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Abstract 

 

In this paper, we show that mild consistency conditions on a prospective 

family of fidis suffice to guarantee the existence of a random measure having 

those fidis. 
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Introduction 

The idea of a random variable having values in a set of measurements is a logical 

extension of the concept of a point process, which may be considered as a random 

integer-valued measure (Vere-Jones and Daley,1972). Traditionally, these measures 

existed in Euclidean spaces, but random measurements on relatively compact spaces 

have lately been studied in more detail. Expository accounts of the topic have been 

written by both Kallenberg and Jagers (1974). In this section we will focus on two 

features of this hypothesis - the presence as well as random Radon measures weak 

convergence; our approaches will differ from those of Jagers and Kallenberg in that we 

will emphasize the linear functional characteristics of Radon measures. 

Probabilities on spaces of measures are more convenient since we'll focus on the 

distributional features of random measurements. Therefore, the following is a 

description of a “random Radon” measure. 
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Suppose S be a “Hausdorff space” that is locally compact. Following Kallenberg & 

Jagers, we suppose S is second countable, that is its topology has a countable basis. 

This is the same as saying that S indicates a Polish space of locally compact (Bauer 

1972, p. 223). Suppose c* be the positive cone of C, which represents the continuous-

time functions space with compact S support. On S, the Radon measure is just a non-

negative linear function of the coefficients of the function on C. To explain the notation, 

we use the symbol x to represent the total space occupied by all Radon measurements. 

Any x ∈ may be expressed uniquely as an integral in terms of a Borel measurement that 

is inner regular in terms of the compact subset of S; the Borel measure can be written 

as x(∙). [Other representation measures are feasible, but they all coincide with x(∙) for 

the class B0 of moderately compact sets of Borel. These are just the sets of Borel that 

we will have to consider.] Equip X within its ambiguous topology is the poorest 

topology that allows all of the mapping’s x→x(g) to be continual for g∈C. A random 

measure is a “Borel probability” measure on the variable X. The space of all these 

random measurements would be represented with Ω. 

Jagers (1974, p.198) has revealed that each P∈ Ω is tight. In reality, as S and X are both 

Polish [Bauer (1972, p. 224, 241) and Bourbaki (1952, Chap. III, $2)), therefore any 

“Borel probability” on X should be tight (Billingsley 1968, pp.10). It is a result of the 

S topology’s 2nd countability. Second countability means the Borel 𝜎-algebra of X is 

created using mappings x→ x(g) (A), here A-ranges across the class B0 of a reasonably 

compact subset of S, for future reference. 

 

 

Random measures 

Let us examine the properties of a family {P1} known to constitute the set of fidis of a 

random measure P. If Γ2 ⊆ Γ1 care both finite subsets of c* write, 

TΓ1Γ2
, for the canonical projection of [0,∞)Γ1 onto (0, ∞)Γ2. Then from the relation 

 

TΓ2
= TΓ1Γ2° TΓ1Γ2

 

 

we get one limitation on the fidis: 

 

(i) if Γ2 = Γ1, then 𝑃Γ2 = 𝑃Γ1𝑇Γ1Γ2

−1  

 

There's also a limitation coming from the Radon measure's positive linear functional 

aspect. If x∈ X then g1, g2 ∈ C* 

 

Therefore, 

 

𝑥(g1+g2)=𝑥(g1)+x(g2) 

 

So 

 

(ii) if Γ={g1,g2,g1+g2} 
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Here g1, g2 ∈ c* then is concentrated on the closed subset of [0,∞)Γ: 

 

{Ψ 𝜖[0, ∞)Γ : Ψ(g1+ g2) = Ψ(g1) + (g2)}. 

 

We'll show that these two criteria completely define a random measure's fidis. The 

proof's concept is straightforward, however, a countability issue complicates matters 

significantly. To solve this issue, we must make use of C’s separability property. 

The topology of uniform convergence on S has a counted base; hence, there is a counted 

subsets of C within the topology that is dense. This subset of rational numbers may be 

assumed to form a vector lattice across the domain of rational values without losing any 

generality. Suppose D is its positive cone as well as Y is the set of [0, ∞)-valued 

functions on D that meet the following criterion: y(g1+g2)=y(g1)+y(g2) for every pair 

g1, g2 ∈ D. For g ∈ D, equip 𝛾 with the topology to make all of mapping y →y(g) 

continuously. 

Every “randon measure” on S may be utilized to describe a 𝛾 member. This relationship 

may be proved to be a one-to-one map of X into Y, establishing a homeomorphism in 

between the 2 spaces, using basic Riesz space procedures (Bourbaki (1952, Chap. II, 

$2). For most purposes, X and Y may be considered the same topological space. In 

specific, The Borel probabilities on X and Y have a one-to-one correlation, therefore 

constructing a Borel probability on Y suffices to generate a random measure. Since the 

cylinder sets of the type create the topology of Y, 

 

{y ∈ Y : (y(g1),y(g2),…… y(gk)) ∈ H}, 

 

where Γ = {g1, g2..... gk) ⊆ D and H is an open subset of [0,∞)k, a routine argument can 

be used to prove that Borel probabilities on Y are uniquely specified by the measures of 

such cylinder sets. It follows that a random measure (= a Borel probability on X) is 

uniquely calculated by its fidis 𝑃Γ, where I range over the finite subsets of D. 

 

Theorem 1. Suppose a Borel probability 𝑃Γ on [0,∞)k is given for each finite subset Γ 

of C*. These are the fidis of a uniquely determined random measure if conditions (i) & 

(ii) above are satisfied. 

