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Abstract

In this work, we study the extragradient method is defined by P. Kumam et al..
First, we prove weak convergence to a common solution to the split equilibrium
problem and fixed point problem of two asymptotically nonexpansive semigroups,
second, we modified the method together with the classical shrinking projection
algorithm and prove the strongly convergence to the same solution in real Hilbert
spaces. Our results is extended some ersults of P. Kumam et al. [2].
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1. INTRODUCTION

Let H be a real Hilbert space, C a nonempty closed convex subset of H and T : C → C
a mapping. Recall that a self-mapping f of C is a contraction if ∥f(x) − f(y)∥ ≤
α∥x − y∥ for some α ∈ (0, 1) and T is a nonexpansive if ∥Tx − Ty∥ ≤ ∥x − y∥ for
all x, y ∈ C, and T is asymptotically nonexpansive [7] if there exists a sequence {kn}
with kn ≥ 1 for all n and limn→∞ kn = 1 and such that ∥T nx− T ny∥ ≤ kn∥x− y∥ for
all n ≥ 1 and x, y ∈ C. A point x ∈ C is a fixed point of T provided Tx = x. Denote
by Fix(T ) the set of fixed points of T ; that is, Fix(T ) = {x ∈ C : Tx = x}.

Recall that a one-parameter family T = {T (t)|0 ≤ t < ∞} of self-mappings of a
nonempty closed convex subset C of a Hilbert space H is said to be a (continuous)
Lipschitzian semigroup on C (see, e. g., [14]) if the following conditions are satisfied:

(i) T (0)x = x, x ∈ C

(ii) T (s+ t)(x) = T (s)T (t), s, t ≥ 0, x ∈ C
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(iii) for each x ∈ C, the map t 7→ T (t)x is continuous on [0,∞)

(iv) there exists a bounded measurable function L : [0,∞) → [0,∞) such that, for
each t > 0

∥T (t)x− T (t)y∥ ≤ Lt∥x− y∥, x, y ∈ C.

A Lipschitzian semigroup T is called nonexpansive (or a contraction semigroup) if
Lt = 1 for all t > 0, and asymptotically nonexpansive semigroup if lim supt→∞ Lt ≤ 1,
respectively. We use Fix(T ) to denote the common fixed point set of the semigroup;
that is Fix(T ) = {x ∈ C : T (t)x = x, t > 0}.

In 2006, Nadezhkina and Takahashi [11], present a hybrid extragradient method for
finding a common solution of fixed point problem and variational inequality problems
in a real Hilbert space. In 2015, Thuy [13], present a hybrid extragradient method
for equilibrium, variational inequality and fixed point problem of a nonexpansive
semigroup in Hilbert spaces. In 2017, Dinh et al. [18] present two new extragradient
proximal point algorithms for solving split equilibrium problem and fixed point
problems of nonexpansive mappings in real Hilbert spaces.

In 2019, I. Inchan [8], give some examples for relationship between a nonexpansive
semigroup and an asymptotically nonexpansive semigroup and modified two hybrid
projection algorithm to prove the strongly convergence of a sequence {xn} generated
by the hybrid projection algorithm of two asymptotically nonexpansive semigroups.

In 2020, P. Kumam et al. [2], modified extragradient method for computing a common
solution to the split equilibrium problem and fixed point problem of a nonexpansive
semigroup in real Hilbert spaces.

Algorithm 1.1. let C ⊆ H1 and Q ⊆ H2 be nonempty subsets of real Hilbert space
H1 and H2, respectively. Let A : H1 → H2 be a bounded linear operator and A∗ be
its adjoint. Let F : C × C → R and G : Q × Q → R be two bifunctions satisfying
condition (B1) − (B5) and (A1) − (A4), respectively. Let T = {T (t) : 0 ≤ t < ∞}
and S = {S(s) : 0 ≤ s < ∞} be two nonexpansive semigroups. Let Γ =

{
x∗ ∈ C :

x∗ ∈ EP (C,F ) ∩ Fix(T ) and Ax∗ ∈ EP (Q,G) ∩ Fix(S)
}
̸= ∅, then

x1 ∈ C1 = C,

yn = arg min
{
λnF (xn, y) +

1

2
∥y − xn∥2 : y ∈ C

}
zn = arg min

{
λnF (yn, z) +

1

2
∥z − xn∥2 : z ∈ C

}
vn = (1− αn)zn + αn

1

tn

∫ tn

0

T (t)zndt,

un = TG
rn(Avn),

xn+1 = PC(vn + ξA∗(
1

sn

∫ sn

0

S(s)unds− Avn)).
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Algorithm 1.2. Let C ⊆ H1 and Q ⊆ H2 be nonempty subsets of real Hilbert space
H1 and H2, respectively. Let A : H1 → H2 be a bounded linear operator and A∗ be
its adjoint. Let F : C × C → R and G : Q × Q → R be two bifunctions satisfying
condition (B1) − (B5) and (A1) − (A4), respectively. Let T = {T (t) : 0 ≤ t < ∞}
and S = {S(s) : 0 ≤ s < ∞} be two nonexpansive semigroups. Let Γ =

{
x∗ ∈ C :

x∗ ∈ EP (C,F ) ∩ Fix(T ) and Ax∗ ∈ EP (Q,G) ∩ Fix(S)
}
̸= ∅, then

x1 ∈ C1 = C,

yn = arg min
{
λnF (xn, y) +

1

2
∥y − xn∥2 : y ∈ C

}
zn = arg min

{
λnF (yn, z) +

1

2
∥z − xn∥2 : z ∈ C

}
vn = (1− αn)zn + αn

1

tn

∫ tn

0

T (t)zndt,

un = TG
rn(Avn),

wn = PC

(
vn + ξA∗

( 1

sn

∫ sn

0

S(s)unds− Avn

))
,

Cn+1 =
{
x ∈ Cn : ∥wn − x∥ ≤ ∥vn − x∥ ≤ ∥xn − x∥

}
,

xn+1 = PCn+1x1.

