 3-SAT 

problem is used, the complexity of the 3-SAT problem is able to be several times. 

Therefore, because the quantum algorithm for the 3-SAT problem is examined by the 

Shor’s Fourier transform with the RAM on the QCEngine, its result is reported. 

 

2. 3-SAT Problem 

In the 3-SAT problem, it is assumed that (i) each value of n variables becomes 

“TRUE” or “FALSE”, “~” is “NOT”, “V” is “OR”, “&” is “AND”, (ii) “V”, “~”, and 

3 different variables are included in each parentheses (= clause) that are connected by 

“&”. If a value of logical formula by the literals and the logical connectives is 

“TRUE”, it is decided whether there is at least one combination of values of the 

variables or not. [1-3] 

 

3. Quantum Algorithm 

The following conditions are assumed. (I) Each value of variables x1, x2, x3, … , and 

xn becomes “TRUE” [= 1], or “FALSE” [= 0]. “~” is “NOT”. “V” is “OR”. “&” is 

“AND”. For example, it is assumed in this algorithm that (1 V 1 V 1), (1 V 1 V 0), 

and (1 V 0 V 0) become 1, and (0 V 0 V 0) becomes 0. (II) “V”, “~”, and 3 different 

variables in x1, x2, x3, … , and xn are included in each clause, and then the clauses are 

connected by “&”. In these conditions, if a value of logical formula by the literals, and 

the operators is “TRUE”, it is searched whether there is at least one combination of 

values of the variables or not. It is assumed that n is number of qubits, u is 20x1 + 21x2 

+ 22x3 + … + 2n-1xn, a number of clauses is m, an r-th clause (1 ≤ r ≤ m) is Cu,r (x1, x2, 

x3, … , xn), S(u) is Σ r = 1 → m r×Cu,r (x1, x2, x3, … , xn), and S(u)max is (the maximum 

value of S(u)) = (m + 1)m/2 = k. 

First of all, query quantum registers |xi›[1 ≤ i ≤ n. i is an integer. n is the number of 

variables in logical formula.], work1 quantum registers |w1, j› [1 ≤ j ≤ t. j, and t are 

integers. t is a necessary number for S(u)max ≤ 2t.], work2 quantum registers |w2, p› [1 



Quantum Algorithm for 3-SAT Problem by Shor’s… 697 

 

≤ p ≤ t + 1. p is an integer. +1 is a qubit for the negative integer. [2]], and ancilla 

quantum qubit |a› are prepared. 

Step 1: The r data are introduced to the RAM [2]. 

Step 2: Each qubit of |xi ›, |w1, j ›, |w2, p›, and |a› is set |0›. 

Step 3: The Hadamard gate H [2-8] acts on each qubit of |xi›. It changes them for 

entangled states. 

Step 4: Each clause is presented by |xi›, |w2, p›, add gate, and quantum operators. For 

|xi›, RAM[r - 1] [RAM has r data of 0 → (m - 1).] is incremented in |w2, p›. In a 

function, S(u) = Σ r = 1 → m r×Cu,r (x1, x2, x3, … , xn) is computed. This operation makes 

entangled data base. 

Step 5: For |w2, p›, mod(k) [k = S(u)max = (m + 1)m/2] is done, where mod(k) is made 

by subtraction and addition in this program. [2] Therefore, the subtraction and the 

addition are done, where work1 quantum registers are added work2 quantum registers, 

and the uncompute is done. 

Step 6: For |xi›, the quantum Fourier transform (= QFT) [2, 4, 5, 8] is done. 

Step 7: For |xi›, and |w1, j›, the proves are done. 

Step 8: For |xi›, the read is done. 

Step 9: A number of spikes is estimated by the function (https: //oreilly-qc. github. io? 

p = 12-4 [2]), where the function estimate_num_spikes (spike, range) [spike: read 

value, range: 2n] is used. 

Step 10: From candidates of the number of spikes, the repeat period P is obtained. 

Step 11: From P = 20x1 + 21x2 + 22x3 + … + 2n-1xn, when there is S(P) is Σ r = 1 → m 

r×CP,r (x1, x2, x3, … , xn) = S(u)max = k, it is answer [number of combination of (value 

of logical formula) = 1]. 

 

 

 

4. Example of Numerical Computation 

For example at n = 5, it is assumed that logical formula : (x3 V x4 V x5) & (~x1 V x2 V 



698 Toru Fujimura 

 

x3) & (~x3 V x4 V x5) & (x3 V ~x4 V x5) & (~x2 V x3 V ~x5) & (~x3 V ~x4 V x5) & (~x3 V 

x4 V ~x5) & (x3 V ~x4 V ~x5) & (~x3 V ~x4 V ~x5), each value of x1~5 : x1 = x2 = x3 = x4 

= 0 , x5 = 1, m = 9, t = 6, and k = (m + 1)m/2 = 45. 

An example of program on the QCEngine is the following. 

