Global Journal of Pure and Applied Mathematics.

ISSN 0973-1768 Volume 20, Number 4 (2024), pp. 695-703
©Research India Publications
https://dx.doi.org/10.37622/GJPAM/20.4.2024.695-703

Quantum Algorithm for 3-SAT Problem by Shor’s

Fourier Transform with RAM on QCEngine

Toru Fujimura

Art and Physical Education area security office, University of Tsukuba,
Ibaraki-branch, Rising Sun Security Service Co., Ltd., 1-1-1, Tennodai, Tsukuba,
Ibaraki 305-8577, Japan

Abstract

A quantum algorithm for the 3-SAT problem by the Shor’s Fourier transform
with the RAM on the QCEngine, and its example are reported. When there are
3 literals with 2 ‘OR’s in each clause, a number of clauses is m, an r-th clause
(1 <r<m)is Cur (X1, X2, X3, ... , Xn) [Uis 2%z + 212 + 22X3 + ... + 2" Xn. X4, X2,
..., and Xxp are variables.], and S(U)max IS Zr=1 - m 'XCur (X1, X2, X3, ... , Xn),
mMod(S(U)max) Of S(u) [S(U)max is the maximum value of S(u).] is computed,
next, for u, the quantum Fourier transform is done. The complexity of this
method is able to be several times.

Keywords: Quantum algorithm, 3-SAT problem, Shor’s Fourier transform,
RAM, QCEngine.

AMS subject classification: Primary 81-08; Secondary 81-10, 68Q12.

1. Introduction

Cook discussed the complexity of the 3-SAT problem. [1] Quantum computer’s

696 Toru Fujimura

example of the 3-SAT problem is reported by Johnston, Harrigan, and
Gimeno-Segovia with QCEngine (free on-line quantum computer simulator). [2]
Fujimura discussed a quantum algorithm for the 3-SAT problem by the Grover
iteration with the CCCNOT gate (= control Toffoli gate) on the QCEngine. [3]

According to my advanced study, when the Shor’s Fourier transform for the 3-SAT
problem is used, the complexity of the 3-SAT problem is able to be several times.

Therefore, because the quantum algorithm for the 3-SAT problem is examined by the
Shor’s Fourier transform with the RAM on the QCEngine, its result is reported.

2. 3-SAT Problem

In the 3-SAT problem, it is assumed that (i) each value of n variables becomes
“TRUE” or “FALSE”, “~” is “NOT”, “V” is “OR”, “&” is “AND”, (ii) “V”, “~”, and
3 different variables are included in each parentheses (= clause) that are connected by
“&”. If a value of logical formula by the literals and the logical connectives is
“TRUE”, it is decided whether there is at least one combination of values of the
variables or not. [1-3]

3. Quantum Algorithm

The following conditions are assumed. (I) Each value of variables xi, X2, X3, ... , and
Xn becomes “TRUE” [= 1], or “FALSE” [= 0]. “~” is “NOT”. “V” is “OR”. “&” is
“AND”. For example, it is assumed in this algorithm that (1 V1 V 1), (1V 1V 0),
and (1 V0V 0) become 1, and (0 V 0 V 0) becomes 0. (II) “V”, “~”, and 3 different
variables in X1, X2, X3, ..., and X, are included in each clause, and then the clauses are
connected by “&”. In these conditions, if a value of logical formula by the literals, and
the operators is “TRUE”, it is searched whether there is at least one combination of
values of the variables or not. It is assumed that n is number of qubits, u is 2% + 2x,
+ 2%X3 + ... + 2"x,, a number of clauses is m, an r-th clause (1 <r <m) is Cur (X1, X2,
X3, ..., Xn), S(U) is X r=1 —m rXCur (X1, X2, X3, ... , Xn), and S(U)max IS (the maximum
value of S(u)) = (m + 1)m/2 = k.