Then the Algorithm 1.1 converges weakly to solution in Γ and prove that the Algorithm
1.2 converges strongly to to solution in Γ.

Since an asymptotically nonexpansive semigroup is generalized than nonexpansive
semigroup. Inspired and motivated of this work, we study and improve a modified
extragradient method is defined by Algorithm 1.1 and Algorithm 1.2 and peoved weak
and strong convergence for an asymptotically nonexpansive semigroup in real Hilbert
spaces.

2. PRELIMINARIES

Let C ⊆ H1 and Q ⊆ H2 be nonempty subsets of real Hilbert space H1 and H2,
respectively. Let A : H1 → H2 be a bounded linear operator and A∗ be its adjoint.
Let F1 : C × C → R and F2 : Q × Q → R be two bifunctions satisfying condition
(B1) − (B5) and (A1) − (A4), respectively. Let T = {T (t) : 0 ≤ t < ∞} and
S = {S(s) : 0 ≤ s < ∞} be two asymptotically nonexpansive semigroups. Recall that
a split equilibrium and fixed point problem (SEFPP) is to find

x∗ ∈ C such that

{
F1(x

∗, x) ≥ 0 for all x ∈ C,

x∗ ∈ Fix(T )
(1)
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and

y∗ = Ax∗ ∈ Q such that

{
F2(y

∗, y) ≥ 0 for all y ∈ Q,

y∗ ∈ Fix(S).
(2)

Let Γ =
{
x∗ ∈ C : x∗ ∈ EP (C,F1) ∩ Fix(T ) and Ax∗ ∈ EP (Q,F2) ∩ Fix(S)

}
. It

is remarked that the problem addressed in the inequality (1) represents the classical
equilibrium problem and fixed point problem of an asymptotically nonexpansive
semigroup. The solution set of an equilibrium problem is denoted as EP (C,F ). Recall
that a bifunction F : C × C → R is said to be:

1. strongly monotone with constant τ > 0 if

F (x, y) + F (y, x) ≤ –τ∥x–y∥2, for all x, y ∈ C;

2. monotone if
F (x, y) + F (y, x) ≤ 0, for all lx, y ∈ C;

3. pseudomonotone if

for all x, y ∈ C,F (x, y) ≥ 0 ⇒ F (y, x) ≤ 0;

4. pseudomonotone with respect to a nonempty subset D of C if

for all x∗ ∈ D and for all y ∈ C,F (x∗, y) ≥ 0 ⇒ F (y, x∗) ≤ 0;

5. Lipschitz-type continuous if there exist positive constants c1 and c2 such that

F (x, y) + F (y, x) ≥ F (x, z)− c1∥x− y∥2 − c2∥y − z∥2, for all x, y, z ∈ C.

Note that the implications (1) ⇒ (2) ⇒ (3) ⇒ (4) are easy to follow. Moreover, if a
mapping is Lipschitz continuous on C then for any ϵ > 0 it is Lipschitz-type continuous
on C with c1 =

L
2ϵ

and c2 =
ϵL
2
.

Assumption 2.1. [10] Let F : C × C → R be a bifunction satisfying the following
assumptions:

1. F (x, x) ≥ 0,∀c ∈ C,

2. F is monotone, i.e., F (x, y) + F (y, x) ≤ 0,∀x, y ∈ C,

3. F is upper hemicontinuous, i.e., for each x, y ∈ C, lim supt→0 F (tz + (1 −
t)x, y) ≤ F (x, y),

4. For each x ∈ C fixed, the function y 7→ F (x, y) is convex and lower
semicontinuous;
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Assumption 2.2. Let F2 : Q×Q → R satisfies the following set of standard properties:

(A1) F2(u, u) = 0 for all u ∈ Q;

(A2) F2 is monotone on Q;

(A3) for each v ∈ Q, the function x → F2(u, v) is upper hemicontinuous, that is, for
each u,w ∈ Q,

lim
λ→0

F2(λw + (1− λ)u, v) ≤ F2(u, v)

;

(A4) for each u ∈ Q, the function v → F2(u, v) is convex and lower semi-continuous.

Moreover, the bifunction F1 : C × C → R satisfies the following set of standard
properties:

(B1) F1(x, x) = 0 for all x ∈ C;

(B2) F1 is pseudomonotone on C with respect to EP (C,F1);

(B3) F1 is weakly continues on C × C;

(B4) for each x ∈ C, the function y → F1(x, y) is convex and subdifferentiable;

(B5) F1 is Lipschitz-type continuous on C.

Lemma 2.3. [3, 6] Let C be a nonempty closed convex subset of a real Hilbert space
H and let F : C×C → R be a bifunction satisfying conditions (A1)− (A4). For r > 0
and u ∈ H , there exists w ∈ C such that

F (w, v) +
1

r
⟨v − w,w − u⟩ ≥ 0, for all v ∈ C.

Lemma 2.4. [3, 6] Assume that the bifunctions F1 : C × C → R satisfy Assumption
2.2. For r > 0 and for all x ∈ H1, define a mapping T F1

r : H1 → C as follows:

T F1
r (x) =

{
z ∈ C : F1(z, y) +

1

r
⟨y − z, z − x⟩ ≥ 0,∀y ∈ C

}
.

Then, the following hold:

1. T F1
r is single-valued.

2. T F1
r is firmly nonexpansive, i.e.,

∥T F1
r x− T F1

r y∥2 ≤ ⟨T F1
r x− T F1

r y, x− y⟩,∀x, y ∈ H1.

3. Fix(T F1
r ) = EP (C,F1).

4. EP (C,F1) is compact and convex.
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Further, assume that F2 : Q×Q → R satisfying Assumption 2.1. For s > 0 and for all
w ∈ H2, define a mapping T F2

s : H2 → Q as follows:

T F2
s (w) =

{
d ∈ Q : F2(d, e) +

1

s
⟨e− d, d− w⟩ ≥ 0,∀e ∈ Q

}
.

