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Abstract

In this paper, we show that mild consistency conditions on a prospective
family of fidis suffice to guarantee the existence of a random measure having
those fidis.
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Introduction

The idea of a random variable having values in a set of measurements is a logical
extension of the concept of a point process, which may be considered as a random
integer-valued measure (Vere-Jones and Daley,1972). Traditionally, these measures
existed in Euclidean spaces, but random measurements on relatively compact spaces
have lately been studied in more detail. Expository accounts of the topic have been
written by both Kallenberg and Jagers (1974). In this section we will focus on two
features of this hypothesis - the presence as well as random Radon measures weak
convergence; our approaches will differ from those of Jagers and Kallenberg in that we
will emphasize the linear functional characteristics of Radon measures.

Probabilities on spaces of measures are more convenient since we'll focus on the
distributional features of random measurements. Therefore, the following is a
description of a “random Radon” measure.
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Suppose S be a “Hausdorff space” that is locally compact. Following Kallenberg &
Jagers, we suppose S is second countable, that is its topology has a countable basis.
This is the same as saying that S indicates a Polish space of locally compact (Bauer
1972, p. 223). Suppose c¢* be the positive cone of C, which represents the continuous-
time functions space with compact S support. On S, the Radon measure is just a non-
negative linear function of the coefficients of the function on C. To explain the notation,
we use the symbol x to represent the total space occupied by all Radon measurements.
Any x € may be expressed uniquely as an integral in terms of a Borel measurement that
is inner regular in terms of the compact subset of S; the Borel measure can be written
as x(*). [Other representation measures are feasible, but they all coincide with x(+) for
the class Bo of moderately compact sets of Borel. These are just the sets of Borel that
we will have to consider.] Equip X within its ambiguous topology is the poorest
topology that allows all of the mapping’s x—x(g) to be continual for geC. A random
measure is a “Borel probability” measure on the variable X. The space of all these
random measurements would be represented with (.

Jagers (1974, p.198) has revealed that each Pe Q is tight. In reality, as S and X are both
Polish [Bauer (1972, p. 224, 241) and Bourbaki (1952, Chap. Il1, $2)), therefore any
“Borel probability” on X should be tight (Billingsley 1968, pp.10). It is a result of the
S topology’s 2" countability. Second countability means the Borel o-algebra of X is
created using mappings x— x(g) (A), here A-ranges across the class Bo of a reasonably
compact subset of S, for future reference.

Random measures

Let us examine the properties of a family {P'} known to constitute the set of fidis of a
random measure P. If I, < I care both finite subsets of ¢* write,

Tr,r, for the canonical projection of [0,00)!'1 onto (0, o0)''2. Then from the relation

Trz = Tr11"2° Tr1r2
we get one limitation on the fidis:
(i) if [, = I, then P'2 = P

There's also a limitation coming from the Radon measure's positive linear functional
aspect. If x€ X'then g1, g2 € C*

Therefore,

x(g1+92)=x(g1)*+X(92)
So

(ii) if I={01,92,01+g2}
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Here g1, g2 € ¢* then is concentrated on the closed subset of [0,00)":

{¥€[0,0)": W(gut g2) = W(qu) + (92)}.

We'll show that these two criteria completely define a random measure's fidis. The
proof's concept is straightforward, however, a countability issue complicates matters
significantly. To solve this issue, we must make use of C’s separability property.

The topology of uniform convergence on S has a counted base; hence, there is a counted
subsets of C within the topology that is dense. This subset of rational numbers may be
assumed to form a vector lattice across the domain of rational values without losing any
generality. Suppose D is its positive cone as well as Y is the set of [0, o)-valued
functions on D that meet the following criterion: y(gi1+g2)=y(g1)+y(g2) for every pair
g1, 02 € D. For g € D, equip y with the topology to make all of mapping y —(Q)
continuously.

Every “randon measure” on S may be utilized to describe a y member. This relationship
may be proved to be a one-to-one map of X into Y, establishing a homeomorphism in
between the 2 spaces, using basic Riesz space procedures (Bourbaki (1952, Chap. II,
$2). For most purposes, X and Y may be considered the same topological space. In
specific, The Borel probabilities on X and Y have a one-to-one correlation, therefore
constructing a Borel probability on Y suffices to generate a random measure. Since the
cylinder sets of the type create the topology of Y,

{y € Y1 (1(91)1(92),....... y(gw)) € H},

where ' = {01, g2..... gk) € D and H is an open subset of [0,00)¥, a routine argument can
be used to prove that Borel probabilities on Y are uniquely specified by the measures of
such cylinder sets. It follows that a random measure (= a Borel probability on X) is
uniquely calculated by its fidis P, where | range over the finite subsets of D.

