Global Journal of Pure and Applied Mathematics.

ISSN 0973-1768 Volume 19, Number 1 (2023), pp. 23-29
© Research India Publications
http://www.ripublication.com/gjpam.htm

Quantum Algorithm for Knapsack Problem by Usual
Grover Iteration with Z-Axis-Rotation (180 degrees)
on QCEngine

Toru Fujimura

Art and Physical Education area security office,
University of Tsukuba, Ibaraki-branch, Rising Sun Security Service Co., Ltd.,
1-1-1, Tennodai, Tsukuba, lbaraki 305-8577, Japan

Abstract

A quantum algorithm for the knapsack problem by the usual Grover iteration with
z-axis- rotation (180 degrees) on the QCEngine, and its example are reported. In
this method, there is no using QRAM, but only RAM is used. The times of
iterations are about (m/4)(2"/m)"?, where n is a number of qubits, and m is a
number of marked terms. This method is simple and powerful.

Keywords: Quantum algorithm, knapsack problem, usual Grover iteration, z-
axis-rotation (180 degrees), QCEngine, RAM.

AMS subject classification: Primary 81-08; Secondary 81-10, 68Q12.

1. Introduction

The knapsack problem was discussed by Takeuchi for the complexity. [1] The quantum
algorithm for the knapsack problem was reported by Fujimura with the usual Grover
method. [2] In this time, [used the QCEngine (Quantum Computer Simulator [3]) with
RAM for this problem. This method is simple and powerful.

Therefore, because the quantum algorithm for the knapsack problem is examined by
the usual Grover iteration with z-axis-rotation (180 degrees) on the QCEngine, its result
is reported.

24 Toru Fujimura

2. Knapsack Problem

As for n pieces of different weight luggage, the knapsack problem requests the best
combination of the luggage packed into the knapsack that a weight & is assumed to be
an upper bound. [1, 2]

When weights of the n pieces of luggage are assumed x1, x2, ... , X», and coefficients in
which 0 or 1 are taken are mi, mo, ... , m,, a sum of weights becomes mixi; + max2 + ...
+ MpXn.

It can be said from the above-mentioned fact the knapsack problem is a problem of
requesting the best combination of 0 and 1 of m1, ma, ... , m, in the upper bound weight

k.[2]

3. Quantum Algorithm

It is assumed that n is number of data qubits (= number of luggage), and j is number of
weight qubits that included the sum of weights.

First of all, query quantum registers (= query registers) |x» [1 <i<n.iand n are integers.
n is a number of luggage.] and weight quantum registers (= weight registers) wp [1 <j
<t.j and t are integers. ¢ is a necessary number for the sum of weight.] are prepared.

Step 1: The weight data [m, : p =1 — n. p is an integer.] are introduced to RAM
[3].

Step 2: Each qubit of |x;> and |w;» 1s set |0>.

Step 3: The Hadamard gate |H| [1-6] acts on each qubit of |xp. It changes them for
entangled states.

Step4: For |xp, RAM [i - 1] [RAM has weight data of 0 — (n - 1). They are m; —
my.] 1s incremented in [wp. In a function, F' = %; -1 - , m; x; 1S computed,
where m; is weight. This operation makes entangled data base.

Step 5: For [wp, the flip [~ marked term 1 : marked term 1 is £.] is done.

Step 6: The uncompute is done.
Step 7: For [x», the Grover iteration is done.
Step 8: For [wp and |x», the probes are done.

Step9: Step 4 — 8 are returned by about (n/4)(2"/m)"? times [3] [m is number of
marked term 1.].

Step 10: For |wp and |x», the reads are done.

The read of |wp i1s 0, and the read of |x» is marked term 2 [= answer : number of
combination of necessary luggage].

4. Example of Numerical Computation
It is assumed that 8 (= n) pieces of luggage of weight are m; = 13kg, m» = 8kg, m3 =

Quantum Algorithm for Knapsack Problem by Usual Grover Iteration 25

3kg, m4 = 6kg, ms = 15kg, me = 2kg, m7 = 4kg, mg = 5kg, and the upper bound of the
weight of the knapsack is & = 52kg. Furthermore, it is assumed that the marked term 1
= 52 (= k), the marked term 2 = 191 (= answer), 1 = 6 (2° — 1 = 63. Because, total sum
is £, =1, my=56.), and Grover iterations = 13 [Thest = (0/4)(2"/m)"? = (3.14/4)(2%/1)'?
~ 13], theta = 180 degrees by z-axis, and query register qubits n = 8.