Then, we easily observe that T F2
s s is single-valued and firmly nonexpansive,

EP (Q,F2) is compact and convex, and Fix(T F2
s ) = EP (Q,F2), where EP (Q,F2)

is the solution set of the following equilibrium problem:

Lemma 2.5. Let H be a real Hilbert space, then the following hold:

1. ∥x+ y∥2 ≤ ∥x∥2 + 2⟨x, y⟩+ ∥y∥2, ∀x, y ∈ H;

2. ∥tx+(1− t)y∥2 = t∥x∥2+(1− t)∥y∥2− t(1− t)∥x− y∥2, t ∈ [0, 1],∀x, y ∈ H.

Lemma 2.6. [?] Let C be a nonempty bounded closed convex subset of real Hilbert
space H and let T := {T (s) : 0 ≤ s < ∞} an asymptotically nonexpansive semigroup
on C, then for any u ≥ 0,

lim sup
u→∞

lim sup
t→∞

sup
x∈C

∥∥∥1
t

∫ t

0

T (s)xds− T (u)
(1
t

∫ t

0

T (s)xds
)∥∥∥ = 0.

3. WEAK CONVERGENCE THEOREM

In this section, we modifies the algorithm and prove a weak convergence theorem to the
common solution of split equilibrium problem and fixed point problems in real Hilbert
spaces. First start, we modifies the algorithm as follows:

Algorithm 3.1. Let C ⊆ H1 and Q ⊆ H2 be nonempty subsets of real Hilbert space
H1 and H2, respectively. Let A : H1 → H2 be a bounded linear operator and A∗ be
its adjoint. Let F1 : C × C → R and F2 : Q × Q → R be two bifunctions satisfying
condition (B1) − (B5) and (A1) − (A4), respectively. Let T = {T (t) : 0 ≤ t < ∞}
and S = {S(s) : 0 ≤ s < ∞} be two asymptotically nonexpansive semigroups. Let
Γ =

{
x∗ ∈ C : x∗ ∈ EP (C,F1) ∩ Fix(T ) and Ax∗ ∈ EP (Q,F2) ∩ Fix(S)

}
̸= ∅,

we have x1 ∈ C1 = C,

yn = arg min
{
λnF1(xn, y) +

1

2
∥y − xn∥2 : y ∈ C

}
zn = arg min

{
λnF1(yn, z) +

1

2
∥z − xn∥2 : z ∈ C

}
wn = T F1

rn zn,

vn = (1− αn)wn + αn
1

tn

∫ tn

0

T (t)wndt,

un = T F2
rn (Avn),

xn+1 = PC(vn + ηA∗(
1

sn

∫ sn

0

S(s)unds− Avn)).
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The following results establishes a crucial relation among the sequences {xn}, {yn} and
{zn} for the convergence analysis of Algorithm 3.1.

Lemma 3.2. [1] Suppose that x∗ ∈ EP (C,F ), F is pseudomonotone on C and F (x, ·)
is convex and subdifferentiable on C for all x ∈ C, then we have

1. λn{F (xn, y)− F (xn, yn)} ≥ ⟨yn − xn, yn − y⟩, for all y ∈ C,

2. ∥zn − x∗∥2 ≤ ∥xn − x∗∥2 − (1− 2λc2)∥zn − yn∥2 − (1− 2λc1)∥xn − yn∥2, for
all n ≥ 0

Lemma 3.3. Let C ⊆ H1, Q ⊆ H2, A, F1, F2, T ,S and {xn} be the sequence as in
Algorithm 3.1. Assume that the following control conditions are satisfied:

(i) {λn} ⊂ [a, b] for some a, b ∈ min{ 1
2c1

, 1
2c2

};

(ii) 0 ≤ d < e ≤ αn ≤ f < 1, lim infn→∞ rn > 0, limn→∞ tn = 0 = limn→∞ sn;

(iii) 0 < η < 1
∥A∥2 ,

where t̃n :=
(

1
tn

∫ tn
0

Ltdt
)

→ 1 and s̃n :=
(

1
sn

∫ sn
0

Lsds
)

→ 1 as n → ∞ and
Γ ̸= ∅. Then {xn} is bounded. Consequently, the sequences {yn}, {zn}, {vn}, {un}
are bounded.

Proof Let x∗ ∈ Γ, from the definition of wn in Algorithm 3.1, we get

∥wn − x∗∥2 = ∥T F1
rn zn − T F1

rn x
∗∥2

≤ ⟨T F1
rn zn − T F1

rn x
∗, zn − x∗⟩

=
1

2

[
∥T F1

rn zn − T F1
rn x

∗∥2 + ∥zn − x∗∥2 − ∥T F1
rn zn − zn∥2

]
, (3)

it follows that

∥wn − x∗∥2 ≤ ∥zn − x∗∥2 − ∥wn − zn∥2 (4)
≤ ∥zn − x∗∥2. (5)
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By definition of vn and (5), we have

∥vn − x∗∥ =

∥∥∥∥(1− αn)wn + αn
1

tn

∫ tn

0

T (t)wndt− x∗
∥∥∥∥

=

∥∥∥∥(1− αn)(wn − x∗) + αn

(
1

tn

∫ tn

0

T (t)wndt− x∗
)∥∥∥∥

≤ (1− αn)∥wn − x∗∥+ αn

∥∥∥∥ 1

tn

∫ tn

0

T (t)wndt− x∗
∥∥∥∥

≤ (1− αn)∥wn − x∗∥+ αn
1

tn

∫ tn

0

∥T (t)wn − T (t)x∗∥dt

≤ (1− αn)∥wn − x∗∥+ αn
1

tn

∫ tn

0

Lt∥wn − x∗∥dt

= (1− αn)∥wn − x∗∥+ αn

(
1

tn

∫ tn

0

Ltdt

)
∥wn − x∗∥

= (1− αn)∥wn − x∗∥+ αnt̃n∥wn − x∗∥
= (1− αn(1− t̃n))∥zn − x∗∥, (6)

where t̃n :=
(

1
tn

∫ tn
0

Ltdt
)

. Moreover, from (C1) and Lemma 3.2(2), we have

∥zn − x∗∥2 ≤ ∥xn − x∗∥2 − (1− 2λc2)∥zn − yn∥2 − (1− 2λc1)∥xn − yn∥2

≤ ∥xn − x∗∥2. (7)