 

Proof. Only the sufficiency needs to be considered. Applying a version of the 

Kolmogorov extension theorem (Neveu (1965, p. 82)), we deduce from condition (i) 

(restricted to those Γ ⊆ D) that there is a probability measure P0 lies between [0,∞)D 

with the needed finite-dimensional distributions 𝑃Γ, for Γ ⊆ D. This P0 is defined on 

the cylinder 𝜎-algebra, which corresponds with the Borel 𝜎-algebra [0,∞)D as D is 

countable. 

Now notice that Y is a topological subspace of [0,∞)D. Indeed, it is a closed subset of 

that space, because it may be represented as the closed cylinder subsets intersection of 

the form  

 

{𝛹 𝜖[0, ∞)D : “ Ψ(g1+ g2)=Ψ(g1)+Ψ(g2)}”. 
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where (g1, g2) ranges over all pairs of D functions. Condition (ii) shows that all of these 

cylinder sets have a P0 measure of one; so Y also has P0 measure one. Transferring P0 

from Y to the homeomorphic space X yields the necessary random measure P. 

For Γ ⊆ D, this P contains the desired fidis 𝑃Γ; but it remains to prove that this also 

holds for any Γ ⊆ C*. Suppose then that Γ0 ⊆ C*. Carry out the preceding argument 

again, but this time using the countable dense subset D' of C* which is obtained from 

the augmented set D∪ Γ0. This procedure generates another random measure P' having 

the desired fidis for each Γ ⊆ D'. In specific, P & P' has the same fidis for each Γ ⊆ D; 

therefore P = P', and P.𝑇𝛤0

−1 = P'. 𝑇𝛤0

−1 = 𝑃𝛤0 as needed. 

Prohorov (1960, 1961) and Le Cam (1961) provided similar evidence for the presence 

of random measurements on Hausdorff spaces, general compact, 𝜎-compact as well as 

locally compact spaces, respectively 

Starting with a distinct form of fidis, random measurements may be generated. Recall 

the mapping x→ x (A). where A runs via class B0 produce the Borel 𝜎-algebra on X. 

Therefore, It is simple to show that the sets fidis of a random measure P is unique. 

 

𝑃𝐴1
, 𝑃𝐴2

,...... 𝑃𝐴𝑛
(∙)-“P{x ∈ X ;(x(A1), (x(A2).......(x(An)) ∈∙} 

 

here {A1,A2,...An,}” is any finite Bo subset: On the sets fidis, Jagers (1974, p.193) has 

presented consistency criteria that guarantee the presence of the random measure, Other 

writers who have implemented this method contain Jirina (1964,1966, 1972) and Harris 

(1963, 1968). They use internal regularity on a semi-compact pavement to transform 

additive measures of random finitely into random countably, while Kallenberg (1974) 

presented a different kind of existence proof on the basis of some early results about 

weak convergence. 

The sets form of the presence theorem has the benefit of being readily transformed into 

a point process existence theorem. Our Theorem 1 might also be used for this objective, 

although the adjustments required will add to the complexity. The term “random 

measure” refers to a method of determining anything If P is focused on the closed subset 

X₁ of X∙, then it is a point process. Because X1 is a calculable intersect of closed cylinder 

subset of X, the requirements to assure P(X1)= 1 might be written w.r.t fidis, PΓ; 

however, in reality, this may be quite messy. However, Theorem 1 isn't completely 

useless when it comes to dealing with point processes. 

 

Example 1. Assume 𝜆 that the Radon measure on S is random but fixed. A Poisson 

process having intensity 𝜆 indicates point process that has the following property: The 

number of points that fall into each of the B0 sets A1, A1,......... An represents pairwise 

distinct B0 sets, and the means of these sets are independent Poisson variates. We 

demonstrate the existence of such a process. 

It follows that P would have such fidis, for every set of simple functions f1, f2..........fm 

of the type, 

 
f1 = ∑ 𝑎𝑗𝑘1𝐴𝑛

𝑛
𝑘=1 , with all 𝑎𝑗𝑘 ≥ 0, 
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The joint C.F. (“characteristic function”) of the x(f1), x(f2),........ x(fm) variates can be 

represented as 

 

∫ exp[it1x(f1)+...+ itmx(fm)]P(dx)=exp∫ [-1+exp(it1f1+...+itmfm)d𝜆 (1) 

 

It is simple to verify it is a true distribution of C.F lies between [0, ∞)m Now using such 

basic functions to approximate members of C* we may derive the joint C.F. of the x(g1), 

x(g2),... x(gm)variates, here Γ = {gl, gl,..., gm,} ⊆ C*, would be 

 

Φ(g1,g2,......,gm,;t1,t2,....., tm) = exp ∫ [-1+exp(it1g1+....+itmgm)]d𝜆. (2) 

 

Again these represent genuine C.F.'s of distributions on [0, ∞)m. Since 

 

Φ(g1,g2,......,gm,;t1,t2,....., tm-1,0) = Φ(g1,g2,......,gm-1,;t1,t2,....., tm-1,) 
 

and 

 

Φ(g1,g2, g1,+ g2;t,t,-t) ≡1, 

 

The related measures on [0,∞)m fulfill Theorem 1's consistency criteria; consequently, 

a random measure with fidis defined by exists (2). Working backward, we may see that 

(1) fulfill for every simple function f1, f2,...,fm, indicating that the random measure is 

actually the needed Poisson process. 
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