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Abstract 

This paper describes the unknown parameter, reliability and hazard function of 

the Weibull distribution-based on failure censored data. The scale parameter of 

the Weibull distribution is considered with a Natural Conjugate Gamma Prior 

under the shape parameter is known. The Weibull parameter, reliability and 

hazard function estimators are derived based on the Precautionary loss Func-

tion (PLF) function. Lindley’s approximation(L-approx) is used to obtain Ap-

proximate Bayes estimators hazard function estimator. The result from Bayes-

ian method is used to compare with Bayes and Maximum likelihood estimate 

(MLE) methods. The simulation shows that the results from Bayes is Robust 

for Approximate Bayesian method than MLE in terms of mean square error 

(MSE).  

Keywords: Precautionary loss function, Maximum likelihood estimation, 

Bayesian estimation, Reliability, Hazard Rate, Lindley approximation(L-Ap-

prox), Weibull distribution. 

 

INTRODUCTION  

For Bayesian inference, a frequent choice of loss function is a Squared Error loss func-

tion. However, Bayesian estimation under this loss function is not frequently dis-

cussed, perhaps, because the estimators under symmetric and asymmetric loss function 

involve integral expressions, which are not analytically solvable. Therefore, one has to 

use the numerical techniques or certain approximation methods for the solution.  One 

of the most suitable loss function Precautionary loss functions, which is asymmetrical. 

Lindley’s approximation(L-Approx) is the method suitable for solving such problems. 

There has been a significant amount of research done in statistical inference of several 

distributions. 
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The Weibull distribution was introduced by the Swedish physicist Weibull [1959], it 

has been used in many different fields like material science, engineering, physics, 

chemistry, meteorology, medicine, pharmacy, economics and business, quality con-

trol, biology, geology and geography. The two parameters Weibull distribution is one 

of the most widely used lifetime models in reliability and survival analysis because of 

its various shapes of the probability density function(pdf) and its convenient represen-

tation of the Reliability and Hazard Function. The estimation of its parameters has been 

discussed by a number of authors.[Zakerzadeh and Jafari [2014], Doostparast [2006], 

Modarress, Kaminskiy and Krivtsov [2006], Sun and Berger[1998] and Kundu and 

Joarder [2006] and Kundu [2007]]. The properties of the Weibull distribution are best 

described in terms of the hazard function. This tells us how likely something is to fail 

given that it has survived so far. Weibull distribution has also been extensively used in 

life testing and reliability probability problems. Estimation and properties of the 

Weibull distribution is studied by many author’s[ Kao (1959)]. 

The Probability density function, Reliability and Hazard rate functions of Weibull dis-

tribution are given respectively as 

𝑓(𝑥) = 𝑝𝜃𝑥(𝑝−1) exp(− 𝜃 𝑥𝑃)   ;   𝑥, 𝜃, 𝑝 > 0           (1) 

𝑅(𝑡) = 𝑒𝑥𝑝(− 𝜃𝑡𝑝)        ;                   𝑡 > 0            (2) 

𝐻(𝑡) = 𝑝𝜃𝑡(𝑝−1)         ;              𝑡 > 0              (3) 

Where  ′𝜃′  is the scale and ‘p’ is shape parameters. 

The most widely used loss function in estimation problems is quadratic loss function 

given as 𝐿(𝜃, 𝜃) = 𝑘(𝜃 − 𝜃)2 where 𝜃  is the estimate of  𝜃,  the loss function is called 

quadratic weighed loss function if   k=1, we have  

𝐿(𝜃, 𝜃) = (𝜃 − 𝜃)2           (4) 

This loss function is symmetrical because it associates the equal importance to the 

losses due to overestimation and under estimation with equal magnitudes however in 

some estimation problems such an assumption may be inappropriate. Overestimation 

may be more serious than underestimation or Vice-versa Ferguson(1985). Canfield 

(1970), Basu and Ebrabimi(1991). Zellner (1986) Soliman (2000) derived and dis-

cussed the properties of varian’s (1975) asymmetric loss function for a number of dis-

tributions. 