From (6) and (7), it follows that

∥vn − x∗∥ ≤ (1− αn(1− t̃n))∥xn − x∗∥. (8)

By the definition of xn+1, we have

∥xn+1 − x∗∥2 =

∥∥∥∥PC(vn + ηA∗(
1

sn

∫ sn

0
S(s)unds−Avn))− PCx

∗
∥∥∥∥2

≤
∥∥∥∥vn + ηA∗

( 1

sn

∫ sn

0
S(s)unds−Avn

)
− x∗

∥∥∥∥2
=

∥∥∥∥(vn − x∗) + ηA∗
( 1

sn

∫ sn

0
S(s)unds−Avn

)∥∥∥∥2
= ∥vn − x∗∥2 + 2

〈
vn − x∗, ηA∗

( 1

sn

∫ sn

0
S(s)unds−Avn

)〉
+

∥∥∥∥ηA∗
( 1

sn

∫ sn

0
S(s)unds−Avn

)∥∥∥∥2
≤ ∥vn − x∗∥2 + 2η

〈
Avn −Ax∗,

1

sn

∫ sn

0
S(s)unds−Avn

〉
+ η2∥A∗∥2σ2

n (9)
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where σn =
∥∥∥ 1
sn

∫ sn
0

S(s)unds− Avn

∥∥∥2

. On the other hand,〈
Avn − Ax∗,

1

sn

∫ sn

0

S(s)unds− Avn

〉
=

〈
1

sn

∫ sn

0

S(s)unds− Ax∗,
1

sn

∫ sn

0

S(s)unds− Avn

〉
+

〈
Avn −

1

sn

∫ sn

0

S(s)unds,
1

sn

∫ sn

0

S(s)unds− Avn

〉
=

〈
1

sn

∫ sn

0

S(s)unds− Ax∗,
1

sn

∫ sn

0

S(s)unds− Avn

〉
−
〈

1

sn

∫ sn

0

S(s)unds− Avn,
1

sn

∫ sn

0

S(s)unds− Avn

〉
=

〈
1

sn

∫ sn

0

S(s)unds− Ax∗,
1

sn

∫ sn

0

S(s)unds− Avn

〉
−
∥∥∥∥ 1

sn

∫ sn

0

S(s)unds− Avn

∥∥∥∥2

. (10)

Consider,

∥Avn − Ax∗∥2 =

∥∥∥∥( 1

sn

∫ sn

0

S(s)unds− Ax∗
)
−
(

1

sn

∫ sn

0

S(s)unds− Avn

)∥∥∥∥2

=

∥∥∥∥ 1

sn

∫ sn

0

S(s)unds− Ax∗
∥∥∥∥2

−2

〈
1

sn

∫ sn

0

S(s)unds− Ax∗,
1

sn

∫ sn

0

S(s)unds− Avn

〉
+

∥∥∥∥ 1

sn

∫ sn

0

S(s)unds− Avn

∥∥∥∥2

,

it follows that〈
1

sn

∫ sn

0

S(s)unds− Ax∗,
1

sn

∫ sn

0

S(s)unds− Avn

〉
=

1

2

[ ∥∥∥∥ 1

sn

∫ sn

0

S(s)unds− Ax∗
∥∥∥∥2

+

∥∥∥∥ 1

sn

∫ sn

0

S(s)unds− Avn

∥∥∥∥2

− ∥Avn − Ax∗∥2
]
.

(11)
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From (10) and (11), we have〈
Avn − Ax∗,

1

sn

∫ sn

0

S(s)unds− Avn

〉
≤ 1

2

[ ∥∥∥∥ 1

sn

∫ sn

0

S(s)unds− Ax∗
∥∥∥∥2

+

∥∥∥∥ 1

sn

∫ sn

0

S(s)unds− Avn

∥∥∥∥2

−∥Avn − Ax∗∥2
]
−

∥∥∥∥ 1

sn

∫ sn

0

S(s)unds− Avn

∥∥∥∥2

=
1

2

[ ∥∥∥∥ 1

sn

∫ sn

0

S(s)unds− Ax∗
∥∥∥∥2

−
∥∥∥∥ 1

sn

∫ sn

0

S(s)unds− Avn

∥∥∥∥2

−∥Avn − Ax∗∥2
]
.

Now we consider,∥∥∥∥ 1

sn

∫ sn

0

S(s)unds− Ax∗
∥∥∥∥2

≤ 1

sn

∫ sn

0

∥S(s)un − S(s)Ax∗∥2ds

≤ 1

sn

∫ sn

0

Ls∥un − Ax∗∥2ds

=

(
1

sn

∫ sn

0

Lsds

)
∥un − Ax∗∥2

= s̃n∥un − Ax∗∥2, (12)

where s̃n :=
(

1
sn

∫ sn
0

Lsds
)

. From (12) and (12), it implies that〈
Avn − Ax∗,

1

sn

∫ sn

0

S(s)unds− Avn

〉
≤ 1

2

(
s̃n∥un − Ax∗∥2 − ∥Avn − Ax∗∥2

)
− 1

2
σ2
n. (13)

Note that

∥un − Ax∗∥2 = ∥T F2
rn Avn − T F2

rn Ax
∗∥2

≤ ⟨T F2
rn Avn − T F2

rn Ax
∗, Avn − Ax∗⟩

=
1

2

(
∥T F2

rn Avn − T F2
rn Ax

∗∥2 + ∥Avn − Ax∗∥2 − ∥T F2
rn Avn − Avn∥2

)
= ∥Avn − Ax∗∥2 − ∥un − Avn∥2. (14)
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Replace (14) in (13) implies that〈
Avn − Ax∗,

1

sn

∫ sn

0

S(s)unds− Avn

〉
≤ −1

2

(
∥un − Avn∥2 + (1− s̃n)∥Avn − Ax∗∥2 + σ2

n

)
. (15)

It follows from (9) and (15)

∥xn+1 − x∗∥2 ≤ ∥vn − x∗∥2 − η
(
1− η∥A∥2

)
σ2
n − η

(
∥un − Avn∥2

+(1− s̃n)∥Avn − Ax∗∥2
)

≤ (1− αn(1− t̃n))
2∥xn − x∗∥2 − η

(
1− η∥A∥2

)
σ2
n − η

(
∥un − Avn∥2

+(1− s̃n)∥Avn − Ax∗∥2
)

(16)

From (iii), (8) and (16) that

∥xn+1 − x∗∥2 ≤ (1− αn(1− t̃n))
2∥xn − x∗∥2 − η(1− s̃n)∥Avn − Ax∗∥2.(17)

Taking n → ∞ in (17), we have limn→∞ ∥xn − x∗∥ exists.

