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Abstract 

In this era of modern science, non-Newtonian nanofluids have gained much 

importance in research due to large-scale applications in science and 

engineering. Hence, our investigation centres on utilizing Williamson 

Nanofluid to improve heat transfer across a horizontal surface, while examining 

the impacts of magnetic fields, solar radiation, chemical reactions, and 

activation energy. The nanofluid model integrates thermophoresis and 

Brownian motion to account for their combined effects in the energy transport 

equation. The numerical solutions address relevant boundary value problems by 

employing the shooting technique. The results are then illustrated through 

graphs and tables, providing insights into the distinctive features of various flow 

fields within the working fluid. The numerical computations consider two 

distinct scenarios: Williamson nanofluid and ordinary Williamson fluid. The 

findings indicate a higher heat transfer rate for the Williamson nanofluid than 

the ordinary Williamson fluid. 

Keywords: Numerical solution, Williamson nanofluid, solar radiation, 

chemical reaction, activation energy. 
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Introduction 

In modern research, understanding the mechanisms of non-Newtonian materials has 

become a focal point. The rheological characteristics of non-Newtonian materials 

significantly differ from those of Newtonian materials. Various substances such as 

shampoos, toothpaste, soaps, honey, sugar solutions, polymers, blood, ketchup, 

applesauce, drilling muds, and lubricants fall under the category of non-Newtonian 

fluids. All these liquids exhibits various rheological properties and mechanisms. In non-

Newtonian fluids, pseudoplastic fluids stand out as among the most commonly 

encountered types. The Williamson fluid represents a pseudoplastic type of non-

Newtonian fluid characterized by shear-thinning behavior. The Williamson fluid holds 

significant importance due to its applications in various fields including lubricants, 

biomedical fluids, emulsions, and nuclear fuel slurries. Williamson [1] explained the 

flow behavior of pseudoplastic materials and introduced a model to describe their 

characteristic flow. Experimental validation confirmed, the viscosity decrease with 

increasing rate of shear stress. Lyubimov and Perminov [2] investigated the effects of 

gravitational force on a thin layer of Williamson fluid. Nadeem et al. [3] formulated a 

model where they considered chyme as a Williamson fluid, and they conducted the flow 

analysis within the annular region created by two concentric tubes. Vajravelu and 

Dhivya [4] conducted a numerical analysis of Williamson fluid flow over a moving 

vertical cylinder with variable porosity using the Crank-Nicholson method. Salawu [5] 

numerically analyzed the stagnation-point flow with considering the influence of 

activation energy within a Williamson fluid comprising tiny particles over an expansive 

plate.  

The present study investigates the MHD flow of a Williamson nanofluid across an 

exponential stretching surface, taking into account nonlinear thermal radiation to 

enhance heat transfer. While stretching scenarios have been extensively analyzed with 

linear thermal radiation, there has been limited attention given to flow situations 

involving nonlinear thermal radiation. However, the impact of thermal radiation plays 

a crucial role in influencing the heat transfer rate and temperature distributions within 

the boundary layer flow of the participating fluid. This phenomenon finds various 

practical applications in industries such as metallurgy, manufacturing, and energy 

generation. Additionally, it holds significance in electronics by impacting the 

performance and cooling of electronic components. Notably, one of the most notable 

practical uses of this concept is in utilizing solar radiation as an energy source on Earth. 

The study conducted by Rashidi et al. [6] examined the MHD stretched flow of a 

nanofluid under the influence of buoyancy and thermal radiation. A salient feature of 

thermal radiation in nanofluid unsteady flow over a stretching sheet was reported by 

Das et al. [7], the study examined the impact of thermal radiation in a time-dependent 

magnetohydrodynamic flow with varying viscosity. Mahanthesh et al. [8] conducted an 

investigation into the radiative flow of a hydromagnetic nano-fluid over the rotation of 

a disk. Their analysis included a nano-fluid composed of water-based nanoparticles, 

considering various shapes of nanoparticles such as lamina, column, sphere, 

tetrahedron, and hexahedron. Khan et al [9] explored a mathematical model for entropy 

generation incorporating variable fluid properties. They further examined the impact of 
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mixed convection and nonlinear radiation. Reddy et al. [10] conducted a comprehensive 

examination of radiative heat transfer in Casson nanofluid, while also considering the 

viscous dissipation and particle movement. Moreover, recent research efforts have 

expanded beyond examining individual components to provide a complete 

understanding of thermal radiation's influence on various flows [11-18]. These studies 

provide a comprehensive understanding of the various impacts of thermal radiation in 

diverse fluid dynamics situations. 

