

Quantum Algorithm for Knapsack Problem by Usual Grover Iteration with Z-Axis-Rotation (180 degrees) on QCEngine

Toru Fujimura

*Art and Physical Education area security office,
University of Tsukuba, Ibaraki-branch, Rising Sun Security Service Co., Ltd.,
1-1-1, Tennodai, Tsukuba, Ibaraki 305-8577, Japan*

Abstract

A quantum algorithm for the knapsack problem by the usual Grover iteration with z -axis- rotation (180 degrees) on the QCEngine, and its example are reported. In this method, there is no using QRAM, but only RAM is used. The times of iterations are about $(\pi/4)(2^n/m)^{1/2}$, where n is a number of qubits, and m is a number of marked terms. This method is simple and powerful.

Keywords: Quantum algorithm, knapsack problem, usual Grover iteration, z -axis-rotation (180 degrees), QCEngine, RAM.

AMS subject classification: Primary 81-08; Secondary 81-10, 68Q12.

1. Introduction

The knapsack problem was discussed by Takeuchi for the complexity. [1] The quantum algorithm for the knapsack problem was reported by Fujimura with the usual Grover method. [2] In this time, I used the QCEngine (Quantum Computer Simulator [3]) with RAM for this problem. This method is simple and powerful.

Therefore, because the quantum algorithm for the knapsack problem is examined by the usual Grover iteration with z -axis-rotation (180 degrees) on the QCEngine, its result is reported.

2. Knapsack Problem

As for n pieces of different weight luggage, the knapsack problem requests the best combination of the luggage packed into the knapsack that a weight k is assumed to be an upper bound. [1, 2]

When weights of the n pieces of luggage are assumed x_1, x_2, \dots, x_n , and coefficients in which 0 or 1 are taken are m_1, m_2, \dots, m_n , a sum of weights becomes $m_1x_1 + m_2x_2 + \dots + m_nx_n$.

It can be said from the above-mentioned fact the knapsack problem is a problem of requesting the best combination of 0 and 1 of m_1, m_2, \dots, m_n in the upper bound weight k . [2]

3. Quantum Algorithm

It is assumed that n is number of data qubits (= number of luggage), and j is number of weight qubits that included the sum of weights.

First of all, query quantum registers (= query registers) $|x_i\rangle$ [$1 \leq i \leq n$. i and n are integers. n is a number of luggage.] and weight quantum registers (= weight registers) $|w_j\rangle$ [$1 \leq j \leq t$. j and t are integers. t is a necessary number for the sum of weight.] are prepared.

- Step 1: The weight data $[m_p : p = 1 \rightarrow n$. p is an integer.] are introduced to RAM [3].
- Step 2: Each qubit of $|x_i\rangle$ and $|w_j\rangle$ is set $|0\rangle$.
- Step 3: The Hadamard gate \boxed{H} [1-6] acts on each qubit of $|x_i\rangle$. It changes them for entangled states.
- Step 4: For $|x_i\rangle$, RAM [$i - 1$] [RAM has weight data of $0 \rightarrow (n - 1)$. They are $m_1 \rightarrow m_n$.] is incremented in $|w_j\rangle$. In a function, $F = \sum_{i=1 \rightarrow n} m_i x_i$ is computed, where m_i is weight. This operation makes entangled data base.
- Step 5: For $|w_j\rangle$, the flip [\sim marked term 1 : marked term 1 is k .] is done.
- Step 6: The uncompute is done.
- Step 7: For $|x_i\rangle$, the Grover iteration is done.
- Step 8: For $|w_j\rangle$ and $|x_i\rangle$, the probes are done.
- Step 9: Step 4 \rightarrow 8 are returned by about $(\pi/4)(2^n/m)^{1/2}$ times [3] [m is number of marked term 1.]
- Step 10: For $|w_j\rangle$ and $|x_i\rangle$, the reads are done.

The read of $|w_j\rangle$ is 0, and the read of $|x_i\rangle$ is marked term 2 [= answer : number of combination of necessary luggage].

4. Example of Numerical Computation

It is assumed that 8 (= n) pieces of luggage of weight are $m_1 = 13\text{kg}$, $m_2 = 8\text{kg}$, $m_3 =$

3kg , $m_4 = 6\text{kg}$, $m_5 = 15\text{kg}$, $m_6 = 2\text{kg}$, $m_7 = 4\text{kg}$, $m_8 = 5\text{kg}$, and the upper bound of the weight of the knapsack is $k = 52\text{kg}$. Furthermore, it is assumed that the marked term 1 = 52 (= k), the marked term 2 = 191 (= answer), $t = 6$ ($2^6 - 1 = 63$). Because, total sum is $\sum_{p=1 \rightarrow n} m_p = 56.$), and Grover iterations = 13 [$T_{\text{best}} \approx (\pi/4)(2^n/m)^{1/2} \approx (3.14/4)(2^8/1)^{1/2} \approx 13$], theta = 180 degrees by z -axis, and query register qubits $n = 8$.