Since limn→∞ ∥xn − x∗∥ exists, from (5), (7) and (8), it follows that

lim
n→∞

∥xn − x∗∥ = lim
n→∞

∥vn − x∗∥ = lim
n→∞

∥zn − x∗∥ = lim
n→∞

∥wn − x∗∥.

Hence, {xn}. Consequently, all other sequences in Algorithm 3.1 are bounded.

Next, we prove a weak convergence theorem of Algorithm 3.1 to a point in Γ.

Theorem 3.4. Let C ⊆ H1, Q ⊆ H2, A, F1, F2, T ,S and {xn} be the sequence as in
Algorithm 3.1, and satisfying the control conditions in Lemma 3.3. Then the sequences
{xn}, {yn} and {zn} defined by Algorithm 3.1 converge weakly to a point in Γ.

Proof From (16), we have

η∥un − Avn∥2 ≤ (1− αn(1− t̃n))
2∥xn − x∗∥2 − ∥xn+1 − x∗∥2

−η(1− s̃n)∥Avn − Ax∗∥2, (18)

and

η
(
1− η∥A∥2

)
σ2
n

≤ (1− αn(1− t̃n))
2∥xn − x∗∥2 − ∥xn+1 − x∗∥2 − η(1− s̃n)∥Avn − Ax∗∥2 (19)
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Since limn→∞ ∥xn − x∗∥ exists and σn =
∥∥∥ 1
sn

∫ sn
0

S(s)unds− Avn

∥∥∥2

, it implies that

lim
n→∞

∥un − Avn∥ = 0 = lim
n→∞

∥∥∥∥ 1

sn

∫ sn

0

S(s)unds− Avn

∥∥∥∥ . (20)

Consider,∥∥∥∥ 1

sn

∫ sn

0

S(s)unds− un

∥∥∥∥ ≤
∥∥∥∥ 1

sn

∫ sn

0

S(s)unds− Avn

∥∥∥∥+ ∥Avn − un∥. (21)

From (20) and (21), we have

lim
n→∞

∥∥∥∥ 1

sn

∫ sn

0

S(s)unds− un

∥∥∥∥ = 0. (22)

Observe that

∥un − S(t)un∥

≤
∥∥∥un −

1

sn

∫ sn

0

S(s)unds
∥∥∥+

∥∥∥ 1

sn

∫ sn

0

S(s)unds− S(t)
1

sn

∫ sn

0

S(s)unds
∥∥∥

+
∥∥∥S(t) 1

sn

∫ sn

0

S(s)unds− S(t)un

∥∥∥
≤

∥∥∥un −
1

sn

∫ sn

0

S(s)unds
∥∥∥+

∥∥∥ 1

sn

∫ sn

0

S(s)unds− S(t)
1

sn

∫ sn

0

S(s)unds
∥∥∥

+LS
t

∥∥∥ 1

sn

∫ sn

0

S(s)unds− un∥

= (1 + LS
t )
∥∥∥un −

1

sn

∫ sn

0

S(s)unds
∥∥∥+

∥∥∥ 1

sn

∫ sn

0

S(s)unds− S(t)
1

sn

∫ sn

0

S(s)unds
∥∥∥.

From (22) and Lemma 2.6, we have

lim
n→∞

∥un − S(t)un∥ = 0. (23)

From (10), we have

(1− 2λc2)∥zn − yn∥2 ≤ ∥xn − x∗∥2 − ∥zn − x∗∥2, (24)

and

(1− 2λc1)∥xn − yn∥2 ≤ ∥xn − x∗∥2 − ∥zn − x∗∥2. (25)

Since {λn} ⊂ [a, b] for some a, b ∈ min{ 1
2c1

, 1
2c2

}, (24), (25) and limn→∞ ∥xn − x∗∥,
limn→∞ ∥zn − x∗∥ are exist, it follows that

lim
n→∞

∥zn − yn∥ = 0 = lim
n→∞

∥xn − yn∥. (26)
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Note that ∥zn − xn∥ ≤ ∥zn − yn∥+ ∥yn − xn∥ and from (26), therefore

lim
n→∞

∥zn − xn∥ = 0. (27)

By definition of vn and Lemma 2.5, we have

∥vn − x∗∥2 =
∥∥∥(1− αn)wn + αn

1

tn

∫ tn

0

T (t)wndt− x∗
∥∥∥2

=
∥∥∥(1− αn)(wn − x∗) + αn

( 1

tn

∫ tn

0

T (t)wndt− x∗
)∥∥∥2

= (1− αn)∥wn − x∗∥2 + αn

∥∥∥ 1

tn

∫ tn

0

T (t)wndt− x∗
∥∥∥2

−αn(1− αn)
∥∥∥ 1

tn

∫ tn

0

T (t)wndt− wn

∥∥∥2

≤ ∥wn − x∗∥2

−αn(1− αn)
∥∥∥ 1

tn

∫ tn

0

T (t)wndt− wn

∥∥∥2

, (28)

it follows that

αn(1− αn)
∥∥∥ 1

tn

∫ tn

0

T (t)wndt− wn

∥∥∥2

≤ ∥wn − x∗∥2 − ∥vn − x∗∥2. (29)