The motion of Williamson liquid combined with chemical reactions has found 

extensive applications in various fields such as drying processes, geothermal reservoirs, 

surface dehydration, enhanced oil recovery, geothermal pools, fibrous insulation, food 

processing, thermal insulation, iron rusting, fog formation, nuclear reactor cooling, 

synthetic materials, and numerous others. Due to extensive applications, the 

consequence of chemical reaction has been investigated and reported by many 

researchers Mukhopadhyay et al [19], Hayat et al. [20], Umavathi et al. [21], Mustafa 

et al. [22], Majeed et al. [23] and Nadeem et al [24]. 

Common liquids are often underutilized in various scientific and technical sectors due 

to their poor heat conductivity. However, nanoparticles are gaining significant attention 

in this era due to their remarkable thermal impact and unique applications across 

industries, biological, and engineering sectors. Such as nuclear power, paper 

production, insolation collectors, glass-fibre manufacture, geothermal energy pipe 

cooling systems, and heat transmission in aircraft apparatus. Nanoparticles, 

characterized by their small metallic particles ranging from 1 to 100 nm, possess 

enhanced thermo-physical properties. Recent studies have highlighted that nanofluids 

exhibit higher thermal conductivity compared to conventional fluids. Choi [25] 

provided experimental validation of nanofluids, establishing the existence of this 

concept. Throughout the last two decades, researchers around the world have been 

fascinated by the exceptional properties of nanofluid, remarkable studies being 

recorded in the field [26-34]. 

The current study investigates the utilization of Williamson Nanofluid to enhance heat 

transfer across a horizontal surface, while simultaneously analyzing the effects of 

magnetic fields, solar radiation, chemical reactions, and activation energy. The 

presenting governing equations are highly nonlinear mathematical expressions that are 

numerically treated to examine the outcomes. Graphical representations are employed 

and discussed to express the mechanisms underlying various physical constraints on 

dimensionless quantities. The numerical computations cover two distinct scenarios: 

Williamson nanofluid and ordinary Williamson fluid. The results reveal a notably 

higher heat transfer rate for the Williamson nanofluid in comparison to the ordinary 

Williamson fluid. 
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Mathematical Formulation 

We examine a steady two-dimensional flow of Williamson fluid over an exponentially 

stretching surface in the presence of nanoparticles. The flow configuration and 

coordinate system are illustrated in Figure 1. The x-axis aligns with the stretching 

surface in the direction of fluid flow, while the y-axis is orthogonal to it. The surface is 

exponentially stretched in the x-direction with a velocity 𝑈𝑤(𝑥) = 𝑈0𝑒𝑥/𝐿.  A magnetic 

field strength 𝐵0 is applied along the y-direction. At the surface, the temperature and 

nanoparticle volume fraction of the nanofluid are denoted as  𝑇𝑤 and  𝐶𝑤, respectively. 

 

Figure 1: Physical model and coordinate system. 

With all above assumptions the governing boundary layer equations are: 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0,                                   (1) 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= 𝜈

𝜕2𝑢

𝜕𝑦2 + √2𝜈Г
𝜕𝑢

𝜕𝑦

𝜕2𝑢

𝜕𝑦2 −
𝜎𝐵0

2

𝜌
𝑢 −

𝜈

𝑘′ 𝑢,                 (2) 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
= 𝛼𝑚

𝜕2𝑇

𝜕𝑦2 + 𝜏 [𝐷𝑚
𝜕𝐶

𝜕𝑦

𝜕𝑇

𝜕𝑦
+

𝐷𝑇

𝑇∞
(

𝜕𝑇

𝜕𝑦
)

