
Global Journal of Pure and Applied Mathematics.
ISSN 0973-1768 Volume 19, Number 1 (2023), pp. 23-29
© Research India Publications
http://www.ripublication.com/gjpam.htm

Quantum Algorithm for Knapsack Problem by Usual

Grover Iteration with Z-Axis-Rotation (180 degrees)

on QCEngine

Toru Fujimura

Art and Physical Education area security office,

University of Tsukuba, Ibaraki-branch, Rising Sun Security Service Co., Ltd.,
1-1-1, Tennodai, Tsukuba, Ibaraki 305-8577, Japan

Abstract

A quantum algorithm for the knapsack problem by the usual Grover iteration with
z-axis- rotation (180 degrees) on the QCEngine, and its example are reported. In
this method, there is no using QRAM, but only RAM is used. The times of
iterations are about (π/4)(2n/m)1/2, where n is a number of qubits, and m is a
number of marked terms. This method is simple and powerful.

Keywords: Quantum algorithm, knapsack problem, usual Grover iteration, z-
axis-rotation (180 degrees), QCEngine, RAM.

AMS subject classification: Primary 81-08; Secondary 81-10, 68Q12.

1. Introduction

The knapsack problem was discussed by Takeuchi for the complexity. [1] The quantum
algorithm for the knapsack problem was reported by Fujimura with the usual Grover
method. [2] In this time, I used the QCEngine (Quantum Computer Simulator [3]) with
RAM for this problem. This method is simple and powerful.
Therefore, because the quantum algorithm for the knapsack problem is examined by
the usual Grover iteration with z-axis-rotation (180 degrees) on the QCEngine, its result
is reported.

24 Toru Fujimura

2. Knapsack Problem

As for n pieces of different weight luggage, the knapsack problem requests the best
combination of the luggage packed into the knapsack that a weight k is assumed to be
an upper bound. [1, 2]
When weights of the n pieces of luggage are assumed x1, x2, … , xn, and coefficients in
which 0 or 1 are taken are m1, m2, … , mn, a sum of weights becomes m1x1 + m2x2 + …
+ mnxn.
It can be said from the above-mentioned fact the knapsack problem is a problem of
requesting the best combination of 0 and 1 of m1, m2, … , mn in the upper bound weight
k. [2]

3. Quantum Algorithm

It is assumed that n is number of data qubits (= number of luggage), and j is number of
weight qubits that included the sum of weights.

First of all, query quantum registers (= query registers) |xi› [1 ≤ i ≤ n. i and n are integers.
n is a number of luggage.] and weight quantum registers (= weight registers) |wj› [1 ≤ j
≤ t. j and t are integers. t is a necessary number for the sum of weight.] are prepared.
Step 1: The weight data [mp : p = 1 → n. p is an integer.] are introduced to RAM

[3].
Step 2: Each qubit of |xi › and |wj › is set |0›.
Step 3: The Hadamard gate H [1-6] acts on each qubit of |xi›. It changes them for

entangled states.
Step 4: For |xi›, RAM [i - 1] [RAM has weight data of 0 → (n - 1). They are m1 →

mn.] is incremented in |wj›. In a function, F = Σi = 1 → n mi xi is computed,
where mi is weight. This operation makes entangled data base.

Step 5: For |wj›, the flip [~ marked term 1 : marked term 1 is k.] is done.
Step 6: The uncompute is done.
Step 7: For |xi›, the Grover iteration is done.
Step 8: For |wj› and |xi›, the probes are done.
Step 9: Step 4 → 8 are returned by about (π/4)(2n/m)1/2 times [3] [m is number of

marked term 1.].
Step 10: For |wj› and |xi›, the reads are done.

The read of |wj› is 0, and the read of |xi› is marked term 2 [= answer : number of
combination of necessary luggage].

