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Abstract

In this work, we study the extragradient method is defined by P. Kumam et al..
First, we prove weak convergence to a common solution to the split equilibrium
problem and fixed point problem of two asymptotically nonexpansive semigroups,
second, we modified the method together with the classical shrinking projection
algorithm and prove the strongly convergence to the same solution in real Hilbert
spaces. Our results is extended some ersults of P. Kumam et al. [2].
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1. INTRODUCTION

Let H be areal Hilbert space, C' a nonempty closed convex subset of H and 7T : C' — C
a mapping. Recall that a self-mapping f of C' is a contraction if || f(z) — f(y)| <
allxz — y|| for some o € (0,1) and T is a nonexpansive if | Tz — Ty| < ||z — y|| for
all x,y € C, and T is asymptotically nonexpansive [7] if there exists a sequence {k, }
with k,, > 1 for all n and lim,, ., k, = 1 and such that || 7"z — T"y|| < k,||z — y|| for
allm > land x,y € C. A point z € C'is a fixed point of 7" provided Tz = x. Denote
by Fiz(T) the set of fixed points of T; that is, Flix(T) = {x € C : Tx = x}.

Recall that a one-parameter family 7 = {7'(¢)|0 < t < oo} of self-mappings of a
nonempty closed convex subset C' of a Hilbert space H is said to be a (continuous)
Lipschitzian semigroup on C' (see, e. g., [14]) if the following conditions are satisfied:

O)TO0)r=z,xeC
(1) T(s+t)(x) =T(s)T(t),s,t >0,z €C
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(i77) for each x € C', the map ¢ — T'(t)z is continuous on [0, co)

(iv) there exists a bounded measurable function L : [0,00) — [0,00) such that, for
eacht >0
IT(t) — Tyl < Lillz —yl, 2,y € C.

A Lipschitzian semigroup 7 is called nonexpansive (or a contraction semigroup) if
Ly, = 1forallt > 0, and asymptotically nonexpansive semigroup if lim sup, ,. L; <1,
respectively. We use Fixz(T) to denote the common fixed point set of the semigroup;
thatis Fiz(T) ={x € C: T(t)xr = z,t > 0}.

In 2006, Nadezhkina and Takahashi [11], present a hybrid extragradient method for
finding a common solution of fixed point problem and variational inequality problems
in a real Hilbert space. In 2015, Thuy [13], present a hybrid extragradient method
for equilibrium, variational inequality and fixed point problem of a nonexpansive
semigroup in Hilbert spaces. In 2017, Dinh et al. [18] present two new extragradient
proximal point algorithms for solving split equilibrium problem and fixed point
problems of nonexpansive mappings in real Hilbert spaces.

In 2019, L. Inchan [8], give some examples for relationship between a nonexpansive
semigroup and an asymptotically nonexpansive semigroup and modified two hybrid
projection algorithm to prove the strongly convergence of a sequence {x,} generated
by the hybrid projection algorithm of two asymptotically nonexpansive semigroups.

In 2020, P. Kumam et al. [2], modified extragradient method for computing a common
solution to the split equilibrium problem and fixed point problem of a nonexpansive
semigroup in real Hilbert spaces.

Algorithm 1.1. let C' C H, and () C Hy be nonempty subsets of real Hilbert space
H, and H,, respectively. Let A : Hi — Hy be a bounded linear operator and A* be
its adjoint. Let F' : C x C — Rand G : Q) X Q — R be two bifunctions satisfying
condition (B1) — (B5) and (A1) — (A4), respectively. Let T = {T'(t) : 0 <t < oo}

and S = {S(s) : 0 < s < oo} be two nonexpansive semigroups. Let I' = {a:* e C:
v* € EP(C,F) N Fiz(T) and Ax* € EP(Q,G) N sz(S)} £ 0, then
T € Cl = O,
1
yn = argmin{\F(zn,y) + 5 lly =l sy € C}

1
zo = arg min{\,F(y,, z) + 5”2 —z,|*: 2 € C}

1 [t
vy, = (1—apn)z, + ant—/ T(t)zpdt,
0

n

u, = T (Avy,),

1 [
Tnr1 = Po(v, + A" (— / S(s)unpds — Avy)).
0

Sn
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Algorithm 1.2. Let C' C H; and (Q C H, be nonempty subsets of real Hilbert space
H, and H,, respectively. Let A : Hi — Hy be a bounded linear operator and A* be
its adjoint. Let F' : C x C — Rand G : Q) X Q — R be two bifunctions satisfying
condition (B1) — (B5) and (A1) — (A4), respectively. Let T = {T'(t) : 0 < t < oo}

and S = {S(s) : 0 < s < oo} be two nonexpansive semigroups. Let I' = {x* e C:
v* € EP(C,F) N Fiz(T) and Ax* € EP(Q,G) N sz(S)} £ 0, then

xrT € Cl = C,
) 1
Yo = arg min{\,F(z,,y) + §||y —z,|*:y € C}

1
zn = arg min{\,F(y,, z) + §Hz —z,|*: 2 € C}

1 [

v, = (1—an)zn+ant—/ T(t)z,dt,
n Jo

Uy, = Tfi(Avn),

w, = Pgo (vn + EA* (i /Sn S(s)u,ds — Avn>>,
0

Sn
Con = {z€Cutwn =2l < v, = o < llea — 2|},

xn—&-l = Pcn+15(]1.