10 var a = [1, 2, 3, 4, 5, 6, 7, 8, 9]; // RAM_a 

20 var query_qubits = 5; 

30 var work1_qubits = 6; 

40 var work2_qubits = 7; 

50 var ancilla_qubit = 1; 

60 qc.reset(query_qubits + work1_qubits + work2_qubits + ancilla_qubit); 

70 var query = qint.new(query_qubits, 'query'); 

80 var work1 = qint.new(work1_qubits, 'work1'); 

90 var work2 = qint.new(work2_qubits, 'work2'); 

100 var ancilla = qint.new(ancilla_qubit, 'ancilla'); 

110 qc.label('q'); // set query 

120 query.write(0); 

130 query.hadamard(); 

140 qc.label(' '); 

150 qc.label('w1'); // set work1 

160 work1.write(0); 

170 qc.label('w2'); // set work2 

180 work2.write(0); 

190 qc.label('a'); // set ancilla 

200 ancilla.write(0); 

210 qc.print(' RAM before increment : ' + a + '¥n'); 

220 var query16 = 16; 

230 var k = 45; 



Quantum Algorithm for 3-SAT Problem by Shor’s… 699 

 

240 var work1_0 = 0; 

250 qc.label('increment'); 

260 qc.not(query.bits(0x4)|query.bits(0x8)|query.bits(0x10)); 

270 work2.add(a[0],query.bits(0x4)|query.bits(0x8)|query.bits(0x10)); 

280 qc.not(query.bits(0x4)|query.bits(0x8)|query.bits(0x10)); 

290 qc.not(query.bits(0x2)|query.bits(0x4)); 

300 work2.add(a[1],query.bits(0x1)|query.bits(0x2)|query.bits(0x4)); 

310 qc.not(query.bits(0x2)|query.bits(0x4)); 

320 qc.not(query.bits(0x8)|query.bits(0x10)); 

330 work2.add(a[2],query.bits(0x4)|query.bits(0x8)|query.bits(0x10)); 

340 qc.not(query.bits(0x8)|query.bits(0x10)); 

350 qc.not(query.bits(0x4)|query.bits(0x10)); 

360 work2.add(a[3],query.bits(0x4)|query.bits(0x8)|query.bits(0x10)); 

370 qc.not(query.bits(0x4)|query.bits(0x10)); 

380 qc.not(query.bits(0x4)); 

390 work2.add(a[4],query.bits(0x2)|query.bits(0x4)|query.bits(0x10)); 

400 qc.not(query.bits(0x4)); 

410 qc.not(query.bits(0x10)); 

420 work2.add(a[5],query.bits(0x4)|query.bits(0x8)|query.bits(0x10)); 

430 qc.not(query.bits(0x10)); 

440 qc.not(query.bits(0x8)); 

450 work2.add(a[6],query.bits(0x4)|query.bits(0x8)|query.bits(0x10)); 

460 qc.not(query.bits(0x8)); 

470 qc.not(query.bits(0x4)); 

480 work2.add(a[7],query.bits(0x4)|query.bits(0x8)|query.bits(0x10)); 

490 qc.not(query.bits(0x4)); 



700 Toru Fujimura 

 

500 work2.add(a[8],query.bits(0x4)|query.bits(0x8)|query.bits(0x10)); 

510 qc.label('mod(' + k + ')'); 

520 work2.subtract(k); 

530 qc.cnot(ancilla.bits(0x1), work2.bits(0x40)); 

540 work2.add(k,ancilla.bits(0x1)); 

550 work1.add(work2); 

560 qc.label('uncompute'); 

570 work2.subtract(k,ancilla.bits(0x1)); 

580 qc.cnot(ancilla.bits(0x1),work2.bits(0x40)); 

590 work2.add(k); 

600 work2.subtract(a[8],query.bits(0x4)|query.bits(0x8)|query.bits(0x10)); 

610 qc.not(query.bits(0x4)); 

620 work2.subtract(a[7],query.bits(0x4)|query.bits(0x8)|query.bits(0x10)); 

630 qc.not(query.bits(0x4)); 

640 qc.not(query.bits(0x8)); 

650 work2.subtract(a[6],query.bits(0x4)|query.bits(0x8)|query.bits(0x10)); 

660 qc.not(query.bits(0x8)); 

670 qc.not(query.bits(0x10)); 

680 work2.subtract(a[5],query.bits(0x4)|query.bits(0x8)|query.bits(0x10)); 

690 qc.not(query.bits(0x10)); 

700 qc.not(query.bits(0x4)); 

710 work2.subtract(a[4],query.bits(0x2)|query.bits(0x4)|query.bits(0x10)); 

720 qc.not(query.bits(0x4)); 

730 qc.not(query.bits(0x4)|query.bits(0x10)); 

740 work2.subtract(a[3],query.bits(0x4)|query.bits(0x8)|query.bits(0x10)); 

750 qc.not(query.bits(0x4)|query.bits(0x10)); 



Quantum Algorithm for 3-SAT Problem by Shor’s… 701 

 

760 qc.not(query.bits(0x8)|query.bits(0x10)); 

770 work2.subtract(a[2],query.bits(0x4)|query.bits(0x8)|query.bits(0x10)); 