An example of program on the QC Engine is the following.

```

10 var a = [13,8,3,6,15,2,4,5];
20 var query_qubits = 8;
30 var weight_qubits = 6;
40 qc.reset(query_qubits + weight_qubits);
50 var query = qint.new(query_qubits, 'query');
60 var weight = qint.new(weight_qubits, 'weight');
70 qc.label('set q');
80 query.write(0);
90 query.hadamard();
100 qc.label(' ');
110 qc.label('set w');
120 weight.write(0);
130 qc.print('RAM before increment: '+a+'\n');
140 var theta = 180; // Rotation by z-axis (degrees)
150 var marked_term2 = 191;
160 var query191 = 191; // one of query
170 var marked_term1 = 52;
180 var weight0 = 0; // one of weight
190 var number_of_iterations = 13;
200 for (var i = 0; i < number_of_iterations; ++i)
210 {
220 qc.label('increment');
230 weight.add(a[0],query.bits(0x1));
240 weight.add(a[1],query.bits(0x2));
250 weight.add(a[2],query.bits(0x4));
260 weight.add(a[3],query.bits(0x8));
270 weight.add(a[4],query.bits(0x10));
280 weight.add(a[5],query.bits(0x20));
290 weight.add(a[6],query.bits(0x40));
300 weight.add(a[7],query.bits(0x80));
310 qc.label('flip');
320 weight.not(~marked_term1);

```

```

330 weight.cphase(theta);
340 weight.not(~marked_term1);
350 qc.label('uncompute');
360 weight.subtract(a[7],query.bits(0x80));
370 weight.subtract(a[6],query.bits(0x40));
380 weight.subtract(a[5],query.bits(0x20));
390 weight.subtract(a[4],query.bits(0x10));
400 weight.subtract(a[3],query.bits(0x8));
410 weight.subtract(a[2],query.bits(0x4));
420 weight.subtract(a[1],query.bits(0x2));
430 weight.subtract(a[0],query.bits(0x1));
440 qc.label('Grover');
450 query.hadamard();
460 query.not();
470 query.cphase(theta);
480 query.not();
490 query.hadamard();
500 var prob191 = 0;
510 prob191 += query.peekProbability(query191);
520 // Print output query-Pros
530 qc.print(
540 ' Prob_query191: ' + prob191
550 );
560 var prob256 = 0;
570 prob256 += weight.peekProbability(weight0);
580 // Print output weight-Pros
590 qc.print(' Prob_weight256: ' + prob256
600 );
610 }
620 //read
630 qc.label('Rw');
640 var b1 = weight.read();
650 qc.label('Rq');
660 var b2 = query.read();
670 // Print output result
680 qc.print(' Read weight = ' + b1 +
690 ',' + ' Read query = ' + b2 +

```

```
700 !);
710 //end
```

When this program is copied on Programming Quantum Computers <https://oreilly-qc.github.io/#> [free on-line quantum computation simulator QCEngine] [3], you can run it. [Caution!: Please delete the line numbers.]

A result of this program is the following.

The probe value of $|w_j\rangle = 0 : 1.0000 [T = 1 \rightarrow 13]$.

The probe value of $|x_i\rangle = 191 : T = 1; 0.0348, T = 2; 0.0946, T = 3; 0.1797, T = 4; 0.2847, T = 5; 0.4032, T = 6; 0.5276, T = 7; 0.6503, T = 8; 0.7637, T = 9; 0.8607, T = 10; 0.9352, T = 11; 0.9826, T = 12; 0.9999 (\approx 1), T = 13; 0.9862$.

The read of $|w_j\rangle = 0$.

The read of $|x_i\rangle = 191$.

Finished in 0.522 seconds.

Therefore, the best times of Grover iterations are 12 for $n = 8$.

For $n = 6$:

RAM = [13, 8, 3, 6, 15, 2], $T_{\text{best}} \approx (\pi/4)(2^n/m)^{1/2} \approx (3.14/4)(2^6/1)^{1/2} \approx 6$.

The marked term 1 = 20 (= k), the marked term 2 = 52 (= answer).

The probe value of $|w_j\rangle = 0 : 1.0000 [T = 1 \rightarrow 6]$.

The probe value of $|x_i\rangle = 52 : T = 1; 0.1348, T = 2; 0.3439, T = 3; 0.5914, T = 4; 0.8164, T = 5; 0.9635, T = 6; 0.9966$.

The read of $|w_j\rangle = 0$.