Norstrom (1996) introduced an alternative asymmetric precautionary loss function and 

also presented a general class of precautionary loss functions with quadratic loss func-

tion as a special case. These loss function approach infinitely near the origin to prevent 

underestimation and thus giving a conservative estimators , especially when , low fail-

ure rates are being estimated. These estimators are very useful and simple asymmetric 

precautionary loss function is  

L(θ,̂ θ) =  
(θ̂−θ)

2

θ̂
               (5) 

In Bayesian Principle the unknown parameter θ which is treated as random variable 
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assumes a probability distribution known as a priori of θ denoted by g(θ). To start the 

estimation of parameters we have the prior information about the unknown parameter 

θ. Different types of prior are used like Noninformative Prior, Natural conjugate prior. 

To simplify the calculations, statisticians use natural conjugate priors. Usually there is 

a natural parameter family of distributions such that the posterior distributions also 

belong to the same family. These priors make the computations much simpler.          

The paper deals with the methods to obtain the approximate Bayes estimators of Haz-

ard Function of the Weibull distribution by using Lindley approximation technique for 

failure censored samples. A bivariate prior density for the parameters, Precautionary 

Loss function (PLF) is used to obtain the approximate Bayes Estimators.  

The Estimators  

Let 𝑥1, 𝑥2, … … … 𝑥𝑛 be the life times of ‘n’ items that are put on test for their lives, 

follow a weibull distribution with density given in equation (1). The failure times are 

recorded as they occur until a fixed number ‘r’ of times failed. Let =
(𝑥(1), 𝑥(2), … … … … … , 𝑥(𝑛)) , where 𝑥(𝑖) is the life time of the ith  item . Since remain-

ing (n-r) items yet not failed thus have life times greater than  𝑥(𝑟). 

The likelihood function can be written as 

𝐿(𝑥|𝜃, 𝑝) =
𝑛!

(𝑛−𝑟)!
(pθ)𝑟 ∏ 𝑥𝑖

(𝑝−1)
𝑟

𝑖=1
exp(−δθ),       (6) 

where 

𝛿 = ∑ 𝑥𝑖
𝑝

𝑟

𝑖=1

+ (𝑛 − 𝑟)𝑥𝑟
𝑝
 

The logarithm of the likelihood function is  

log 𝐿(𝑥|𝜃, 𝑝)   ∝   𝑟 𝑙𝑜𝑔 𝑝 + 𝑟 log  𝜃 + (𝑝 − 1) ∑ log 𝑥𝑖 − δ𝜃,𝑟
𝑖=1          (7) 

assuming that ‘p’ is known, the maximum likelihood estimator 𝜃𝑀𝐿of 𝜃  can be obtain 

by using equation (6) as 

𝜃𝑀𝐿 = 𝑟/𝛿        (8) 

If both the parameters p and 𝜃 are unknown their MLE’s �̂�𝑀𝐿and 𝜃𝑀𝐿 can be obtained 

by solving the following equation  

𝛿

𝛿𝜃
log 𝐿 =  

𝑟

𝜃
− 𝛿 = 0  ,             (9) 

𝛿 log 𝐿

𝛿𝑃
=

𝑟

𝑃
+ ∑ log 𝑥𝑖 − 𝜃𝛿1

𝑟
𝑖=1 = 0,      (10) 

where 

𝛿1 = ∑ 𝑥𝑖
𝑃 log 𝑥𝑖 + (𝑛 − 𝑟)𝑥𝑟

𝑃 log 𝑥𝑟
𝑟

𝑖=1
 , eliminating 𝜃 between the two equations of 

(9-10) and simplifying we get 
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�̂�𝑀𝐿 =
𝑟

𝛿∗
         (11) 

Where 𝛿∗ = [
𝑟𝛿1

𝛿
− ∑ 𝑙𝑜𝑔𝑥𝑖

𝑟
𝑖=1 ] 

Equation (10) may be solved for Newton- Raphson or any suitable iterative Method 

and this value is substituted in equation (8) by replacing with 𝑝 get �̂� as 

𝜃𝑀𝐿 =

𝑟

�̂�𝑀𝐿
 + ∑ 𝑙𝑜𝑔𝑥𝑖

𝑟

𝑖=1

∑ 𝑥
𝑖

�̂�𝑀𝐿    𝑙𝑜𝑔𝑥𝑖 +(n−r)𝑥𝑟
�̂�𝑀𝐿  𝑙𝑜𝑔𝑥𝑟 

𝑟

𝑖=1

 ,          (12) 

The MLE’s of R(t) and H(t) are given respectively by equation (2) and (3) after replac-

ing 𝜃 and p by 𝜃𝑀𝐿 and   �̂�𝑀𝐿. 