2

] +
𝑄0

𝜌𝑐𝑝
(𝑇 − 𝑇∞) −

1

𝜌𝑐𝑝

𝜕𝑞𝑟

𝜕𝑦
,   (3) 

𝑢
𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
= 𝐷𝑚

𝜕2𝐶

𝜕𝑦2 +
𝐷𝑇

𝑇∞

𝜕2𝑇

𝜕𝑦2 − 𝑘𝑟
2(𝐶 − 𝐶∞) (

𝑇

𝑇∞
)

𝑚

exp (−
𝐸𝑎

𝜅𝑇
),                 (4) 

The radiative heat flux expression in equation (3) is given by the Rosseland 

approximation as; 

 𝑞𝑟 = −
4𝜎∗

3𝑘∗

𝜕𝑇4

𝜕𝑦
= −

16𝜎∗

3𝑘∗ 𝑇3 𝜕𝑇

𝜕𝑦
,                    (5) 

Where σ∗ and 𝑘∗ are the Stefan-Boltzman constant and the mean absorption coefficient 

correspondingly, and in view to equation (5) in equation (3) reduces to 
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The boundary conditions considered for the present flow analysis are; 

𝑢 = 𝑈𝑤(𝑥) = 𝑈0𝑒𝑥/𝐿 ,    𝑣 = 0,    𝑇 = 𝑇𝑤,      𝐶 = 𝐶𝑤    at   𝑦 = 0,  

𝑢 = 0,    𝑇 → 𝑇∞,    𝐶 → 𝐶∞    𝑎𝑠     𝑦 → ∞.                   (7) 

The term 𝑘𝑟
2(𝐶 − 𝐶∞) (

𝑇

𝑇∞
)

𝑚

exp (−
𝐸𝑎

𝜅𝑇
) in equation (4) represents the modified 

Arrhenius equation in which 𝑘𝑟
2 is the reaction rate, 𝐸𝑎 the activation energy, 𝜅 =

8.61 × 10−5𝑒𝑉/𝐾 the Boltzmann constant and 𝑚 the fitted rate constant which 

generally lies in the range −1 < 𝑚 <  1. where 𝑢 and 𝑣 are velocity components along 

𝑥 and 𝑦 directions respectively, 𝑇 and 𝐶 are temperature and volume fraction of 

nanoparticles correspondingly, 𝜈 -kinematic viscosity, 𝜌 -is density of the fluid, 𝑄0-

dimensional heat source coefficient, 𝐵0 -magnetic field, 𝑘′ -permeability of the porous 

medium, 𝛼𝑚 = 𝑘/𝜌𝑐𝑝 -thermal diffusivity of the fluid, 𝑘 -thermal conductivity of the 

fluid, 𝐷𝑇 -thermophoretic diffusion coefficient, 𝐷𝑚 -Brownian diffusion coefficient,  

𝜏 = (𝜌𝑐)𝑝/(𝜌𝑐)𝑓 -ratio of the effective heat capacity of the nanoparticle to that of an 

ordinary fluid, (𝜌𝑐)𝑓 and (𝜌𝑐)𝑝 are heat capacities of the ordinary fluid and 

nanoparticles respectively, 𝑇∞ and 𝐶∞ are ambient temperature and volume fraction of 

nanoparticles respectively and 𝑞𝑟 radiative heat flux. 

Now, introduce the following similarity transformations 
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With the help of above transformations, equation Eq. (1) is identically satisfied and 

Equation’s. (2), (4) and (6) along with boundary conditions (7) take the following 

equations; 
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𝐸
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and the corresponding boundary conditions become; 

𝑓(0) = 0,   𝑓′(0) = 1,    𝜃(0) = 1,   𝜙(0) = 1,  

𝑓′(∞) = 0, 𝜃(∞) = 0,   𝜙(∞) = 0.                   (12) 
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where 𝜔 = Г√𝑈0
3𝑒3𝑥/𝐿

𝜈𝐿
 -Williamson fluid Parameter, 𝑀 =
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The Skin friction coefficient, Nusselt number and Sherwood numbers are; 