780 qc.not(query.bits(0x8)|query.bits(0x10)); 

790 qc.not(query.bits(0x2)|query.bits(0x4)); 

800 work2.subtract(a[1],query.bits(0x1)|query.bits(0x2)|query.bits(0x4)); 

810 qc.not(query.bits(0x2)|query.bits(0x4)); 

820 qc.not(query.bits(0x4)|query.bits(0x8)|query.bits(0x10)); 

830 work2.subtract(a[0],query.bits(0x4)|query.bits(0x8)|query.bits(0x10)); 

840 qc.not(query.bits(0x4)|query.bits(0x8)|query.bits(0x10)); 

850 qc.label('QFT'); 

860 query.QFT(); 

870 var prob16 = 0; 

880 prob16 += query.peekProbability(query16); 

890 // Print output query-Prob 

900 qc.print(' Prob_query16: ' + prob16); 

910 var prob0 = 0; 

920 prob0 += work1.peekProbability(work1_0); 

930 // Print output work1-Prob 

940 qc.print(' Prob_work1_0: ' + prob0); 

950 //read 

960 qc.label('Rq'); 

970 var b2 = query.read(); 

980 // Print output result 

990 qc.print(' Read query = ' + b2 +'.'); 

1000 // end 

When this program is copied on Programming Quantum Computers https: //oreilly-qc. 



702 Toru Fujimura 

 

github. io/# [free on-line quantum computation simulator QCEngine] [2], you can run 

it. [Caution!: Please delate the line numbers.] 

A result of this program is the following. 

The probability probe value of |w1, j› = 0 : 0.031250 (= 1/32). 

The probability probe value of |xi› = 16 : ≈ 0.0078125. 

The example of 10 times test : The read value of |xi› ; Rq = 22, 1, 21, 30, 0, 21, 28, 25, 

3, 0. (=spike) 

The candidates of number of spikes are estimated by the function [the function 

estimate_num_spikes (spike, range) [spike : read value, range : 2n = 25 = 32]] : Rq → 

candidates ; 22 → 3, 6, 10, 13, 16 ; 1 → nothingness ; 21 → 3, 6, 9, 12, 15, 17 ; 30 → 

16 ; 0 → nothingness ; 21 → 3, 6, 9, 12, 15, 17 ; 28 → 8, 16, 24 ; 25 → 5, 9, 18, 23 ; 

3 → 11, 21 ; 0 → nothingness. 

When u is 16 (20x1 + 21x2 + 22x3 + 23x4 + 24x5 = 20×0 + 21×0 + 22×0 + 23×0 + 24×1 = 

16), the value of logical formula is 1. Therefore, it is the answer. 

 

5. Discussion 

In the 3-SAT problem, when [(the logical formula) = 1] is obtained, there is only one 

combination. 

Therefore, the search is difficult. 

In the section 4, n is 5. And then, in n variables, [(the logical formula) = 1] of 

combination of variables is selected. When N is 2n, in the Grover’s method, the 

complexity is N1/2 = 25/2 ≈ 6, in the Shor’s Fourier transform, it is 10/3 ≈ 3. 

In this range, the Shor’s Fourier transform is less than the complexity of the Grover’s 

method. 

 

 

 

6. Summary 

The quantum algorithm for the 3-SAT problem by the Shor’s Fourier transform with 



Quantum Algorithm for 3-SAT Problem by Shor’s… 703 

 

the RAM on the QCEngine, and its example are reported. 

The complexity of this method is several times. 

I will apply this method for other problems. 

 

References 

[1] Cook, S. A., 1971, “The complexity of theorem proving procedures,” Proc. 3rd 

Annu. ACM Symp. Theory of Computing, pp.151-158. 

[2] Johnston, E.R., Harrigan, N., and Gimeno-Segovia, M., 2019, Programming 

Quantum Computers, O’Reilly, ISBN 978-1-492-03968-6. 

[3] Fujimura, T., 2023, “Quantum algorithm for 3-SAT problem by Grover iteration 

with CCCNOT gate (= control Toffoli gate) on QCEngine,” Glob. J. Pure Appl. 

Math., 19, 151-156. 

[4] Takeuchi, S., 2005, Ryoshi Konpyuta (Quantum Computer), Kodansha, Tokyo, 

Japan [in Japanese]. 

[5] Shor, P. W., 1994, ”Algorithms for quantum computation : discrete logarithms 

and factoring,” Proc. 35th Annu. Symp. Foundations of Computer Science, 

IEEE, pp.124-134. 

[6] Grover, L. K., 1996, “A fast quantum mechanical algorithm for database 

search,” Proc. 28th Annu. ACM Symp. Theory of Computing, pp.212-219. 

[7] Grover, L. K., 1998, “A framework for fast quantum mechanical algorithms,” 

Proc. 30th Annu. ACM Symp. Theory of Computing, pp.53-62. 

[8] Miyano, K., and Furusawa, A., 2008, Ryoshi Konpyuta Nyumon (An 

Introduction to Quantum Computation), Nipponhyoronsha, Tokyo, Japan [in 

Japanese]. 

 