First of all, query quantum registers [xp[1 < i < n. i is an integer. n is the number of
variables in logical formula.], workl quantum registers |wy, p [1 <j <t.], and t are
integers. t is a necessary number for S(u)max < 2], work2 quantum registers |wa, p> [1

Quantum Algorithm for 3-SAT Problem by Shor's... 697
<p<t+ 1 pisan integer. +1 is a qubit for the negative integer. [2]], and ancilla
quantum qubit |a» are prepared.

Step 1: The r data are introduced to the RAM [2].

Step 2: Each qubit of |xi>, |w1,j>, [W2, p>, and |a is set |0>.

Step 3: The Hadamard gate H| [2-8] acts on each qubit of |xi. It changes them for
entangled states.

Step 4: Each clause is presented by |xp>, |w2, p>, add gate, and quantum operators. For
[Xi>, RAM[r - 1] [RAM has r data of 0 — (m - 1).] is incremented in |w2, p>. In a
function, S(U) =2 r=1 —m XCur (X1, X2, X3, ... , Xn) IS computed. This operation makes
entangled data base.

Step 5: For |wz, p», mod(k) [k = S(U)max = (m + 1)m/2] is done, where mod(k) is made
by subtraction and addition in this program. [2] Therefore, the subtraction and the
addition are done, where workl1 quantum registers are added work2 quantum registers,
and the uncompute is done.

Step 6: For |xi», the quantum Fourier transform (= QFT) [2, 4, 5, 8] is done.
Step 7: For |xi», and |wy, p», the proves are done.
Step 8: For |xp, the read is done.

Step 9: A number of spikes is estimated by the function (https: //oreilly-gc. github. i0?
p = 12-4 [2]), where the function estimate_num_spikes (spike, range) [spike: read
value, range: 2"] is used.

Step 10: From candidates of the number of spikes, the repeat period P is obtained.

Step 11: From P = 2% + 2xo + 2%x3 + ... + 2™!x,, when there is S(P) is £ r=1m
rxCpr (X1, X2, X3, ... , Xn) = S(U)max = K, it is answer [number of combination of (value
of logical formula) = 1].

4. Example of Numerical Computation

For example at n = 5, it is assumed that logical formula : (x3V xsV Xs) & (~x1V X2V

698 Toru Fujimura

X3) & (~X3VXaV X5) & (X3 V ~XaV X5) & (~x2 VX3V ~X5) & (~x3V ~X4 V X5) & (~xaV
XaV ~X5) & (X3 V ~Xa V ~X5) & (~X3 V ~xa V ~xs), each value of X1-5: X1 = X2 = X3 = X4
=0,xs=1,m=9,t=6,and k=(m + 1)m/2 = 45.

An example of program on the QCEngine is the following.
10vara=11,2,3,4,56,7,8,9];//RAM_a

20 var query_qubits = 5;

30 var workl_qubits = 6;

40 var work2_qubits = 7;

50 var ancilla_qubit = 1;

60 qc.reset(query_qubits + work1_qubits + work2_qubits + ancilla_qubit);
70 var query = gint.new(query_qubits, ‘query’);

80 var work1 = gint.new(work1_qubits, ‘work1');
90 var work2 = gint.new(work2_qubits, ‘work2);
100 var ancilla = gint.new(ancilla_gqubit, 'ancilla’);
110 gc.label('q’); // set query

120 query.write(0);

130 query.hadamard();

140 qc.label(* ");

150 qc.label('wl"); // set work1

160 work1.write(0);

170 qc.label('w2"); // set work?2

180 work?2.write(0);

190 qc.label('a"); // set ancilla

200 ancilla.write(0);

210 gc.print(RAM before increment : ' + a + ¥n");
220 var query16 = 16;

230 var k = 45;

Quantum Algorithm for 3-SAT Problem by Shor's...