The read of $|x_i\rangle = 52$.

Therefore, the best times of Grover iterations are 6 for $n = 6$.

For $n = 4$:

RAM = [4, 3, 5, 1], $T_{\text{best}} \approx (\pi/4)(2^n/m)^{1/2} \approx (3.14/4)(2^4/1)^{1/2} \approx 3$.

The marked term 1 = 10 (= k), the marked term 2 = 13 (= answer).

The probe value of $|w_j\rangle = 0 : 1.0000 [T = 1 \rightarrow 3]$.

The probe value of $|x_i\rangle = 13 : T = 1; 0.4727, T = 2; 0.9084, T = 3; 0.9613$.

The read of $|w_j\rangle = 0$.

The read of $|x_i\rangle = 13$.

Therefore, the best times of Grover iterations are 3 for $n = 4$.

For $n = 2$:

RAM = [2, 1], $T_{\text{best}} \approx (\pi/4)(2^n/m)^{1/2} \approx (3.14/4)(2^2/1)^{1/2} \approx 2$.

The marked term 1 = 2 (= k), the marked term 2 = 1 (= answer).

The probe value of $|w_j\rangle = 0 : 1.0000 [T = 1 \rightarrow 2]$.

The probe value of $|x_i\rangle = 1 : T = 1; 1.0000, T = 2; 0.2500$.

The read of $|w_j\rangle = 0. [T = 1]$.

The read of $|x_i\rangle = 1. [T = 1]$.

Therefore, the best time of Grover iteration is 1 for $n = 2$.

For $n = 1$:

$\text{RAM} = [1], T_{\text{best}} \approx (\pi/4)(2^n/m)^{1/2} \approx (3.14/4)(2^1/1)^{1/2} \approx 1$.

The marked term 1 = 1 (= k), the marked term 2 = 1 (= answer).

The probe value of $|w_j\rangle = 0 : 1.0000 [T = 1]$.

The probe value of $|x_i\rangle = 1 : T = 1; 0.5000$.

The read of $|w_j\rangle = 0$.

The read of $|x_i\rangle = 1$ or 0.

Therefore, the best times of Grover iterations are 2 or 1 for $n = 1$.

5. Discussion

For $n = 1$, this problem is the section of one in two data [1 or 0]. Therefore, it is inevitable.

For $n = 2$, this problem is the section of one in four data [3, 2, 1 or 0]. In usual Grover method, one time mechanism is the following.

It is assumed that the number of data is N , the value of data of $N/4$ is R , and values of data of $3N/4$ are the others. When the probability amplitudes of data of R are marked a minus, the mean of probability amplitudes becomes $(N^{1/2}(3N/4) - N^{1/2}(N/4))/N = (1/2)N^{1/2}$.

When the inversion about mean is practiced, the probability amplitudes of data of R are $-(-N^{1/2}) + (1/2)N^{1/2} \times 2 = 2N^{1/2}$,

and the probability amplitude of data of others are $N^{1/2} - (N^{1/2} - (1/2)N^{1/2}) \times 2 = 0$.

Therefore, the sum of square of probability amplitude is $(2N^{1/2})^2 (1/4)N + 0^2(3/4)N = 1 + 0 = 1$.

For $n = 4, 6$ or 8 , the times of usual Grover iterations are about $T_{\text{best}} \approx (\pi/4)(2^n/m)^{1/2}$.

For over $n = 8$, it is assumed that above mention is true.

6. Summary

Only RAM is used, and the times of Grover iterations are about $(\pi/4)(2^n/m)^{1/2}$ [n is a number of query qubits, and m is a number of marked terms.]. This method is simple and powerful.

I will apply this method for other problems.

References

- [1] Takeuchi, S., 2005, *Ryoshi Konpyuta* (Quantum Computer), Kodansha, Tokyo, Japan [in Japanese].
- [2] Fujimura, T., 2010, “Quantum algorithm for knapsack problem,” *Glob. J. Pure Appl. Math.*, **6**, 263-266.
- [3] Johnston, E. R., Harrigan, N., and Gimeno-Segovia, M., 2019, *Programming Quantum Computers*, O'Reilly, ISBN 978-1-492-03968-6.
- [4] Grover, L. K., 1996, “A fast quantum mechanical algorithm for database search,” *Proc. 28th Annu. ACM Symp. Theory of Computing*, pp.212-219.
- [5] Grover, L. K., 1998, “A framework for fast quantum mechanical algorithms,” *Proc. 30th Annu. ACM Symp. Theory of Computing*, pp.53-62.
- [6] Miyano, K., and Furusawa, A., 2008, *Ryoshi Konpyuta Nyumon* (An Introduction to Quantum Computation), Nipponhyoronsha, Tokyo, Japan [in Japanese].