Then the Algorithm 1.1 converges weakly to solution in I' and prove that the Algorithm
1.2 converges strongly to to solution in I'.

Since an asymptotically nonexpansive semigroup is generalized than nonexpansive
semigroup. Inspired and motivated of this work, we study and improve a modified
extragradient method is defined by Algorithm 1.1 and Algorithm 1.2 and peoved weak
and strong convergence for an asymptotically nonexpansive semigroup in real Hilbert
spaces.

2. PRELIMINARIES

Let C' C H; and Q C H, be nonempty subsets of real Hilbert space H; and H,
respectively. Let A : H; — H, be a bounded linear operator and A* be its adjoint.
Let F1 : C xC' — Rand F, :  x Q — R be two bifunctions satisfying condition
(B1) — (B5) and (Al) — (A4), respectively. Let T = {T'(t) : 0 < t < oo} and
S ={5(s) : 0 < s < oo} be two asymptotically nonexpansive semigroups. Recall that
a split equilibrium and fixed point problem (SEFPP) is to find

Fi(z*,2) > 0forallxz € C,

x* € Fiz(T) M

z* € C such that {
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and
Fy(y*,y) > 0forally € Q,

y* € Fiz(S). @

y" = Az" € @) such that {

Let]' = {x* €eC:z*€ EP(C,Fi)N Fiz(T)and Ax* € EP(Q, F3) N Fz:c(S)} It
is remarked that the problem addressed in the inequality (1) represents the classical
equilibrium problem and fixed point problem of an asymptotically nonexpansive
semigroup. The solution set of an equilibrium problem is denoted as F.P(C, F'). Recall
that a bifunction F' : C' x C' — R is said to be:

1. strongly monotone with constant 7 > 0 if

F(z,y) + F(y,z) < -7llz-yl?, forallz,y € C;

2. monotone if
F(z,y)+ F(y,z) <0, forall lz,y € C;

3. pseudomonotone if

forall z,y € C, F(z,y) > 0= F(y,z) < 0;

4. pseudomonotone with respect to a nonempty subset D of C' if

forall z* € D andforally € C, F(z*,y) > 0= F(y,z*) < 0;

5. Lipschitz-type continuous if there exist positive constants ¢; and ¢, such that

F(z,y)+ F(y,x) > F(z,2) — ||z — sz — eolly — zHQ, forall z,y, z € C.

Note that the implications (1) = (2) = (3) = (4) are easy to follow. Moreover, if a

mapping is Lipschitz continuous on C' then for any € > 0 it is Lipschitz-type continuous

on C with ¢; = é and c; = 5.

Assumption 2.1. [10] Let F' : C' x C' — R be a bifunction satisfying the following
assumptions:

1. F(z,z) >0,VceC,
2. Fis monotone, i.e., F(x,y) + F(y,z) < 0,Vz,y € C,

3. F is upper hemicontinuous, i.e., for each x,y € C, limsup, ,, F(tz + (1 —
t)x,y) < F(x,y),

4. For each x € C fixed, the function y +— F(x,y) is convex and lower
semicontinuous,
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Assumption 2.2. Let I; : () X (Q — R satisfies the following set of standard properties:
(Al) Fy(u,u) =0forallu € Q;
(A2) F5 is monotone on ();

(A3) for each v € Q, the function x — Fy(u,v) is upper hemicontinuous, that is, for
each u,w € Q,
}\iII(l) Fo(Qw + (1 = Nu,v) < Fy(u,v)
—

(A4) for each u € Q, the function v — Fy(u,v) is convex and lower semi-continuous.

Moreover, the bifunction Fy : C' x C' — R satisfies the following set of standard
properties:

(Bl) Fy(z,x) =0forallx € C;

(B2) I is pseudomonotone on C with respect to EP(C| Fy);

(B3) Fi is weakly continues on C' x C;

(B4) for each x € C, the function y — Fy(x,y) is convex and subdifferentiable;

(B5) Fi is Lipschitz-type continuous on C.

