

Krull-Schmidt Theorem Fails for Invertible Lattices over a Discrete Valuation Ring (D.V.R.)

Dr. Hiteshwar Singh and Dhananjay Kumar Mishra

Retd. Assistant Professor
Dept. of Mathematics, M.L.S.M. College, Darbhanga
Univ. Deptt. of Mathematics, L.N.M.U. Darbhanga
Email: dhananjaykndbg@gmail.com

Abstract

Let us suppose that p be a prime number greater than 3, and let N be the semi-direct product of a group H of order p and a cyclic group C of order $p-1$, is the subgroup of H . Let R be the localization of the ring of integers \mathbb{Z} at p . We will show that the Krull-Schmidt Theorem does not hold good for the category of invertible $R[N]$ -lattices.

Key words: Invertible $R[N]$ -lattice, Semi direct product of groups, Krull-Schmidt Theorem, Permutation lattices, cyclotomic polynomial.

1. Introduction:

Let G be a finite group and let $R[G]$ be the group ring of G with coefficients in a Dedekind domain R . An $R[G]$ -lattice M is regarded as a finitely generated R -torsion-free $R[G]$ -module. M is said to be a permutation lattice if it is R -free and has an R -basis permuted by G . M is said to be an invertible or a permutation projective lattice, if it is a direct summand of a permutation lattice. This was arisen by a question of A. Merkurjev about the existence of a category of invertible lattices over a discrete valuation ring D.V.R., for which the Krull-Schmidt Theorem does not hold good. The question arose in the study of the problem of the uniqueness of a direct sum decomposition of the motive of a projective homogeneous variety into indecomposable objects in the category of Chow motives. This category contains a subcategory equivalent to the category of invertible lattices for a certain finite group. Failure of Krull-Schmidt theorem for this subcategory implies failure of uniqueness of direct sum decompositions [1].

Let us suppose that p be a prime number greater than 3, and let N be the semi-direct product of a group H of order p by a cyclic group C of order $p-1$, where C is conjugate

of H . Let R be the localization of the ring of integers, \mathbb{Z} , at the prime number p . Thus we have tried to show that the Krull-Schmidt Theorem fails for the category of invertible $R[N]$ -lattices in this research paper.

2. Discussion on Invertible $\mathbb{Z}[N]$ lattices and failure of Krull-Schmidt Theorem

Let us suppose that $N = H \times C$ such that the $\mathbb{Z}[N]$ -lattice $\mathbb{Z}[N]/H$ is isomorphic to $\mathbb{Z}[C]$, and is isomorphic to $\mathbb{Z}[H]$ as, $\mathbb{Z}[H] \cong \mathbb{Z}[N]$ and $\mathbb{Z}[N]/C \cong \mathbb{Z}[H]$.

Let us suppose that I_H be the augmentation ideal of $\mathbb{Z}[H]$. We will get the following $\mathbb{Z}[N]$ exact sequences:

$$0 \rightarrow I_H \rightarrow \mathbb{Z}[H] \rightarrow \mathbb{Z} \rightarrow 0.$$

We are tensoring by I_H over \mathbb{Z} and putting $V = I_H \otimes I_H$, then we get

$$0 \rightarrow V \rightarrow \mathbb{Z}[H] \otimes I_H \rightarrow I_H \rightarrow 0. \quad (1)$$

We can check that $\text{Res}_C^N I_H \cong \mathbb{Z}[C]$, and so the following isomorphisms are given by

Frobenius reciprocity:

$$\mathbb{Z}[H] \otimes I_H \cong \mathbb{Z}[N] \otimes_{\mathbb{Z}[C]} \text{Res}_C^N I_H \cong \mathbb{Z}[N] \otimes_{\mathbb{Z}[C]} \mathbb{Z}[C] \cong \mathbb{Z}[N].$$

Therefore, the sequence (1) becomes

$$0 \rightarrow V \rightarrow \mathbb{Z}[N] \rightarrow I_H \rightarrow 0. \quad (2)$$

Now for any $\mathbb{Z}[N]$ -lattice M , we will let $M^* = \text{Hom}(M, \mathbb{Z})$. Let us suppose that q be a prime number different from p , and also let C_q be a q -Sylow subgroup of N . Without loss of generality, we may assume that C_q is contained in C . So $H^1(C_q, I_H) \cong H^1(C_q, \mathbb{Z}[C]) = 0$. We have also $H^1(H, I_H) \cong \mathbb{Z}/p\mathbb{Z}$, and hence $H^1(H, I_H^*) \cong \mathbb{Z}/p\mathbb{Z}$. Let us suppose that there be a α which generates $H^1(H, I_H^*)$. We have a Proposition 12.5 in [2], there exists a $\mathbb{Z}[N]$ -lattice W and an exact sequence

$$0 \rightarrow I_H^* \rightarrow W^* \rightarrow \mathbb{Z}[N]/H \rightarrow 0$$

such that the image of α in $H^1(H, W^*)$ is 0, and hence W^* is H^1 -trivial since $H^1(N, I_H^*)$ injects into $H^1(H, I_H^*)$. Since N is meta-cyclic this implies that W^* is invertible by [5].