Since, 0 ≤ d < e ≤ αn ≤ f < 1, lim infn→∞ rn > 0, limn→∞ tn = 0 = limn→∞ sn
and (29), we have

e(1− f)
∥∥∥ 1

tn

∫ tn

0

T (t)wndt− wn

∥∥∥2

≤ ∥wn − x∗∥2 − ∥vn − x∗∥2. (30)

From Lemma 3.3 and (30), we have

lim
n→∞

∥∥∥ 1

tn

∫ tn

0

T (t)wndt− wn

∥∥∥2

= 0. (31)

Since ∥vn − wn∥ = αn

∥∥∥ 1
tn

∫ tn
0

T (t)wndt− wn

∥∥∥, it follows that

lim
n→∞

∥vn − wn∥ = 0.
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Similarly, we observe that

∥wn − T (s)wn∥ ≤∥∥∥wn −
1

tn

∫ tn

0

T (t)wndt
∥∥∥+

∥∥∥ 1

tn

∫ tn

0

T (t)wndt− T (s)
1

tn

∫ tn

0

T (t)wndt
∥∥∥

+
∥∥∥T (s) 1

tn

∫ tn

0

T (t)wndt− T (s)wn

∥∥∥
≤

∥∥∥wn −
1

tn

∫ tn

0

T (t)wndt
∥∥∥+

∥∥∥ 1

tn

∫ tn

0

T (t)wndt− T (s)
1

tn

∫ tn

0

T (t)wndt
∥∥∥

+LT
s

∥∥∥ 1

tn

∫ tn

0

T (t)wndt− wn

∥∥∥
= (1 + LT

s )
∥∥∥wn −

1

tn

∫ tn

0

T (t)wndt
∥∥∥+

∥∥∥ 1

tn

∫ tn

0

T (t)wndt− T (s)
1

tn

∫ tn

0

T (t)wndt
∥∥∥.

From (31) and Lemma 2.6, we have

lim
n→∞

∥wn − T (s)wn∥ = 0. (32)

From (4), we have

∥wn − zn∥2 ≤ ∥zn − x∗∥2 − ∥wn − x∗∥2. (33)

By Lemma 3.3, that limn→∞ ∥zn − x∗∥, limn→∞ ∥wn − x∗∥ are exist, then

lim
n→∞

∥wn − zn∥ = 0. (34)

Since ∥wn − xn∥ ≤ ∥wn − zn∥+ ∥zn − xn∥, from (27) and (34), we have

lim
n→∞

∥wn − xn∥ = 0. (35)

Since {wn} is bounded, there exists a subsequence {wni
} of {wn} such that wni

⇀ w
for some w ∈ C.

Now, we prove that w ∈ Γ. First, we show that w ∈ Fix(T ). Assume that w ̸∈ Fix(T ).
Since, wni

⇀ w and T (s)w ̸= w, from opial’s condition, we have

lim inf
i→∞

∥wni
− w∥ < lim inf

i→∞
∥wni

− T (s)w∥

≤ lim inf
i→∞

(
∥wni

− T (s)wni
∥+ ∥T (s)wni

− T (s)w∥
)

≤ LT
s lim inf

i→∞
∥wni

− w∥.
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Taking s → ∞, we have

lim inf
i→∞

∥wni
− w∥ < lim inf

i→∞
∥wni

− w∥.

A contradiction. Then we obtain w ∈ Fix(T ). Since, wn = T F1
rn zn, we have

F1(wn, x) +
1

rn
⟨x− wn, wn − zn⟩ ≥ 0,∀x ∈ C.

It follows from the monotonicity of F1 that

1

rn
⟨x− wn, wn − zn⟩ ≥ F1(x,wn),

and hence, 〈
x− wni

,
wni

− zni

rni

〉
≥ F1(x,wni

).

Since, ∥wn − zn∥ → 0, we get wni
⇀ w and wni−zni

rni
→ 0, it follows that

F1(x,w) ≤ 0,∀x ∈ C. (36)

For, 0 < λ < 1 and x,w ∈ C, let xλ = λx + (1− λ)w ∈ C and from convex function
of F1, we have

0 ≤ F1(xλ, xλ)

≤ λF1(xλ, x) + (1− λ)F1(xλ, w)

≤ F1(xλ, x).

By Assumption 2.2 and (36), we get F1(w, x) ≥ 0. This implies that w ∈ EP (C,F1).
Next, we show that Aw ∈ Fix(S). Assume that Aw ̸∈ Fix(S). Since, ∥wn − vn∥ → 0
and

vn − w = (vn − wn) + (wn − w) ⇀ 0,

it follows that vn ⇀ w. Since A is bounded linear operator, so Avn ⇀ Aw. Since,
∥un − Avn∥ → 0 and

un − Aw = (un − Avn) + (Avn − Aw) ⇀ 0,

it follows that un ⇀ Aw. Since {un} is bounded, there exists a subsequence {unj
} of

{un} such that unj
⇀ Aw, and Assume that S(t)Aw ̸= Aw, from opial’s condition, we
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have

lim inf
j→∞

∥unj
− Aw∥ < lim inf

j→∞
∥unj

− S(t)Aw∥

≤ lim inf
j→∞

(
∥unj

− S(t)unj
∥+ ∥S(t)unj

− S(t)Aw∥
)

≤ LS
t lim inf

j→∞
∥unj

− Aw∥.

Taking t → ∞, we have

lim inf
j→∞

∥unj
− Aw∥ < lim inf

j→∞
∥unj

− Aw∥.

A contradiction. Then we obtain Aw ∈ Fix(S). Since, un = T F2
rn Avn, we have

F2(un, y) +
1

rn
⟨y − un, un − Avn⟩ ≥ 0,∀y ∈ Q.

It follows from the monotonicity of F2 that

1

rn
⟨y − un, un − Avn⟩ ≥ F2(y, un),

and hence, 〈
y − uni

,
uni

− Avni

rni

〉
≥ F2(y, uni

).

Since, ∥un − Avn∥ → 0, we get uni
⇀ Aw and uni−Avni

rni
→ 0, it follows that

F2(y, Aw) ≤ 0,∀y ∈ Q. (37)

For, 0 < ρ < 1 and y, Aw ∈ Q, let yρ = ρy+(1−ρ)Aw ∈ Q and from convex function
of F2, we have

0 ≤ F2(yρ, yρ)

≤ ρF2(yρ, y) + (1− ρ)F2(yρ, Aw)

≤ F2(Aw, y).