Lemma 2.3. [3, 6] Let C' be a nonempty closed convex subset of a real Hilbert space
H andlet F : C x C' — R be a bifunction satisfying conditions (A1) — (A4). Forr > 0
and u € H, there exists w € C such that

1
F(w,v)+ =(v —w,w —u) >0, forallv € C.
r

Lemma 2.4. [3, 6] Assume that the bifunctions F, : C' x C' — R satisfy Assumption
2.2. Forr > 0 and for all x € H,, define a mapping T : H; — C as follows:

1
TH(z) = {26 C:Fl(z,y)+;<y—z,z—x> >0,Vy € C}.

Then, the following hold:

1. T is single-valued.

2. TTF 1 is firmly nonexpansive, i.e.,

||Tf1$ - TrF1y||2 < <T7’F1x - TrFlyvx - y>7vxay € Hl-

3. Fiz(T™) = EP(C, F).

4. EP(C, Fy) is compact and convex.
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Further, assume that F5 : () x () — R satisfying Assumption 2.1. For s > 0 and for all
w € Hy, define a mapping 772 : Hy — @ as follows:

TP () = {de Q: Fy(d,e) + §<e—d,d—w> > 0,Ve € Q}.

Then, we easily observe that 72 s is single-valued and firmly nonexpansive,
EP(Q, F,) is compact and convex, and Fiz(T!?) = EP(Q, Fy), where EP(Q, F»)
is the solution set of the following equilibrium problem:

Lemma 2.5. Let H be a real Hilbert space, then the following hold:

L lo+yl* < ll2” + 2(z, y) + lyl*, Yo,y € H;
2. |tz + (1 =t)y[I* = tfzI*+ A =D)llylI* =t =)l —yl|*,t € [0,1],Vz,y € H.

Lemma 2.6. [?] Let C' be a nonempty bounded closed convex subset of real Hilbert
space H and let T := {T(s) : 0 < s < oo} an asymptotically nonexpansive semigroup
on C, then for any u > 0,

I 1/t
limsuplimsupsupH—/ T(s)xds—T(u)(—/ T(s)xds)H = 0.
tJ tJo

U—00 t—oo  zeC

3. WEAK CONVERGENCE THEOREM

In this section, we modifies the algorithm and prove a weak convergence theorem to the
common solution of split equilibrium problem and fixed point problems in real Hilbert
spaces. First start, we modifies the algorithm as follows:

Algorithm 3.1. Let C C Hy and () C H, be nonempty subsets of real Hilbert space
Hy and H,, respectively. Let A : Hy — Hy be a bounded linear operator and A* be
its adjoint. Let Fy : C x C — Rand F5 : () x Q — R be two bifunctions satisfying
condition (B1) — (Bb) and (A1) — (A4), respectively. Let T = {T'(t) : 0 < t < o0}
and § = {S(s) : 0 < s < oo} be two asymptotically nonexpansive semigroups. Let
r— {a: € C: 1" € EP(C, )N Fiz(T) and Az* € EP(Q, Fy) N Fz'a:(S)} £ 0,

we have r, € C=C,
. 1
Yp = argmm{)\nFl(xn,y)—i-§Hy—$nH2 ryeC}
1
2y = argmin{)\nFl(yn,z)—I—§\|z—xn||2 :z€C}
Wp = Tqilzn7
1 [
vy, = (1—ay)w, + ant—/ T(t)wydt,
n Jo

Uy, = TTI::Q (Avy,),

1 [
Tpy1 = Pol(v, + T]A*(—/ S(s)upds — Avy,)).
0

n
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The following results establishes a crucial relation among the sequences {z,}, {y, } and
{z,} for the convergence analysis of Algorithm 3.1.

Lemma 3.2. [1] Suppose that x* € EP(C, F), F is pseudomonotone on C and F(x,-)
is convex and subdifferentiable on C for all x € C, then we have

1. NA{F(xn,y) — F(xn,yn)} = (Yn — Tny Yy — 1), forally € C,

2 for

2 lzn — 2P <l — ¥ = (1 = 2Xco)[l2n — nll? = (1 = 22c1) |20 — yn
alln >0

Lemma 3.3. Ler C C Hy,Q C Hy, A, Fy, F>,T,S and {x,} be the sequence as in
Algorithm 3.1. Assume that the following control conditions are satisfied:

] : 1 17,
(i) {\.} C [a,b] for some a,b € mln{ﬂ, @}’
(ii) 0 <d<e<a, <f<1liminf, ,r, > 0,lim, oo t, = 0= lim,,_, Sp,

1
(iii) 0 <n < A2

where t; = <% fO" Ltdt> — 1 and s, = (i Os" Lsds> — lasn — oo and

I' # 0. Then {x,} is bounded. Consequently, the sequences {y,}, {zn}, {vn}, {un}
are bounded.