240 var workl 0 =0;

250 gc.label(‘increment’);

260 gc.not(query.bits(0x4)|query.bits(0x8)|query.bits(0x10));

270 work?2.add(a[0],query.bits(0x4)|query.bits(0x8)|query.bits(0x10));
280 gc.not(query.bits(0x4)|query.bits(0x8)|query.bits(0x10));

290 gc.not(query.bits(0x2)|query.bits(0x4));

300 work?2.add(a[1],query.bits(0x1)|query.bits(0x2)|query.bits(0x4));
310 gc.not(query.bits(0x2)|query.bits(0x4));

320 gc.not(query.bits(0x8)|query.bits(0x10));

330 work?2.add(a[2],query.bits(0x4)|query.bits(0x8)|query.bits(0x10));
340 gc.not(query.bits(0x8)|query.bits(0x10));

350 gc.not(query.bits(0x4)|query.bits(0x10));

360 work?2.add(a[3],query.bits(0x4)|query.bits(0x8)|query.bits(0x10));
370 gc.not(query.bits(0x4)|query.bits(0x10));

380 gc.not(query.bits(0x4));

390 work?2.add(a[4],query.bits(0x2)|query.bits(0x4)|query.bits(0x10));
400 gc.not(query.bits(0x4));

410 gc.not(query.bits(0x10));

420 work2.add(a[5],query.bits(0x4)|query.bits(0x8)|query.bits(0x10));
430 gc.not(query.bits(0x10));

440 gc.not(query.bits(0x8));

450 work?2.add(a[6],query.bits(0x4)|query.bits(0x8)|query.bits(0x10));
460 gc.not(query.bits(0x8));

470 gc.not(query.bits(0x4));

480 work2.add(a[7],query.bits(0x4)|query.bits(0x8)|query.bits(0x10));
490 gc.not(query.bits(0x4));

699

700 Toru Fujimura

500 work?2.add(a[8],query.bits(0x4)|query.bits(0x8)|query.bits(0x10));
510 gc.label('mod(' + k +)");

520 work2.subtract(k);

530 gc.cnot(ancilla.bits(0x1), work?2.bits(0x40));

540 work?2.add(k,ancilla.bits(0x1));

550 work1.add(work2);

560 gc.label(‘'uncompute’);

570 work?2.subtract(k,ancilla.bits(0x1));

580 gc.cnot(ancilla.bits(0x1),work2.bits(0x40));

590 work2.add(k);

600 work?2.subtract(a[8],query.bits(0x4)|query.bits(0x8)|query.bits(0x10));
610 gc.not(query.bits(0x4));

620 work?2.subtract(a[7],query.bits(0x4)|query.bits(0x8)|query.bits(0x10));
630 gc.not(query.bits(0x4));

640 gc.not(query.bits(0x8));

650 work?2.subtract(a[6],query.bits(0x4)|query.bits(0x8)|query.bits(0x10));
660 gc.not(query.bits(0x8));

670 gc.not(query.bits(0x10));

680 work?2.subtract(a[5],query.bits(0x4)|query.bits(0x8)|query.bits(0x10));
690 gc.not(query.bits(0x10));

700 gc.not(query.bits(0x4));

710 work?2.subtract(a[4],query.bits(0x2)|query.bits(0x4)|query.bits(0x10));
720 gc.not(query.bits(0x4));

730 gc.not(query.bits(0x4)|query.bits(0x10));

740 work?2.subtract(a[3],query.bits(0x4)|query.bits(0x8)|query.bits(0x10));
750 gc.not(query.bits(0x4)|query.bits(0x10));

Quantum Algorithm for 3-SAT Problem by Shor's...

760 gc.not(query.bits(0x8)|query.bits(0x10));

770 work2.subtract(a[2],query.bits(0x4)|query.bits(0x8)|query.bits(0x10));
780 gc.not(query.bits(0x8)|query.bits(0x10));

790 gc.not(query.bits(0x2)|query.bits(0x4));

800 work?2.subtract(a[1],query.bits(0x1)|query.bits(0x2)|query.bits(0x4));
810 gc.not(query.bits(0x2)|query.bits(0x4));

820 gc.not(query.bits(0x4)|query.bits(0x8)|query.bits(0x10));

830 work?2.subtract(a[0],query.bits(0x4)|query.bits(0x8)|query.bits(0x10));
840 gc.not(query.bits(0x4)|query.bits(0x8)|query.bits(0x10));

850 gc.label('"QFTY);

860 query.QFT();

870 var prob16 = 0;

880 prob16 += query.peekProbability(query16);

890 // Print output query-Prob

900 gc.print(' Prob_query16: ' + prob16);

910 var prob0 = 0;

920 prob0 += work1.peekProbability(workl_0);

930 // Print output work1-Prob

940 qc.print(' Prob_work1_0: "' + prob0);

950 //read

960 gc.label('Rq’);

970 var b2 = query.read();

980 // Print output result

990 qc.print(' Read query ="+ b2 +.");

1000 // end

701

When this program is copied on Programming Quantum Computers https: //oreilly-qc.