After Dualizing the above sequence we obtain new sequence

$$0 \rightarrow \mathbb{Z}[N]/H \rightarrow W \rightarrow I_H \rightarrow 0 \quad (3)$$

with invertible $\mathbb{Z}[N]$ -lattice W .

Lemma 1. There is an isomorphism of $\mathbb{Z}[N]$ -lattices as

$$V \oplus W \cong \mathbb{Z}[N] \oplus \mathbb{Z}[N]/H.$$

Proof. We form the following pullback diagram with sequences (2) and (3)

$$\begin{array}{ccccccc} & & 0 & & 0 & & \\ & & \uparrow & & \uparrow & & \\ 0 & \rightarrow & V & \rightarrow & \mathbb{Z}[N] & \rightarrow & I_H \rightarrow 0 \\ & & \uparrow & & \uparrow & & \\ 0 & \rightarrow & V & \rightarrow & M & \rightarrow & W \rightarrow 0 \\ & & \uparrow & & \uparrow & & \\ & & \mathbb{Z}[N]/H & \rightarrow & \mathbb{Z}[N]/H & & \\ & & \uparrow & & \uparrow & & \\ & & 0 & & 0 & & \end{array}$$

We have $(I_H)^K = 0$ for all subgroups K of N so that V is H^1 -trivial. Since N is metacyclic, this implies that V is invertible by [5], we have also obtained from [5] Lemma 9, section 1], that the middle horizontal and vertical sequences will split, to give

$$V \oplus W \cong Z[N] \oplus Z[N]/H.$$

Remark 2. For a $Z[N]$ -lattice M , let M_p denote its localization at the prime number p , and let us suppose that M denote its p -adic completion.

Remark 3. We have

$$Z[N]/H \cong \hat{Z}[x]/(x^{p-1} - 1) \cong \bigoplus_{k=1}^{p-1} \hat{Z}[x]/(x - \theta^k) \cong \bigoplus_{k=1}^{p-1} Z_k$$

where $Z_k \cong \hat{Z}[x]/(x - \theta^k)$ and θ is a primitive $(p-1)^{\text{th}}$ root of 1 in \hat{Z} . So Z_k is a $\hat{Z}[N]$ -module of \hat{Z} -rank 1 with trivial H -action and such that if c generates C , then $c \cdot 1 = \theta^k$. Therefore,

$$\hat{Z}[N] \cong \hat{Z}[H] \otimes \hat{Z}[C] \cong \bigoplus_{k=1}^{p-1} \hat{Z}[H] \otimes Z_k.$$

It is noted that for each k , $\hat{Z}[H] \otimes Z_k$ is indecomposable since $\text{Res}_H^N \hat{Z}[H] \otimes Z_k \cong \hat{Z}[H]$, and $\hat{Z}[H]$ is an indecomposable $\hat{Z}[H]$ -module by [6].

Theorem 2. Let us suppose that R denote the localization of Z at the prime number p . Then the Krull-Schmidt Theorem does not hold good for invertible $R[N]$ -lattices.

Proof. We have from [1] theorem 2.3

$$\hat{V} \cong \left(\bigoplus_{k=2}^{p-1} \hat{Z}[H] \otimes Z_k \right) \oplus Z_1$$

Therefore by Lemma 1 and from Remark 3, we get

$$\hat{W} \cong \left(\bigoplus_{k=2}^{p-1} Z_k \right) \otimes \hat{Z}[H] \oplus Z_1$$

Let us suppose that Q be the field of rational numbers and for each k dividing $p-1$, let ω_k be a primitive k^{th} root of unity over Q . Then

$$Q[N]/H \cong \bigoplus_{k \mid p-1} Q(\omega_k)$$

and the $Q(\omega_k)$ are the irreducible components of $Q[N]/H$. Now $Z[N]/H$ is isomorphic to $Z[C]$ as a $Z[N]$ -module, and since $R[C]$ is a maximal R -order in $Q[C]$ we have

$$R[N]/H \cong \bigoplus_{k \mid p-1} R[\omega_k]$$

by [6]. Therefore, $R[N] \cong \bigoplus_{k \mid p-1} R[H] \otimes R[\omega_k]$.