Proof Letx* € I, from the definition of w,, in Algorithm 3.1, we get

lwn —2*|* = |15 2 = Tt
< (Tfllzn — Tf:}x*, Zp — TF)
= e TR = P 1T - ], B
it follows that
e — 2" 20 = 2*[* = [y — za|? (4)

<
<z — 2| (5)
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By definition of v,, and (5), we have

[

IN

IN

IN

Hl—anwn+an—/ (H)w,dt — x*

ot o (- [ T

[
— / T(t)w,dt — z*
tn Jo

n

(1 - O‘n)Hwn - I*H + ap

I
(1 — ) ||w, — z*|| + oznt—/ T (t)w, — T (t)x*||dt
n Jo
1 [fin
(1 — ap)||wn, — 2| —i—oznt—/ Li|jw,, — x*||dt
n Jo

1 tn
(1 — ap)||wn — x*|| + ap (t_/ Ltdt) |w, — =¥
n Jo

(1= a)|wn — 2" + antnJwn — 27|
(1= an(l = tn))llz0 — 27|, (6)

where ¢, := (i fot" Ltdt). Moreover, from (C'1) and Lemma 3.2(2), we have

l2n —2"|* <
<

20 — 2*||* = (1 = 2Xc2) || 20 — ynll® — (1 = 2Xc1) |0 — yn)?
[ (7)

From (6) and (7), it follows that

lon = '] < (1= an(1 = ) |20 — 2. (8)

By the definition of x,,,1, we have

|41 — 2|

IN

IN

1 [ ?
Po(vp, + T]A*(S— / S(s)upds — Avy)) — Poz™®
n Jo

Sn 2
vp + nA* <Si /0 S(s)upds — Avn) -z

2

* * 1 o
(v — ™) +nA (Sn/o S(s)unds—Avn)
1o
an_.%'*||2—|—2<vn_l‘*’7714*(/ S(s)unds—Avn>>
Sn, 0
1 [ 2
A* — n - A n
Hn (Sn/o S(s)unds v)

v — 2*||? + 21 <Avn — Az*, 1/ ! S(s)upds — Avn>
Sn Jo
|| Ao )
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2
where o,, = i Jo" S(s)unds — Av,|| . On the other hand,
1 [
<Avn — Ax”, . S(s)upds — Avn>
n Jo
1 [ Y
= <—/ S(s)upds — Ax™, — S(s)unds — Avn>
Sn Jo Sn Jo
1 [ 1 [
+ <Avn - — S(s)upds, — / S(s)upds — Avn>
Sn 0 Sn 0
1 [ 1 [
— <— / S(s)upds — Az*, — S(s)upds — Avn>
Sn Jo Sn Jo
1 [ 1 [
— <—/ S(s)upds — Av,, — / S(s)upds — Avn>
Sn 0 Sn 0
1 /[ 1 /[
- <—/ S(s)upds — Ax™, — S(s)unds — Avn>
Sn Jo Sn Jo
1 [ 2
— —/ S(s)unds — Av,, (10)
Sn Jo
Consider,

I [ 2
| Av, — Ax*||* = H (—/ S(s)upds — A:v*) - (—/ S(s)upds — Avn)
Sn Jo Sn Jo

L[ 2
— / S(s)upds — Ax*
$n Jo

-2 <i / ' S(s)uyds — Az”, L S(s)unds — AUn>
Sn Jo Sn Jo
2

+

Y

1 Sn
— / S(s)upds — Av,
0

Sn

it follows that

<i / n S(s)upds — Azx™, i/ ’ S(s)u,ds — Avn>
Sn Jo Sn Jo

_1[ 1 ?
2

—/ nS(s)unds—Ax* (11)
0

1 [

—/ S(s)upds — Av,,

sn Jo

Sn
2

+ — HAvn—A:c*HQ].
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From (10) and (11), we have

1 [
<Avn — Ax*, — S(s)upds — Avn>
Sn 0
Ipl[ 1 [ N i
< - [ — S(s)upds — Ax™|| + ||— S(s)unds — Av,
2 Sn Jo Sn Jo
1 [ 2
—||Av, — Aﬁ”ﬂ | S(s)unds — Av,
Sn Jo
i1 e ol e i
|1+ / S(s)unds — Az*|| — ||— [ S(s)unds — Av,
2 Sn Jo Sn Jo
—[|Av, — Az
Now we consider,
1 Sn 2 1 Sn
1 / S(s)unds — Ax*|| < — [ [1S(s)un — S(s)Aa"||*ds
Sn 0 Sn 0
1 Sn
< — Ls”un - Ax*HQdS
Sn 0
1 on * |2
Sn Jo
= Spllun — Az*||?, (12)

where s,, 1= (i I L3d5>. From (12) and (12), it implies that

<Avn — Ax”", /- S(s)upds — Avn>

Sn Jo

1/ 1
< 5 (il — A2 = | Av, — A7) = 32 (13)
Note that
Hun_Ax*H2 = ’|T£2AUR_TTZZA$*||2