By Assumption 2.2 and (37), we get F2(Aw, y) ≥ 0. This implies that Aw ∈
EP (Q,F2). This proves w ∈ Γ.

Finally, we show that {xn} converges weakly to w and {un} converges weakly to Aw.
Assume that there exists a subsequence {xni

} of {xn} such that xni
⇀ q as i → ∞
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where q ∈ Γ such that q ̸= w. By Opial’s condition, we have

lim inf
i→∞

∥xni
− q∥ < lim inf

i→∞
∥xni

− w∥

= lim inf
k→∞

∥xnk
− w∥

< lim inf
k→∞

∥xnk
− q∥

= lim inf
i→∞

∥xni
− q∥.

A contradiction. This implies that xn ⇀ w as n → ∞. Since, Avn ⇀ Aw as n → ∞,
therefore from ∥un−Avn∥ → 0 as n → ∞ we conclude that un ⇀ Aw. This completes
the proof.

Corollary 3.5. [2] Let C ⊆ H1, Q ⊆ H2, A, F,G, T ,S and {xn} be the sequence as
in Algorithm 1.1. Assume that the following set of control conditions are satisfied:

(i) {λn} ⊂ [a, b] for some a, b ∈ min{ 1
2c1

, 1
2c2

};

(ii) 0 ≤ d < e ≤ αn ≤ f < 1, lim infn→∞ rn > 0, limn→∞ tn = 0 = limn→∞ sn;

(iii) 0 < ξ < 1
∥A∥2 .

If Γ ̸= ∅ then the sequences {xn}, {yn} and {zn} defined by Algorithm 1.1 converge
weakly to a point in Γ.

4. STRONG CONVERGENCE THEOREM

In this section, we modified the iterative method together with the classical
shrinking projection algorithm to establish the strong convergence results. Our
algorithm reads as follows.

Algorithm 4.1. Let C ⊆ H1 and Q ⊆ H2 be nonempty subsets of real Hilbert space
H1 and H2, respectively. Let A : H1 → H2 be a bounded linear operator and A∗ be
its adjoint. Let F1 : C × C → R and F2 : Q × Q → R be two bifunctions satisfying
condition (B1) − (B5) and (A1) − (A4), respectively. Let T = {T (t) : 0 ≤ t < ∞}
and S = {S(s) : 0 ≤ s < ∞} be two asymptotically nonexpansive semigroups. Let
Γ =

{
x∗ ∈ C : x∗ ∈ EP (C,F1) ∩ Fix(T ) and Ax∗ ∈ EP (Q,F2) ∩ Fix(S)

}
̸= ∅,
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we have

x1 ∈ C1 = C,

yn = arg min
{
λnF1(xn, y) +

1

2
∥y − xn∥2 : y ∈ C

}
zn = arg min

{
λnF1(yn, z) +

1

2
∥z − xn∥2 : z ∈ C

}
wn = T F1

rn zn,

vn = (1− αn)wn + αn
1

tn

∫ tn

0

T (t)wndt,

un = T F2
rn (Avn),

pn = PC

(
vn + ηA∗

( 1

sn

∫ sn

0

S(s)unds− Avn

))
,

Cn+1 =
{
x ∈ Cn : ∥pn − x∥ ≤ ∥vn − x∥ ≤ ∥xn − x∥

}
,

xn+1 = PCn+1x1.

Now, we prove a strong convergence theorem of the Algorithm 4.1 to common solution
of Γ.

Theorem 4.2. Let C ⊆ H1, Q ⊆ H2, A, F1, F2, H1, H2, T ,S and {xn} be the sequence
as in Algorithm 4.1. Assume that the following control conditions are satisfied:

(i) {λn} ⊂ [a, b] for some a, b ∈ min{ 1
2c1

, 1
2c2

};

(ii) 0 ≤ d < e ≤ αn ≤ f < 1, lim infn→∞ rn > 0, limn→∞ tn = 0 = limn→∞ sn;

(iii) 0 < η < 1
∥A∥2 .

If Γ ̸= ∅, then the sequences {xn}, {yn} and {zn} defined by Algorithm 4.1 converge
strongly to a point in Γ.

Proof First, show that Cn is nonempty colsed and convex for all n ≥ 1. Since

{x ∈ Cn : ∥pn − x∥2 ≤ ∥xn − x∥2} = {x ∈ Cn : ∥pn∥2 − ∥xn∥2 ≤ 2⟨pn − xn, x⟩},

the set Cn+1 is closed and convex.

Let x∗ ∈ Γ, it follows from (16) and (8) we have

∥pn − x∗∥2 ≤ ∥vn − x∗∥2 − η
(
1− η∥A∥2

)
σ2
n

−η
(
∥un − Avn∥2 + (1− s̃n)∥Avn − Ax∗∥2

)
≤ ∥vn − x∗∥2

≤ (1− αn(1− t̃n))
2∥xn − x∗∥2. (38)
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From (38), taking t → ∞ we have

∥pn − x∗∥ ≤ ∥vn − x∗∥ ≤ ∥xn − x∗∥. (39)

From (39), it follows that Γ ⊆ Cn for n ≥ 1. It implies that the Algorithm 4.1 is
well-defined.

Next, we prove that, {xn} and {pn} are bounded and xn → p as n → ∞ for some
p ∈ Γ. Since, xn+1 ∈ PCn+1x1, therefore ∥xn+1 − x1∥ ≤ ∥x2 − x1∥ for all x1 ∈ C.
Inparticular, we have ∥xn+1−x1∥ ≤ ∥PΓx1−x1∥. Hence, {xn} and {pn} are bounded.
Since xn = PCnx1, it follows that

⟨x1 − xn, xn − y⟩ ≥ 0

for all y ∈ Γ and n ∈ N.