702 Toru Fujimura

github. io/# [free on-line quantum computation simulator QCEngine] [2], you can run
it. [Caution!: Please delate the line numbers.]

A result of this program is the following.
The probability probe value of |wy, jp =0 : 0.031250 (= 1/32).
The probability probe value of |xi = 16 : ~ 0.0078125.

The example of 10 times test : The read value of |x» ; Rq =22, 1, 21, 30, 0, 21, 28, 25,
3, 0. (=spike)

The candidates of number of spikes are estimated by the function [the function
estimate_num_spikes (spike, range) [spike : read value, range : 2" = 2° = 32]] : Rq —
candidates ; 22 — 3, 6, 10, 13, 16 ; 1 — nothingness ; 21 — 3, 6, 9, 12, 15,17 ; 30 —
16 ; 0 — nothingness ; 21 — 3, 6,9, 12,15, 17 ; 28 — 8, 16,24 ;25 — 5, 9, 18, 23 ;
3 — 11, 21 ; 0 — nothingness.

When u is 16 (2% + 212 + 223 + 23xa + 2%%5 = 2°%0 + 21x0 + 22x0 + 23x0 + 24x1 =
16), the value of logical formula is 1. Therefore, it is the answer.

5. Discussion

In the 3-SAT problem, when [(the logical formula) = 1] is obtained, there is only one
combination.

Therefore, the search is difficult.

In the section 4, n is 5. And then, in n variables, [(the logical formula) = 1] of
combination of variables is selected. When N is 2", in the Grover’s method, the
complexity is N*2= 252~ 6, in the Shor’s Fourier transform, it is 10/3 = 3.

In this range, the Shor’s Fourier transform is less than the complexity of the Grover’s
method.

6. Summary

The quantum algorithm for the 3-SAT problem by the Shor’s Fourier transform with

Quantum Algorithm for 3-SAT Problem by Shor's...

the RAM on the QCEngine, and its example are reported.

The complexity of this method is several times.

| will apply this method for other problems.

References

[1] Cook, S. A., 1971, “The complexity of theorem proving procedures,” Proc. 3rd
Annu. ACM Symp. Theory of Computing, pp.151-158.

[2] Johnston, E.R., Harrigan, N., and Gimeno-Segovia, M., 2019, Programming
Quantum Computers, O’Reilly, ISBN 978-1-492-03968-6.

[3] Fujimura, T., 2023, “Quantum algorithm for 3-SAT problem by Grover iteration
with CCCNOT gate (= control Toffoli gate) on QCEngine,” Glob. J. Pure Appl.
Math., 19, 151-156.

[4] Takeuchi, S., 2005, Ryoshi Konpyuta (Quantum Computer), Kodansha, Tokyo,
Japan [in Japanese].

[5] Shor, P. W., 1994, ”Algorithms for quantum computation : discrete logarithms
and factoring,” Proc. 35th Annu. Symp. Foundations of Computer Science,
IEEE, pp.124-134.

[6] Grover, L. K., 1996, “A fast quantum mechanical algorithm for database
search,” Proc. 28th Annu. ACM Symp. Theory of Computing, pp.212-219.

[7] Grover, L. K., 1998, “A framework for fast quantum mechanical algorithms,”
Proc. 30th Annu. ACM Symp. Theory of Computing, pp.53-62.

[8] Miyano, K., and Furusawa, A., 2008, Ryoshi Konpyuta Nyumon (An

Introduction to Quantum Computation), Nipponhyoronsha, Tokyo, Japan [in
Japanese].

703