IN

(TP Av,, — TF> Ax*, Av,, — Az™)

1
S (175 Av, = T2 Aa 2 + || Av, — Aa |2 = [T Av,, — Av,|[?)
| Av, — Az*||* = |Jun — Avy||*. (14)
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Replace (14) in (13) implies that

<Avn — Ax™, i / ' S(s)upds — Avn>
Sn Jo
—1
<

< S (Jln = Av |+ (1 = 5) | Av, = Aa|2 4 02). (15)

It follows from (9) and (15)
nsr =22 < llow — 22 = (1 = nl|AJ12) 02 1 Jun — vy
(1= 5| Avy — Az*|?)
< (1= a1 = )2l — &2 = n(1 = nll A1) o2 = n(llun — Ava?
(1= 53) | Av, — Aa”|?)
(16)
From (iii), (8) and (16) that
s = a** < (1= an(l =)l — 2*|* = n(1 = 5,) | Av, — A2*|2.(17)
Taking n — oo in (17), we have lim,, ., ||z, — 2*|| exists.
Since lim,, .« ||z, — x*|| exists, from (5), (7) and (8), it follows that
lim ||z, — 2| = lim |jv, —2*|| = lim ||z, — 2| = lim |Jw, — x|

Hence, {z, }. Consequently, all other sequences in Algorithm 3.1 are bounded.

Next, we prove a weak convergence theorem of Algorithm 3.1 to a pointin I'.

Theorem 3.4. Let C C Hy,Q C Hy, A, Fy, F5,T,S and {x,} be the sequence as in
Algorithm 3.1, and satisfying the control conditions in Lemma 3.3. Then the sequences
{zn}, {yn} and {z,} defined by Algorithm 3.1 converge weakly to a point in T

Proof From (16), we have

N, — Ave|? < (1= (1 = 1)) |l2n — 2*|? = |#0s1 — 2*|
—n(1 — s,)||Av, — Az*||?, (18)

and

n(1=nlAlR)e?
< (1= an(l = 0)Plan — 2| ~ llznes — 2*| — (1 — 5,)[[Av, — Az"|> (19)
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2
Since lim,, ,« ||z, — x*| exists and 0,, = i fos" S(s)unds — Av,|| , it implies that

lim ||u, — Av,|| =0= hm (20)
n—oo

Sn

1 sn
—/ S(s)upds — Av,,
0

Consider,

[
— / S(s)upds — uy,
Sn Jo

From (20) and (21), we have

+ || Avy, — up |- 2D

i/ ’ S(s)upds — Avy,
$n Jo

lim
n—oo

= 0. (22)

1 / n S(s)unds — uy,
0

Sn

Observe that

1t — S ()l
< |

Sn

1
Uy — — S(s)unds‘
sn Jo

Sn 1 Sn
i/ S(s)unds—S(t)—/ S(s)undSH
Sn Jo 0

Sn

_,_HS(t)% /Osn S(s)unds — S(t)uy,

< ’un—i nS(s)unds‘ i/nS(s)undS—S(t)i/nS(s)uncLsH
Sn Jo Sn Jo Sn Jo
1 [
+ L7 — ;. / S(8)unds — uy||
L / $)uds| / "S(S)unds_S(t)Si / S (s)unds|
n Jo

From (22) and Lemma 2.6, we have

Jim = S0y =0. @3)
From (10), we have

(1 =2xe)l2n = yull® < o — 2|7 = [z — 27|, (24)
and

(1= 2xe)llzn = pull* < lww = 27| = [l2n — 2" (25)

Since {\,} C [a,b] for some a,b € min{z-, 5=}, (24), (25) and lim,, o, ||z, — 27,
limy, o0 ||2n — 2*|| are exist, it follows that

lim |z, —ynll = 0 = lim [z, —ynl|. (26)
n— 00 n—r00
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Note that ||z, — z,|| < ||zn — Ynl| + ||Yn — || and from (26), therefore
lim ||z, — z,|| = 0. (27)
n—o0

By definition of v,, and Lemma 2.5, we have

1 [ 2
v, — 2*|* = “(1_a”)w"+ant_/0 T(t)w,dt — z*

- Joenten s+l [ Toman =)

n
2

I
— / T(t)w,dt — x*
tn Jo

n

= (1- an)||wn - x*Hz + o,

1 [t 2
—a, (1 — o) o / T (t)w,dt — w,
n Jo
< fhwn — 27|
1 [ 2
—an (1 — o) —/ T(t)wpdt — wy|| , (28)
n Jo

it follows that

I
— / T (t)w,dt — w,
tn Jo

n

2
an(l —ay) < ||wn—x*|]2— ||Un—:L’*||2. (29)

Since, 0 < d<e<a, < f <1, liminf, ,oor, > 0,lim, oo t, = 0 = lim,, o0 Sn
and (29), we have