𝐶𝑓 =
𝜏𝑤

𝜌𝑈𝑤
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Where 𝜏𝑤 -surface shear stress, 𝑞𝑤-surface heat flux and 𝑞𝑚 -surface mass flux are 

given by; 
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Now through merging equation (8) and (14) in interpretation of equation (13), we have 

obtained; 

√𝑅𝑒𝑥𝐶𝑓 = (𝑓′′(0) +
𝜆

2
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Where 𝑅𝑒𝑥 =
𝑈0𝐿

𝜈
 is the local Reynolds number. 

 

Physical Interpretation 

In this section, we conducted comprehensive numerical simulations across coupled 

values of pertinent physical parameters, including velocity (𝑓′(𝜂)), temperature 

(𝜃(𝜂)), nanoparticle volume fraction (𝜙(𝜂)), skin friction coefficient (𝐶𝑓𝑅𝑒𝑥
0.5), 

Nusselt number (𝑁𝑢𝑥/(2𝑅𝑒𝑥)0.5) and Sherwood number (𝑆ℎ𝑥/(2𝑅𝑒𝑥)0.5). We 

elucidate and discuss the physical implications of the numerical outcomes through 
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plotted figures and tables. The default values for the parameters in our numerical 

simulations are explicitly indicated in each figure. Moreover, we present graphical 

representations of various physical parameters in two distinct cases: one pertaining to 

the non-Newtonian fluid scenario (Williamson fluid), and the other involving the non-

Newtonian nanofluid (Williamson nanofluid case). 

Figure 2 and 3 is demonstrates the temperature 𝜃(𝜂) and volume fraction profile 𝜙(𝜂) 

for different type of fluids. It is observed that, the temperature of Williamson nanofluid 

is higher than that of Newtonian-nano, Williamson and Newtonian fluid in order. It is 

note that the Williamson nanofluid have more capable in heating process. Figure 4 is 

drawn to determine the impact of 𝑅 on Nusselt number (𝑁𝑢𝑥/(2𝑅𝑒𝑥)0.5) versus 𝑄. The 

𝑁𝑢𝑥/(2𝑅𝑒𝑥)0.5 slightly decreases for larger 𝑄 and increases for larger 𝑅 in both cases. 

The impact of 𝑅 vs 𝑄 on Sherwood number (Shx/(2𝑅𝑒𝑥)0.5) is plotted in figure 5. The 

Shx/(2𝑅𝑒𝑥)0.5 enhanced for higher 𝑅 and 𝑄. The mass transfer rate is suddenly rises 

for larger heat source 𝑄 in case of nanofluid model than ordinary fluid. Figure 6 is 

drawn to determine the impact of 𝜎 on Shx/(2𝑅𝑒𝑥)0.5 versus 𝐸. The Shx/(2𝑅𝑒𝑥)0.5 

enhanced for 𝜎 and decreases for 𝐸. It is also noted that, the Williamson nanofluid have 

high mass transfer rate than Williamson fluid. 

 

Figure 2: Variation of temperature profile. 

 

Figure 3: Variation of concentration profile. 
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Figure 4: Nusselt number for radiation and heat source parameter. 

 

 

Figure 5: Sherwood number for radiation and heat source parameter. 

Figure 7 illustrates the impact of 𝐾𝑝 on 𝑓′(𝜂). It is evident that the presence of a porous 

medium imposes significant resistance to the liquid flow, thereby decelerating its 

motion. Consequently, as 𝐾𝑝 increases, the resistance to liquid flow intensifies, leading 

to a reduction in velocity. Figures 8 and 9 depict the variations of 𝜃(𝜂) and 𝜙(𝜂) for 

𝐾𝑝, respectively. In both the Williamson and Williamson nanofluid cases, 𝜃(𝜂) and 

𝜙(𝜂) exhibit a monotonous increase with increasing 𝐾𝑝. The presence of porous 

disturbances in liquid motion, coupled with continuous heat supply to the liquid at a 

uniform temperature 𝑇𝑤 on the surface, results in enhanced liquid temperatures. 