An example of program on the QCEngine is the following.
10 var a=[13,8,3,6,15,2,4,5];

20 var query_qubits = &;

30 var weight_qubits = 6;

40 gc.reset(query qubits + weight qubits);

50 var query = qint.new(query_qubits, 'query');
60 var weight = qint.new(weight qubits, 'weight');
70 qc.label('set q");

80 query.write(0);

90 query.hadamard();

100 gc.label(" ");

110 gc.label('set w');

120 weight.write(0);

130 gc.print('RAM before increment: +a+"\n');
140 var theta = 180; // Rotation by z-axis (degrees)
150 var marked term2 = 191;

160 var query191 = 191; // one of query

170 var marked terml = 52;

180 var weight0 = 0; // one of weight

190 var number of iterations = 13;

200 for (var 1= 0; 1 <number of iterations; ++1)
210 {

220 gc.label('increment');

230 weight.add(a[0],query.bits(0x1));

240 weight.add(a[1],query.bits(0x2));

250 weight.add(a[2],query.bits(0x4));

260 weight.add(a[3],query.bits(0x8));

270 weight.add(a[4],query.bits(0x10));

280 weight.add(a[5],query.bits(0x20));

290 weight.add(a[6],query.bits(0x40));

300 weight.add(a[7],query.bits(0x80));

310 gc.label('flip");

320 weight.not(~marked terml);

26

330 weight.cphase(theta);

340 weight.not(~marked terml1);

350 qgc.label('uncompute');

360 weight.subtract(a[7],query.bits(0x80));
370 weight.subtract(a[6],query.bits(0x40));
380 weight.subtract(a[5],query.bits(0x20));
390 weight.subtract(a[4],query.bits(0x10));
400 weight.subtract(a[3],query.bits(0x8));
410 weight.subtract(a[2],query.bits(0x4));
420 weight.subtract(a[1],query.bits(0x2));
430 weight.subtract(a[0],query.bits(0x1));
440 qgc.label('Grover");

450 query.hadamard();

460 query.not();

470 query.cphase(theta);

480 query.not();

490 query.hadamard();

500 var prob191 = 0;

510 prob191 += query.peekProbability(query191);
520 // Print output query-Probs

530 qc.print(

540 ' Prob_queryl91: '+ prob191

550);

560 var prob256 = 0;

570 prob256 += weight.peekProbability(weight0);
580 // Print output weight-Probs

590 qc.print(' Prob_weight256: ' + prob256
600);

610 }

620 //read

630 gc.label('Rw");

640 var b1 = weight.read();

650 qc.label('Rq");

660 var b2 = query.read();

670 // Print output result

680 qc.print(' Read weight ="'+ bl +

690 ' +' Read query ="'+ b2 +

Toru Fujimura

Quantum Algorithm for Knapsack Problem by Usual Grover Iteration 27

700'.");
710 //end

When this program is copied on Programming Quantum Computers https: //orelly-qc.
github. i0/# [free on-line quantum computation simulator QCEngine] [3], you can run
it. [Caution!: Please delate the line numbers.]

A result of this program is the following.

The probe value of [wp» =0:1.0000 [T=1— 13].

The probe value of [x» =191 : T=1;0.0348, T=2; 0.0946, T=3;0.1797, T=4; 0.2847,
T'=5;0.4032,T=06;0.5276, T="7,0.6503, T=8,0.7637, T=9; 0.8607, T=10; 0.9352,
T=11,0.9826, T=12;0.9999 (= 1), T=13; 0.9862.

The read of [wp = 0.

The read of |x» = 191.

Finished in 0.522 seconds.

Therefore, the best times of Grover iterations are 12 for n = 8.

For n = 6:

RAM =13, 8, 3, 6, 15, 2], Toest = (0/4)(2"/m)"? = (3.14/4)(2%/1)? = 6.

The marked term 1 = 20 (= k), the marked term 2 = 52 (= answer).

The probe value of jwp =0:1.0000 [T=1 — 6].