1 [
— / T(t)w,dt — w,
tn Jo

n

2
< llwn = 2*|I* = flon — 2"||*. (30)

e(l1—f)

From Lemma 3.3 and (30), we have

2

L =0. (31)

tn
—/ T (t)w,dt — w,
0

n

lim
n—oo

L [ T(t)ywndt — w,

i Jo , it follows that

Since [|v, — wy|| = @y,

lim ||v, —w,| = 0.
n—oo
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Similarly, we observe that

Hwn =T )wnH <

ot [ o

+Hzﬂ l/) T(t)wndt — T(s)w,

W%__/% P, / ﬁ%ﬁ—ﬂ$%AMﬂW%ﬂ‘

1
/ T(t)w,dt — w,
tn Jo

1 [
’wn - —/ T(t)wy,
tn Jo

From (31) and Lemma 2.6, we have

1 [t 1 [t
;/ ﬂm%ﬁ—ﬂ@—/ ﬂm%ﬂ]
n J0 0

n

IN

+LT ||~

= (1+LhH

1 tn 1 tn
—/ ﬂW%ﬁ—ﬂQ—/ (1)t
tn 0 t 0

n

lim ||w, — T(s)w,| = 0. (32)
n—oo
From (4), we have
lwn = 2ol < lon — 2"|* = [l — 2" (33)

By Lemma 3.3, that lim,, , ||z, — 2*||, lim,,_, ||w, — 2*|| are exist, then

lim ||w, — z,|| = 0. (34)
n—00

Since [|w, — || < ||wn — zu|| + |20 — @n]|, from (27) and (34), we have

lim ||w, — x,| = 0. (35)

n—oo

Since {w,} is bounded, there exists a subsequence {wy, } of {w,} such that w,, — w
for some w € C.

Now, we prove that w € T'. First, we show that w € Fix (7). Assume thatw ¢ Fixz(T).
Since, w,, — w and T'(s)w # w, from opial’s condition, we have

liminf [|w,, —w| < liminf |wn, — T'(s)w||
1—00

< liminf (Hwn — T'(8)wy,

1—00

+ |7 (s)uwn, = T(s)ull)

A\

LT lim inf ||w,, — w]|.
1—00
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Taking s — oo, we have

liminf ||w,, —w| < liminf ||w,, —wl.
1—00 1—00

A contradiction. Then we obtain w € Fiz(T). Since, w,, = T z,, we have

1
Fi(w,,z) + —(x — wp,w, — z,) > 0,Vz € C.
Tn

It follows from the monotonicity of 7 that

1

_<$ — Wy, Wy, — Zn> Z F1<.Z',U)n),
Tn
and hence,
Wo, — Zn.
<x_wnlau> Z Fl(xawni)'
TTL
Since, ||w, — z,|| — 0, we get w,,, — w and w — 0, it follows that

(3

Fi(z,w) <0,Vx e C. (36)

For,0 < A < land z,w € C,letzy = Az + (1 — A)w € C and from convex function
of I, we have

Fi(za, zy)
AF (), ) + (1 = X)) Fi(x), w)
Fi(zy, ).

IA N CIA

By Assumption 2.2 and (36), we get F(w,x) > 0. This implies that w € EP(C, F}).
Next, we show that Aw € Fiz(S). Assume that Aw & Fliz(S). Since, ||w, —v,|| = 0
and

Uy, —w = (v, — wy) + (W, —w) = 0,

it follows that v, — w. Since A is bounded linear operator, so Av,, — Aw. Since,
|un — Avy]| — 0 and

Uy, — Aw = (u, — Av,) + (Av, — Aw) — 0,

it follows that u,, — Aw. Since {u,} is bounded, there exists a subsequence {u,, } of
{un } such that u,,; — Aw, and Assume that S(t) Aw # Aw, from opial’s condition, we
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have

liminf ||u,, — Aw|| < lminf [ju,, — S(t)Aw||
j—o0

Jj—o0

IA

lim inf (Hunj = St || + (1S (), — S(t)AwH)

Jj—00

< L7 lijrggf l|tn; — Aw]|.

Taking ¢ — oo, we have

liminf ||u,, — Aw|| < liminf ||u,, — Aw].
J]—00 J—00

A contradiction. Then we obtain Aw € Fiz(S). Since, u,, = T)F> Av,,, we have

1
Fy(tn,y) + —(y — tn, u, — Av,) > 0,Vy € Q.

n

It follows from the monotonicity of F5; that

1

Y = Av) 2 Ba(y,un),
and hence,
<y — Uy, un+nA%> > Fy(y,up,).
Since, ||u, — Av,|| — 0, we get u,,, = Aw and % — 0, it follows that

K3

Fyly, Aw) <0,y € Q. (37)

For,0 < p < landy, Aw € Q,lety, = py+(1—p)Aw € @ and from convex function
of F5, we have

FQ(ypuyP)
PES (Yo, y) + (1 — p) Fa(y,, Aw)
FQ(Away)

VANRVANVAN

By Assumption 2.2 and (37), we get Fy(Aw,y) > 0. This implies that Aw €
EP(Q, F,). This proves w € T'.