Additionally, the associated boundary layer thickness is higher in the nanoliquid model 

compared to the ordinary liquid case. 
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Figure 6: Sherwood number for reaction rate and activation energy parameter. 

 

 

Figure. 7. Velocity profile for permeability parameter 

 

 

Figure 8: Temperature profile for permeability parameter 



666 B.S. Prathibha, P. B. Sampath Kumar et al 

 

Figure 9: Concentration profile for permeability parameter  

 

The variation of temperature difference parameter 𝛿 on 𝜙(𝜂) is plotted in figure 10. It 

is noted that the higher values of 𝛿 is diminishes 𝜙(𝜂) in both cases. The reason behind 

that, the higher 𝛿 (= (𝑇𝑓 − 𝑇∞)/𝑇∞ ) increases the wall temperature and decreases the 

ambient temperature. However, the liquid concentration decrease. Figure 11 represent 

the 𝜙(𝜂) for various values of 𝐸. It is reported that the impact of activation energy 𝐸 

leads to increases in 𝜙(𝜂). Due to higher values of 𝐸 leads to lesser reaction rate 

constant and consequently slow down the chemical reaction, as a result increases in 

𝜙(𝜂). The impact 𝜎 on 𝜙(𝜂) is illustrated in figure 12. We can see that diminishing in 

volume fraction profile when 𝜎 is increased. Physically, an higher 𝜎 generates the 

greater reaction rate then random motion of nanoparticles rate decreases, as result 

reduction accurse in 𝜙(𝜂). Also, solute boundary layer thickness is higher in case 

nanoliquid model than ordinary liquid. 

 

 

Figure 10: Concentration profile for temperature difference parameter 
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Figure 11: Concentration profile for activation energy parameter 

 

 

Figure 12: Concentration profile for chemical reaction rate parameter 

 

 

Figure 13: Concentration profile for Lewis number 
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Figure 13 shows the effect of the Lewis number 𝐿𝑒 on 𝜙(𝜂). The higher Lewis number 

decrease the Brownian diffusion coefficient. The lower solute diffusivity slow down 

the nanoparticles motion, while volume fraction profile decreases for the higher 𝐿𝑒 in 

both cases. Figure 14-17 describes the temperature profile for 𝑁𝑏, 𝑁𝑡, 𝑅 and 𝜃𝑤. 

Increases in parametric (𝑁𝑏, 𝑁𝑡, 𝑅 and 𝜃𝑤) values leads to increase in liquid 

temperature along with their thermal boundary layer thickness. Behaviour of 𝑄𝑡 on 

temperature field 𝜃(𝜂) is depicted in figure 18. In both cases Williamson fluid and 

Williamson nanofluid. It is noted that, the liquid temperature is augmented via higher 

values of 𝑄𝑡 in both Williamson fluid and Williamson nanofluid cases. By enhancing 

the values of 𝑄𝑡 provides extra heat from surface towards working fluid, in fact the fluid 

temperature and their related thermal boundary layer thickness is increase. It is worth 

to mention that, the nanoliquid model (Williamson nanofluid) is more effective in flow 

field characteristics than ordinary liquid (Williamson fluid). 

 

Figure 14: Temperature and concentration profile for Brownian motion parameter. 

 

Table 1 presents the numeric data of 𝑁𝑢𝑥/(2𝑅𝑒𝑥)0.5 and 𝑆ℎ𝑥/(2𝑅𝑒𝑥)0.5 for different 

values of 𝐸, 𝐿𝑒, 𝜎, 𝛿, 𝑅, 𝜃𝑤 and 𝑄. The 𝑁𝑢𝑥/(2𝑅𝑒𝑥)0.5 decreases for 𝐸, 𝐿𝑒 and increases 

for 𝜎, 𝛿 in nanofluid model but no variations can be observed in ordinary fluid model. 