Theorem 1. Suppose a Borel probability PT on [0,00)¥ is given for each finite subset T
of C*. These are the fidis of a uniquely determined random measure if conditions (i) &
(ii) above are satisfied.

Proof. Only the sufficiency needs to be considered. Applying a version of the
Kolmogorov extension theorem (Neveu (1965, p. 82)), we deduce from condition (i)
(restricted to those I' € D) that there is a probability measure Po lies between [0,00)P
with the needed finite-dimensional distributions PT, for I' € D. This Po is defined on
the cylinder g-algebra, which corresponds with the Borel o-algebra [0,00)P as D is
countable.

Now notice that Y is a topological subspace of [0,00)P. Indeed, it is a closed subset of
that space, because it may be represented as the closed cylinder subsets intersection of
the form

{¥ €[0,0)P : “ W(grt+ g2)=¥(g1)+¥(92)} .
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where (g1, g2) ranges over all pairs of D functions. Condition (ii) shows that all of these
cylinder sets have a Po measure of one; so Y also has Po measure one. Transferring PO
from Y to the homeomorphic space X yields the necessary random measure P.

For T € D, this P contains the desired fidis PT; but it remains to prove that this also
holds for any I' € C* Suppose then that I, € C*. Carry out the preceding argument
again, but this time using the countable dense subset D' of C* which is obtained from
the augmented set DU I,. This procedure generates another random measure P’ having
the desired fidis for each T' € D'. In specific, P & P’ has the same fidis for each " € D;
therefore P = P',and P.Ty' = P’ T5,' = P as needed.

Prohorov (1960, 1961) and Le Cam (1961) provided similar evidence for the presence
of random measurements on Hausdorff spaces, general compact, a-compact as well as
locally compact spaces, respectively

Starting with a distinct form of fidis, random measurements may be generated. Recall
the mapping x— x (4). where A4 runs via class Bo produce the Borel g-algebra on .X.
Therefore, It is simple to show that the sets fidis of a random measure P is unique.

Pay, Payyooeee Pa ()-“Pix € X ;(x(A1), (X(A2).......(x(An)) €}

here {4,4:>...4,}” is any finite Bo subset: On the sets fidis, Jagers (1974, p.193) has
presented consistency criteria that guarantee the presence of the random measure, Other
writers who have implemented this method contain Jirina (1964,1966, 1972) and Harris
(1963, 1968). They use internal regularity on a semi-compact pavement to transform
additive measures of random finitely into random countably, while Kallenberg (1974)
presented a different kind of existence proof on the basis of some early results about
weak convergence.

The sets form of the presence theorem has the benefit of being readily transformed into
a point process existence theorem. Our Theorem 1 might also be used for this objective,
although the adjustments required will add to the complexity. The term “random
measure” refers to a method of determining anything If P is focused on the closed subset
X; of X+, then itis a point process. Because X is a calculable intersect of closed cylinder
subset of X, the requirements to assure P(X;)= 1 might be written w.r.t fidis, PT;
however, in reality, this may be quite messy. However, Theorem 1 isn't completely
useless when it comes to dealing with point processes.

Example 1. Assume A that the Radon measure on S is random but fixed. 4 Poisson
process having intensity A indicates point process that has the following property: The
number of points that fall into each of the BO sets 47, A41,......... An represents pairwise
distinct BO sets, and the means of these sets are independent Poisson variates. We
demonstrate the existence of such a process.

It follows that P would have such fidis, for every set of simple functions f, f>..........fm
of the type,

fi= k=114, withall a3 =0,



Existence of Random Measures 5

The joint C.F. (“characteristic function”) of the x(f1), x(f2),........ x(fm) variates can be
represented as

[ explitix(fi)+...+ itmx(fm)\P(dx)=exp [ [-1+exp(itifi+... +itmfn)dA (1)

It is simple to verify it is a true distribution of C.F lies between [0, o)™ Now using such
basic functions to approximate members of C* we may derive the joint C.F. of the x(g1),
x(g2),... x(gm)variates, here I = {q, g,..., gn,} S C*, would be

®(91.02,...9m;t1 L., tm) = exp [ [-1+exp(itigi+.... +itngm)]dA. (2)

and
®(91.02, 91+ 92:4,1,-1) =1,

The related measures on [0,c00)™ fulfill Theorem 1's consistency criteria; consequently,
a random measure with fidis defined by exists (2). Working backward, we may see that
(1) fulfill for every simple function f, f,...,fm, indicating that the random measure is
actually the needed Poisson process.
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