Finally, we show that {x, } converges weakly to w and {u,} converges weakly to Aw.
Assume that there exists a subsequence {z,,} of {z,} such that z,,, = gasi — oo
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where g € I' such that ¢ # w. By Opial’s condition, we have
liminf ||z,, — ¢|] < liminf |z,, —w]|
1—00 1—00
= liminf ||z, —w||
k—o0

< liminf ||z, —q||
k—ro0

liminf ||z,, — ¢||.
11— 00

A contradiction. This implies that x,, — w as n — oo. Since, Av,, = Aw asn — oo,
therefore from ||u,, — Av, || — 0 as n — oo we conclude that u,, — Aw. This completes
the proof.

Corollary 3.5. [2] Let C C H,,Q C Hy, A, F,G,T,S and {x,} be the sequence as
in Algorithm 1.1. Assume that the following set of control conditions are satisfied:

(i) {\.} C [a,b] for some a,b € min{ﬁ, ﬁ},

(ii) 0<d<e<a, <f<1liminf, ,.or, > 0,lim, oo t, = 0= lim,,_, S,

1
(iii) 0 < £ < AR

If T £ () then the sequences {x,},{y,} and {z,} defined by Algorithm 1.1 converge
weakly to a point in I'.

4. STRONG CONVERGENCE THEOREM

In this section, we modified the iterative method together with the classical
shrinking projection algorithm to establish the strong convergence results. Our
algorithm reads as follows.

Algorithm 4.1. Let C' C Hy and (Q C H, be nonempty subsets of real Hilbert space
H, and H,, respectively. Let A : Hi — Hs be a bounded linear operator and A* be
its adjoint. Let Fy : C x C — Rand F5 : () x Q — R be two bifunctions satisfying
condition (B1) — (B5) and (A1) — (A4), respectively. Let T = {T'(t) : 0 < t < oo}
and S = {S(s) : 0 < s < oo} be two asymptotically nonexpansive semigroups. Let
= {x* € C:z2* € EP(C,F\)N Fix(T) and Az* € EP(Q, F3) N Fz:c(S)} # 0,
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we have
r € C;=C,
Yo = arg min{)\nFl(xn,y) + %Hy —1,|? iy € C’}
zo = arg min{\,Fi(yn, 2) + %Hz —z,|*: 2 € C}
w, = Tr]::lzn,
1 [te
vy, = (1—ay)w, + ana/o T(t)w,dt,
u, = T(Av,),
P = Po <vn + nA* <Si /sn S(s)upds — Avn>>,
n Jo

o1 = {o € Cutllpn =2l < llow = o]l < o — 2l },
Tnr1 = PC7L+1551~
Now, we prove a strong convergence theorem of the Algorithm 4.1 to common solution
of I'.
Theorem 4.2. Let C C Hy,(Q) C Hy, A, Fy, F5, Hy, Hy, T, S and {z,,} be the sequence
as in Algorithm 4.1. Assume that the following control conditions are satisfied:
. 1 1.
(i) {\u} C [a,b] for some a,b € min{s-, 5~}
(ii) 0<d<e<a, < f<1liminf,, o r, > 0,lim, .o t, =0 = lim,, o Sy,

1
(iii) 0 <n < TATE"

If T # (), then the sequences {x,}, {y.} and {z,} defined by Algorithm 4.1 converge
strongly to a point in I'.

Proof First, show that C,, is nonempty colsed and convex for all n > 1. Since
{zeCilpn— wHQ <z, — 5[7”2} ={reC,: ||pn||2 - HInH2 < 2(pn — T, 1) },

the set C), ;1 is closed and convex.

Let * € T, it follows from (16) and (8) we have

Ipn =21 < llow — I = (1 = nllAJ)?
=l = Ava? + (1 = 5)]| Av, — A"

o ="
(1 — an(1 —t,)?||z, — 2% (38)

IA A
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From (38), taking ¢ — oo we have
1pn — "] < [lon — 2™ < |2 — 2. (39)

From (39), it follows that I' C (), for n > 1. It implies that the Algorithm 4.1 is
well-defined.

Next, we prove that, {z,,} and {p,} are bounded and z,, — p as n — oo for some
p € I'. Since, z,41 € Pc,,, 21, therefore ||z,11 — 21| < ||z2 — 24 forall 2, € C.
Inparticular, we have ||z,,11 — x1|| < ||Prz1 — x1||. Hence, {x,,} and {p, } are bounded.
Since z,, = P, x4, it follows that

(x1 — xpyxn —y) >0

forally € I'and n € N.