Since, xn+1 = PCn+1x1 ∈ Cn+1 ⊆ Cn, we obtain that

⟨x1 − xn, xn − xn+1⟩ ≥ 0 (40)

So, for all xn+1 ∈ Cn+1, for n ∈ N, we have

0 ≤ ⟨x1 − xn, xn − xn+1⟩ = −⟨xn − x1, xn − x1⟩+ ⟨x1 − xn, x1 − xn+1⟩
≤ −∥xn − x1∥2 + ∥x1 − xn∥∥x1 − xn+1∥.

This implies that
∥x1 − xn∥2 ≤ ∥x1 − xn∥∥x1 − xn+1∥,

and hence
∥x1 − xn∥ ≤ ∥x1 − xn+1∥,

for all n ∈ N. Since {∥x1−xn∥} is bounded, limn→∞ ∥xn−x1∥ exists. Next, we claim
that limn→∞ ∥xn − xn+1∥ = 0. From (40), we have

∥xn − xn+1∥2 = ∥(xn − x1) + (x1 − xn+1)∥2

= ∥xn − x1∥2 + 2⟨xn − x1, x1 − xn+1⟩+ ∥x1 − xn+1∥2

= ∥xn − x1∥2 − 2⟨x1 − xn, x1 − xn⟩ − 2⟨x1 − xn, xn − xn+1⟩+ ∥x1 − xn+1∥2

≤ ∥xn − x1∥2

− 2∥xn − x1∥2 + ∥x1 − xn+1∥2

= −∥xn − x1∥2 + ∥x1 − xn+1∥2.

Since, limn→∞ ∥xn − x1∥ exists, we have

lim
n→∞

∥xn+1 − xn∥ = 0. (41)
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Consider, for m ≥ n we have

∥xm − xn∥ ≤ ∥xm − xm−1∥+ ∥xm−1 − xm−2∥+ · · ·+ ∥xn+1 − xn∥. (42)

From (41) and (42), we have {xn} is Cauchy sequence. By completeness of H1 we
have p ∈ C such that xn → p as n → ∞.

Claim that, p ∈ Γ. Since xn+1 ∈ Cn+1 thus

∥pn − xn+1∥ ≤ ∥vn − xn+1∥ ≤ ∥xn − xn+1∥. (43)

Consider,

∥pn − xn∥ ≤ ∥pn − xn+1∥+ ∥xn+1 − xn∥ ≤ 2∥xn+1 − xn∥,

similarly,

∥vn − xn∥ ≤ ∥vn − xn+1∥+ ∥xn+1 − xn∥ ≤ 2∥xn+1 − xn∥.

From (39), it follows that

lim
n→∞

∥pn − xn∥ = 0 = lim
n→∞

∥vn − xn∥. (44)

Consider,

∥zn − T (s)zn∥ ≤ ∥zn − wn∥+ ∥wn − T (s)wn∥+ ∥T (s)wn − T (s)zn∥
≤ ∥zn − wn∥+ ∥wn − T (s)wn∥+ Ls∥wn − zn∥
= (1 + Ls)∥wn − zn∥+ ∥wn − T (s)wn∥

From (32) and (34) it implies that

lim
n→∞

∥zn − T (s)zn∥ = 0. (45)

Since, xn → p as n → ∞. From (26), (27) and (44) it follows that zn → p, yn → p and
vn → p as n → ∞. Consider,

∥T (s)p− p∥ ≤ ∥T (s)p− T (s)zn∥+ ∥T (s)zn − zn∥+ ∥zn − p∥
≤ Ls∥p− zn∥+ ∥T (s)zn − zn∥+ ∥zn − p∥
= (1 + Ls)∥zn − p∥+ ∥T (s)zn − zn∥. (46)

From (45) and zn → p as n → ∞, it follows that p ∈ Fix(T ). From Lemma 3.2(1),
we have

λn{F1(xn, x)− F1(xn, yn)} ≥ ⟨yn − xn, yn − x⟩, for all x ∈ C. (47)

From (26), we have F (p, x) ≥ 0, it follows that p ∈ EP (C,F1). Hence, p ∈
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EP (C,F1) ∩ Fix(T ).

Finally, we prove that Ap ∈ EP (Q,F2) ∩ Fix(S). Since, vn → p as n → ∞, we have
Avn → Ap as n → ∞. Consider,

∥un − Ap∥ ≤ ∥un − Avn∥+ ∥Avn − Ap∥, (48)

from (20) and (48), it implies that

lim
n→∞

∥un − Ap∥ = 0. (49)

Now observe that

∥S(t)Ap− Ap∥ ≤ ∥S(t)Ap− S(t)un∥+ ∥S(t)un − un∥+ ∥un − Ap∥
≤ Lt∥Ap− un∥+ ∥S(t)un − un∥+ ∥un − Ap∥
= (1 + Lt)∥un − Ap∥+ ∥S(t)un − un∥.

From (23) and (49) it follows that Ap ∈ Fix(S). Similarly, from Lemma 3.2(1) again,
we have

λn{F2(un, y)− F2(un, Avn)} ≥ ⟨Avn − un, Avn − y⟩, for all y ∈ Q. (50)

From (i), (20) and (49), we have F2(Ap, y) ≥ 0, it follows that Ap ∈ EP (Q,F2).
Hence, Ap ∈ EP (Q,F2) ∩ Fix(S). Therefor, p ∈ Γ. This completes the proof.

Corollary 4.3. [2] Let C ⊆ H1, Q ⊆ H2, A, F,G,H1, H2, T ,S and {xn} be the
sequence as in Algorithm 1.2. Assume that the following set of control conditions are
satisfied:

(i) {λn} ⊂ [a, b] for some a, b ∈ min{ 1
2c1

, 1
2c2

};

(ii) 0 ≤ d < e ≤ αn ≤ f < 1, lim infn→∞ rn > 0, limn→∞ tn = 0 = limn→∞ sn;

(iii) 0 < ξ < 1
∥A∥2 .

If Γ ̸= ∅, then the sequences {xn}, {yn} and {zn} defined by Algorithm 1.2 converge
strongly to a point in Γ.
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