The probe value of [x» =52 : T=1;0.1348, T'=2; 0.3439, T=3;0.5914, T =4, 0.8164,
T=5;0.9635, T=6; 0.9966.

The read of jwp = 0.

The read of |x» = 52.

Therefore, the best times of Grover iterations are 6 for n = 6.

Forn=4:

RAM = [4, 3, 5, 1], Tvest = (n/4)(2"/m)"? = (3.14/4)(2%/1)"? = 3.

The marked term 1 = 10 (= k), the marked term 2 = 13 (= answer).

The probe value of jwp =0:1.0000 [T=1 — 3].

The probe value of [xp =13 : T=1;0.4727, T=2; 0.9084, T =3; 0.9613.
The read of wp = 0.

The read of |xp = 13.

Therefore, the best times of Grover iterations are 3 for n = 4.

Forn =2:
RAM =[2, 1], Toest = (n/4)(2"/m)'? = (3.14/4)(2°/1)?> = 2.
The marked term 1 = 2 (= k), the marked term 2 = 1 (= answer).

28 Toru Fujimura

The probe value of jwp =0:1.0000 [T=1 — 2].

The probe value of |xp» =1 : T=1; 1.0000, 7 =2; 0.2500.
The read of jwp =0. [T =1].

The read of |xp» = 1. [T=1].

Therefore, the best time of Grover iteration is 1 for n = 2.

Forn=1:

RAM = [1], Toest = (0/4)(2"/m)"? = (3.14/4)(21/1)? = 1.

The marked term 1 =1 (= k), the marked term 2 = 1 (= answer).
The probe value of [wp» =0:1.0000 [T =1].

The probe value of [x» =1 : T=1; 0.5000.

The read of jwp = 0.

The read of |x» =1 or 0.

Therefore, the best times of Grover iterations are 2 or 1 for n = 1.

5. Discussion

For n = 1, this problem is the section of one in two data [1 or 0]. Therefore, it is
inevitable.

For n = 2, this problem is the section of one in four data 3, 2, 1 or 0]. In usual Grover
method, one time mechanism is the following.

It is assumed that the number of data is N, the value of data of N/4 is R, and values of
data of 3N/4 are the others. When the probability amplitudes of data of R are marked a
minus, the mean of probability amplitudes becomes (N'2(3N/4) — N'VX(N/4))/N =
(12)N12,

When the inversion about mean is practiced, the probability amplitudes of data of R are
(- N2+ (172) N'2x2 = 2N 12,

and the probability amplitude of data of others are N2 - (N2~ (1/2)N'"?) x2 = 0.
Therefore, the sum of square of probability amplitude is (2N"?)? (1/4)N+ 0*(3/4)N = 1
+0=1.

For n =4, 6 or 8, the times of usual Grover iterations are about Thest = (1/4)(2"/m)">.
For over n = 8, it is assumed that above mention is true.

6. Summary

Only RAM is used, and the times of Grover iterations are about (n/4)(2"/m)"? [n is a
number of query qubits, and m is a number of marked terms.]. This method is simple
and powerful.

I will apply this method for other problems.

Quantum Algorithm for Knapsack Problem by Usual Grover Iteration 29

References

(1]

(2]

(3]

(4]

(3]

(6]

Takeuchi, S., 2005, Ryoshi Konpyuta (Quantum Computer), Kodansha, Tokyo,
Japan [in Japanese].

Fujimura, T., 2010, “Quantum algorithm for knapsack problem,” Glob. J. Pure
Appl. Math., 6, 263-266.

Johnston, E. R., Harrigan, N., and Gimeno-Segovia, M., 2019, Programming
Quantum Computers, O’Reilly, ISBN 978-1-492-03968-6.

Grover, L. K., 1996, “A fast quantum mechanical algorithm for database search,”
Proc. 28th Annu. ACM Symp. Theory of Computing, pp.212-219.

Grover, L. K., 1998, “A framework for fast quantum mechanical algorithms,”
Proc. 30th Annu. ACM Symp. Theory of Computing, pp.53-62.

Miyano, K., and Furusawa, A., 2008, Ryoshi Konpyuta Nyumon (An Introduction
to Quantum Computation), Nipponhyoronsha, Tokyo, Japan [in Japanese].