Since, x,,.1 = P, , 71 € C,,11 C C),, we obtain that

n+1
<ZE1 — TnyTn — xn-‘,—l) Z O (40)
So, for all z,,,1 € C),11, forn € N, we have

0

<ZL’1 — TnyTn — wn+1> - _<xn —T1,Tn — J}1> + <5L‘1 — Tp, T1 — xn—l—l)

<
<l =2l + llzn = zallllzr — 2ol

This implies that
oy = 2ol < fl21 = @allllzr — 2ol

and hence

[21 = @l < 2y = Znaa [l

for all n € N. Since {||x; — x,|| } is bounded, lim,,_,, ||, — 21]| exists. Next, we claim
that lim,,_,, ||z, — Z,41]| = 0. From (40), we have

120 — @il = (@ = 21) + (21 = T4

lzn = 1] + 2{z0 — 21,21 = Tas1) + [lor = T

1z = 211 = 2{@1 — Z0, 21 — T0) = 221 = Tn, To — Tngr) + 121 = T |1

IN

lzn — 2 ®
= 2z — 2| + |z = 2|

—llzn = 21" + |21 — 2|l

Since, lim,, o ||z, — 21|| exists, we have

lim ||zp41 — x| = 0. 41)
n—oo
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Consider, for m > n we have

From (41) and (42), we have {x,} is Cauchy sequence. By completeness of H; we
have p € C' such that x,, — p as n — oc.

Claim that, p € I'. Since z,,,, € C,, 1 thus
1P = Zpiall < lon = 2ngall < flen — 2ngal (43)
Consider,
o =zl < llpn = Zpiall + 2041 = 2all < 20201 — 2all,
similarly,
lon = @all < l[on = Zass| + st = Tall < 2ner — 2l

From (39), it follows that

lim ||p, — x| = 0= lim |jv, — 2, (44)
—00 n—o0
Consider,
[2n = T(s)znll < |lzn — wall + lwn = T(s)wnll + | T(s)wn — T(s)z]|
< lzn = wall + [lwn = T(s)wn || + Lsllwy, — 24|

= (14 Ly)[lwn — zall + lwn — T(s)wy]|
From (32) and (34) it implies that
lim ||z, —T(s)z,] = 0. (45)
n—oo

Since, x,, — p as n — oo. From (26), (27) and (44) it follows that z,, — p, y, — p and
v, — p as n — oo. Consider,

1T (s)p = T(s)znll + [ T(s)2n = 2nll + l|20 = pl]

<
< Lillp = zall + 1T (s) 20 — 2zl + ll20 — P
(L4 Lo)llzn = pll + 1T(s)z0 = zall- (46)

1T(s)p — pl|

From (45) and z, — p as n — oo, it follows that p € Fiz(T). From Lemma 3.2(1),
we have

)\n{Fl(Ina {L‘) - FI(Inu yn)} Z <yn — Tny Yn — [E), for all x € C (47)

From (26), we have F(p,z) > 0, it follows that p € FEP(C,F;). Hence, p €
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EP(C,Fy) N Fiz(T).

Finally, we prove that Ap € EP(Q, I,) N Fiz(S). Since, v, — p as n — oo, we have
Av,, — Ap as n — oo. Consider,

[un — Apl| < [[un — Avn| + [|Avn, — Ap, (48)
from (20) and (48), it implies that
lim [, — Ap| = 0. “9)
Now observe that

15(t)Ap — Apl| 1S@)Ap = S@)unll + S (E)un = unll + [Jun — Ap]|

Lif|Ap — unl + [S(t)un — unl| + [lun — Ap]|
= (L Ly)ljun = Apll + [[S()un — unl]-

From (23) and (49) it follows that Ap € Fiiz(S). Similarly, from Lemma 3.2(1) again,
we have

)\n{F2(un7 y) - FZ(un; Avn)} Z <AUn — Unp, Avn - y>7 for all Yy € Q (50)

From (i), (20) and (49), we have Fy(Ap,y) > 0, it follows that Ap € EP(Q, F3).
Hence, Ap € EP(Q, F3) N Fiz(S). Therefor, p € I". This completes the proof.

Corollary 4.3. [2] Let C C Hy,QQ C Hy, A, F,G,Hy,H,,T,S and {x,} be the

sequence as in Algorithm 1.2. Assume that the following set of control conditions are
satisfied.:

(i) {Mn} C [a,b] for some a,b € min{z-, 5-};

(i) 0<d<e<a,<f<1liminf, ,or, > 0,lim, .o t, =0 =lim,, .o Sy,

1
(iii) 0 <& < AR

If T # (), then the sequences {x,}, {yn} and {z,} defined by Algorithm 1.2 converge
strongly to a point in T'.
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