4. Example of Numerical Computation

It is assumed that 8 (= n) pieces of luggage of weight are m1 = 13kg, m2 = 8kg, m3 =

Quantum Algorithm for Knapsack Problem by Usual Grover Iteration 25

3kg, m4 = 6kg, m5 = 15kg, m6 = 2kg, m7 = 4kg, m8 = 5kg, and the upper bound of the
weight of the knapsack is k = 52kg. Furthermore, it is assumed that the marked term 1
= 52 (= k), the marked term 2 = 191 (= answer), t = 6 (26 – 1 = 63. Because, total sum
is Σp = 1 → n mp = 56.), and Grover iterations = 13 [Tbest ≈ (π/4)(2n/m)1/2 ≈ (3.14/4)(28/1)1/2
≈ 13], theta = 180 degrees by z-axis, and query register qubits n = 8.
An example of program on the QCEngine is the following.
10 var a = [13,8,3,6,15,2,4,5];
20 var query_qubits = 8;
30 var weight_qubits = 6;
40 qc.reset(query_qubits + weight_qubits);
50 var query = qint.new(query_qubits, 'query');
60 var weight = qint.new(weight_qubits, 'weight');
70 qc.label('set q');
80 query.write(0);
90 query.hadamard();
100 qc.label(' ');
110 qc.label('set w');
120 weight.write(0);
130 qc.print('RAM before increment: '+a+'\n');
140 var theta = 180; // Rotation by z-axis (degrees)
150 var marked_term2 = 191;
160 var query191 = 191; // one of query
170 var marked_term1 = 52;
180 var weight0 = 0; // one of weight
190 var number_of_iterations = 13;
200 for (var i = 0; i < number_of_iterations; ++i)
210 {
220 qc.label('increment');
230 weight.add(a[0],query.bits(0x1));
240 weight.add(a[1],query.bits(0x2));
250 weight.add(a[2],query.bits(0x4));
260 weight.add(a[3],query.bits(0x8));
270 weight.add(a[4],query.bits(0x10));
280 weight.add(a[5],query.bits(0x20));
290 weight.add(a[6],query.bits(0x40));
300 weight.add(a[7],query.bits(0x80));
310 qc.label('flip');
320 weight.not(~marked_term1);

26 Toru Fujimura

330 weight.cphase(theta);
340 weight.not(~marked_term1);
350 qc.label('uncompute');
360 weight.subtract(a[7],query.bits(0x80));
370 weight.subtract(a[6],query.bits(0x40));
380 weight.subtract(a[5],query.bits(0x20));
390 weight.subtract(a[4],query.bits(0x10));
400 weight.subtract(a[3],query.bits(0x8));
410 weight.subtract(a[2],query.bits(0x4));
420 weight.subtract(a[1],query.bits(0x2));
430 weight.subtract(a[0],query.bits(0x1));
440 qc.label('Grover');
450 query.hadamard();
460 query.not();
470 query.cphase(theta);
480 query.not();
490 query.hadamard();
500 var prob191 = 0;
510 prob191 += query.peekProbability(query191);
520 // Print output query-Probs
530 qc.print(
540 ' Prob_query191: ' + prob191
550);
560 var prob256 = 0;
570 prob256 += weight.peekProbability(weight0);
580 // Print output weight-Probs
590 qc.print(' Prob_weight256: ' + prob256
600);
610 }
620 //read
630 qc.label('Rw');
640 var b1 = weight.read();
650 qc.label('Rq');
660 var b2 = query.read();
670 // Print output result
680 qc.print(' Read weight = ' + b1 +
690 ',' +' Read query = ' + b2 +

Quantum Algorithm for Knapsack Problem by Usual Grover Iteration 27

700 '.');
710 //end

When this program is copied on Programming Quantum Computers https: //orelly-qc.
github. io/# [free on-line quantum computation simulator QCEngine] [3], you can run
it. [Caution!: Please delate the line numbers.]
A result of this program is the following.
The probe value of |wj› = 0 : 1.0000 [T = 1 → 13].
The probe value of |xi› = 191 : T = 1; 0.0348, T = 2; 0.0946, T = 3; 0.1797, T = 4; 0.2847,
T = 5; 0.4032, T = 6; 0.5276, T = 7; 0.6503, T = 8; 0.7637, T = 9; 0.8607, T = 10; 0.9352,
T = 11; 0.9826, T = 12; 0.9999 (≈ 1), T = 13; 0.9862.
The read of |wj› = 0.
The read of |xi› = 191.
Finished in 0.522 seconds.
Therefore, the best times of Grover iterations are 12 for n = 8.

For n = 6:
RAM = [13, 8, 3, 6, 15, 2], Tbest ≈ (π/4)(2n/m)1/2 ≈ (3.14/4)(26/1)1/2 ≈ 6.
The marked term 1 = 20 (= k), the marked term 2 = 52 (= answer).
The probe value of |wj› = 0 : 1.0000 [T = 1 → 6].
The probe value of |xi› = 52 : T = 1; 0.1348, T = 2; 0.3439, T = 3; 0.5914, T = 4; 0.8164,
T = 5; 0.9635, T = 6; 0.9966.
The read of |wj› = 0.
The read of |xi› = 52.
Therefore, the best times of Grover iterations are 6 for n = 6.