Now for each k we have $\hat{Z}[\omega_k] \cong \hat{Z}[x]/\phi_k(x)$

where $\phi_k(x)$ is the k^{th} cyclotomic polynomial. As above we let $\theta \in Q_p$ be a primitive $(p-1)^{\text{th}}$ root of unity over Q , where Q_p is the completion of Q at the prime number p . We

take $\omega_k = \theta^{(p-1)/k}$ and let us suppose $J_k = \{i \in Z: 1 \leq i < k, (i, k)=1\}$. Then $\phi_k(x) = \prod_{j \in J_k} (x - \omega_k^j)$. Therefore,

$$\hat{Z}[\omega_k] = \bigoplus_{j \in J_k} Z_j.$$

Consequently, we have

$$\hat{V} \cong \left(\bigoplus_{k/p-1, k \neq p-1} \hat{Z}[H] \otimes \hat{Z}[\omega_k] \right) \oplus \left(\bigoplus_{k \in J_{p-1}, k \neq 1} \hat{Z}[H] \otimes Z_k \right) \oplus Z_1$$

and

$$\hat{W} \cong \left(\bigoplus_{k/p-1, k \neq p-1} \hat{Z}[\omega_k] \right) \oplus \left(\bigoplus_{k \in J_{p-1}, k \neq 1} Z_k \right) \oplus \hat{Z}[H] \otimes Z_1$$

To simplify notation we set

$$M = \bigoplus_{k/p-1, k \neq p-1} R[H] \otimes R[\omega_k] \text{ and } M' = \bigoplus_{k/p-1, k \neq p-1} R[\omega_k]$$

Since \hat{Z} is a simple R -module [4] we so have $\hat{V}/\hat{M} \cong V_p^*/M$. Similarly, $\hat{W}/\hat{M}' \cong W_p^*/M'$. Therefore, the $R[N]$ -lattices $S = V_p/M$ and $S' = W_p/M'$ have the property that

$$\hat{S} = \left(\bigoplus_{k \in J_{p-1}, k \neq 1} Z_k \otimes \hat{Z}[H] \right) \oplus Z_1$$

and

$$\hat{S}' = \left(\bigoplus_{k \in J_{p-1}, k \neq 1} Z_k \right) \oplus \hat{Z}[H] \otimes Z_1$$

We have $\hat{V} = \hat{M} \oplus \hat{S}$ and $\hat{W} = \hat{M}' \oplus \hat{S}'$, which implies that $V_p = M \oplus S$ and $W_p = M' \oplus S'$, [6]. Since $V_p \oplus W_p = R[N]/H \oplus R[N]$ by Lemma 1, also S and S' are invertible $R[N]$ -lattices. Since

$$\hat{Z}[\omega_{p-1}] = \bigoplus_{k \in J_{p-1}} Z_k,$$

we get

$$\hat{S} \oplus \hat{S}' \cong \hat{Z}[H] \otimes \hat{Z}[\omega_{p-1}] \oplus \hat{Z}[\omega_{p-1}],$$

and so by [6],

$$\hat{S} \oplus \hat{S}' \cong R[H] \otimes R[\omega_{p-1}] \oplus R[\omega_{p-1}].$$

Now $R[\omega_{p-1}]$ is indecomposable since $Q(\omega_{p-1})$ is irreducible, but it is not a direct summand of either S or S' , but $\hat{Z}[\omega_{p-1}]$ would be a direct summand of \hat{S} or \hat{S}' which is a contradiction.

We have found that the prime number p be greater than 3, is necessary for if $p = 3$, then $S = Z[\omega_2]$ and if $p = 2$, then $S = R = Z[\omega_1]$. Hence, it has been seen that Krull-Schmidt theorem fails for invertible lattices over a D.V.R.

References

- [1] V. Chernousov and A. Merkurjev, Motivic decomposition of projective homogeneous varieties and the Krull-Schmidt Theorem, preprint.
- [2] D. Saltman, Lectures on Division Algebras, CMBS, Regional Conference series in Mathematics, number 94, 1998. MR1692654 (2000f:16023)
- [3] E. Beneish, Monomial actions of the symmetric group, J. of Alg. 265 (2003) 405-419. MR1987009 (2004b:20008)
- [4] I. Reiner, Maximal Orders, Academic Press, 1975.
- [5] J.-L. Colliot-Thelene and J.-P. Sansuc, La R-equivalence sur les tores, Ann. Sci. Ecole Normale Sup. (4) 10 (1977), 175-230. MR0450280 (56:8576)
- [6] C. Curtis and I. Reiner, Methods of Representation Theory, Vol. 1, Springer-Verlag, 1982. MR0632548 (82i:20001)