Significantly rises the heat and mass transfer rate when increase in 𝑅, 𝛿 and 𝜃𝑤. The 

reverse effect is observed in 𝑁𝑢𝑥/(2𝑅𝑒𝑥)0.5 and 𝑆ℎ𝑥/(2𝑅𝑒𝑥)0.5 for 𝑄. It is also 

observed that, the mass transfer rate (𝑆ℎ𝑥/(2𝑅𝑒𝑥)0.5) is more in Williamson nanofluid 

case than Williamson fluid but quit opposite behaviour can be observed in heat transfer 

process. 
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Figure 15: Temperature profile for thermophoresis parameter. 

 

 

Figure 16: Temperature profile for radiation parameter. 

 

 

Figure 17: Temperature profile for temperature ratio parameter. 
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Figure 18: Temperature profile for heat source parameter. 

 

Concluding Remarks 

Our study delved into the impact of nanoparticles on the magnetohydrodynamic flow 

of a Williamson fluid over a permeable exponential stretched surface. We meticulously 

compared scenarios with and without nanoparticles in the Williamson fluid, while also 

considering the effects of solar radiation, chemical reaction, and activation energy. 

Through our investigation, several key findings emerged: 

 The thermal and volume fraction boundary layer thickness increases in case of 

nanoliquid model (Williamson nanoliquid) than ordinary fluid model (Williamson 

fluid) case. 

 The thermophoresis and Brownian motion aspects are developed the thermal 

boundary layer thickness. 

 Liquid velocity reduces at the medium in presence of porous. 

 The mass transfer rate is more in Williamson nanofluid case than Williamson fluid 

but quit opposite behaviour can be observed in heat transfer process. 

 Generates more heat into the liquid flow through radiation phenomena, in fact better 

temperature is achieved. 

 Enhanced the concentration profile for superior activation energy. 

 Results of non-Newtonian fluid can be recovered when 𝑁𝑏 = 𝑁𝑡 = 0. 
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Tables and Graphs 

Table 1: Numerical values of 𝐶𝑓𝑅𝑒𝑥
0.5, 𝑁𝑢𝑥/(2𝑅𝑒𝑥)0.5 and 𝑆ℎ𝑥/(2𝑅𝑒𝑥)0.5 for 

different values of the various parameters. 

𝑬 𝑳𝒆 𝝈 𝜹 𝑹 𝑻𝒘 𝑸 

Williamson fluid Williamson nanofluid 

𝑁𝑢𝑥

(2𝑅𝑒𝑥)0.5
 

𝑆ℎ𝑥

(2𝑅𝑒𝑥)0.5
 

𝑁𝑢𝑥

(2𝑅𝑒𝑥)0.5
 

𝑆ℎ𝑥

(2𝑅𝑒𝑥)0.5
 

2 2 1.2 0.2 0.5 1.2 0.2 1.307121 1.038949 -0.09822 1.143927 

0.5       1.307121 1.545418 -0.07864 1.669161 

1       1.307121 1.326286 -0.08749 1.448424 

2       1.307121 1.038949 -0.09822 1.143927 

 0.5      1.307121 0.451286 0.068688 0.512258 

 1      1.307121 0.680761 -0.05614 0.77143 

 2      1.307121 1.038949 -0.09822 1.143927 

  0.4     1.307121 0.87112 -0.10586 0.94655 

  0.8     1.307121 0.958534 -0.10194 1.050932 

  1.2     1.307121 1.038949 -0.09822 1.143927 

   0.2    1.307121 1.038949 -0.09822 1.143927 

   0.4    1.307121 1.102506 -0.09049 1.229458 

   0.6    1.307121 1.167257 -0.0836 1.313714 

    0.5   1.186052 1.038949 -0.09822 1.122410 

    1   1.301606 1.046936 -0.07523 1.127566 

    1.5   1.307121 1.053237 -0.06756 1.143927 

     1.2  1.307121 1.038949 -0.09822 1.113323 

     1.5  1.362698 1.044268 -0.03335 1.127951 

     2  1.365862 1.053999 0.041915 1.143927 

      0.1 1.679188 1.03513 0.253448 1.094415 

      0.2 1.307121 1.038949 -0.09822 1.143927 

      

0.2

5 1.076933 1.041527 -0.3391 1.176248 
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