For n = 4:
RAM = [4, 3, 5, 1], Tbest ≈ (π/4)(2n/m)1/2 ≈ (3.14/4)(24/1)1/2 ≈ 3.
The marked term 1 = 10 (= k), the marked term 2 = 13 (= answer).
The probe value of |wj› = 0 : 1.0000 [T = 1 → 3].
The probe value of |xi› = 13 : T = 1; 0.4727, T = 2; 0.9084, T = 3; 0.9613.
The read of |wj› = 0.
The read of |xi› = 13.
Therefore, the best times of Grover iterations are 3 for n = 4.

For n = 2:
RAM = [2, 1], Tbest ≈ (π/4)(2n/m)1/2 ≈ (3.14/4)(22/1)1/2 ≈ 2.
The marked term 1 = 2 (= k), the marked term 2 = 1 (= answer).

28 Toru Fujimura

The probe value of |wj› = 0 : 1.0000 [T = 1 → 2].
The probe value of |xi› = 1 : T = 1; 1.0000, T = 2; 0.2500.
The read of |wj› = 0. [T = 1].
The read of |xi› = 1. [T = 1].
Therefore, the best time of Grover iteration is 1 for n = 2.

For n = 1:
RAM = [1], Tbest ≈ (π/4)(2n/m)1/2 ≈ (3.14/4)(21/1)1/2 ≈ 1.
The marked term 1 = 1 (= k), the marked term 2 = 1 (= answer).
The probe value of |wj› = 0 : 1.0000 [T = 1].
The probe value of |xi› = 1 : T = 1; 0.5000.
The read of |wj› = 0.
The read of |xi› = 1 or 0.
Therefore, the best times of Grover iterations are 2 or 1 for n = 1.

5. Discussion

For n = 1, this problem is the section of one in two data [1 or 0]. Therefore, it is
inevitable.
For n = 2, this problem is the section of one in four data [3, 2, 1 or 0]. In usual Grover
method, one time mechanism is the following.
It is assumed that the number of data is N, the value of data of N/4 is R, and values of
data of 3N/4 are the others. When the probability amplitudes of data of R are marked a
minus, the mean of probability amplitudes becomes (N-1/2(3N/4) – N-1/2(N/4))/N =
(1/2)N-1/2.
When the inversion about mean is practiced, the probability amplitudes of data of R are
- (- N-1/2) + (1/2) N-1/2×2 = 2N-1/2,
and the probability amplitude of data of others are N-1/2 - (N-1/2 – (1/2)N-1/2) ×2 = 0.
Therefore, the sum of square of probability amplitude is (2N-1/2)2 (1/4)N + 02(3/4)N = 1
+ 0 = 1.
For n = 4, 6 or 8, the times of usual Grover iterations are about Tbest ≈ (π/4)(2n/m)1/2.
For over n = 8, it is assumed that above mention is true.

6. Summary

Only RAM is used, and the times of Grover iterations are about (π/4)(2n/m)1/2 [n is a
number of query qubits, and m is a number of marked terms.]. This method is simple
and powerful.
I will apply this method for other problems.

Quantum Algorithm for Knapsack Problem by Usual Grover Iteration 29

References

[1] Takeuchi, S., 2005, Ryoshi Konpyuta (Quantum Computer), Kodansha, Tokyo,

Japan [in Japanese].
[2] Fujimura, T., 2010, “Quantum algorithm for knapsack problem,” Glob. J. Pure

Appl. Math., 6, 263-266.
[3] Johnston, E. R., Harrigan, N., and Gimeno-Segovia, M., 2019, Programming

Quantum Computers, O’Reilly, ISBN 978-1-492-03968-6.
[4] Grover, L. K., 1996, “A fast quantum mechanical algorithm for database search,”

Proc. 28th Annu. ACM Symp. Theory of Computing, pp.212-219.
[5] Grover, L. K., 1998, “A framework for fast quantum mechanical algorithms,”

Proc. 30th Annu. ACM Symp. Theory of Computing, pp.53-62.
[6] Miyano, K., and Furusawa, A., 2008, Ryoshi Konpyuta Nyumon (An Introduction

to Quantum Computation), Nipponhyoronsha, Tokyo, Japan [in Japanese].