Bayes Estimator of 𝜽 when shape Parameter ‘p’ is known. 

If p is known assume gamma prior 𝛾(𝛼, 𝛽) as cojugate prior for 𝜃 as 

𝑔(𝜃|𝑥) =
𝛽𝛼

Γ𝛼
(θ)(𝛼+1) exp(−βθ) ; (𝛼, 𝛽) > 0, 𝜃 > 0  ,     (13) 

The posterior distribution of  𝜃 using equation (2) and (12) we get  

ℎ(𝜃|𝑥) =
(𝛿+𝛽)𝑟+𝛼

Γ(𝑟+𝛼)
(θ)(𝑟+𝛼−1) exp(− θ(𝛿 + 𝛽)) ,           (14) 

Under General Precautionary Loss Function, the Bayes estimator 𝜃𝐵𝑃 of 𝜃 using (5) 

and (13) given by 

𝜃𝐵𝑃 = [
(𝑟+𝛼)(𝑟+𝛼+1)

(𝛿+𝛽)
]

1

2
         (15) 

Bayes Estimator of R(t)  

The posterior distribution of  𝑅 using equation (5) and (13), is given as 

ℎ(𝑅|𝑡) =
[  c (𝛿+𝛽)](𝑟+𝛼)

Γ(𝑟+𝛼)
(− log 𝑅)(𝑟+𝛼−1)𝑅(  c (𝛿+𝛽) − 1)𝑑𝑅;        (16) 

Where  𝑐 = 𝑡−𝑝 

The Bayes estimator of R(t) under precautionary loss function 

�̂�𝐵𝑃 = [1 +
2

(𝛿+𝛽)
]

(𝑟+𝛼)

 ;       (17) 

The Bayes Estimate of H(t)  

The posterior density at H(t) using equation (3) and (13), is given as 

ℎ(𝐻|𝑡) =
[(𝛿+𝛽)𝑐∗](𝑟+𝛼)

Γ(𝑟+𝛼)
  . 𝐻(𝑟+𝛼−1) exp(−𝑐∗H(𝛿 + 𝛽)) ;        (18) 

Where 𝑐∗
 = 𝑝𝑡(𝑝−1) 

The Bayes estimator of H(t) under precautionary loss function 
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�̂�𝐵𝑃 = [
(𝑟+𝛼)(𝑟+𝛼+1)

 𝑐∗(𝛿+𝛽)
]

1

2
  ;         (19) 

The Bayes estimators with 𝜽  and p unknown 

The joint prior density of 𝜃  and p is given by 

𝐺(𝜃|𝑝) = 𝑔1(𝜃|𝑝). 𝑔2(𝑝) 

𝐺(𝜃|𝑝) =
1

𝜆Γ𝜉
𝑝−𝜉θ(𝜉−1). exp [− (

𝜃

𝑝
+

𝑝

𝜆
)]  ; (𝜃, 𝑝, 𝜆, 𝜉) > 0,     (20) 

where  

𝑔1(𝜃|𝑝) = 
1

Γ𝜉
 𝑝−𝜉 θ(𝜉−1). exp [−

𝜃

𝑝
];         (21) 

And  

𝑔2(𝑝) =
1

𝜆
exp (−

𝑝

𝜆
)      ;         (22) 

The joint posterior density of 𝜃  and p is  

ℎ∗(𝜃, 𝑝|𝑥) =

1

𝜆Γ𝜉
𝑝−𝜆θ(𝜉+1) exp[−{

𝜃

𝑝
+

𝑝

𝜆
}](pθ)𝑟 ∏ 𝑥𝑖

(𝑝−1)
𝑒−𝑝𝜃

𝑟

𝑖=1

∬
1

𝜆Γ𝜉
𝑝(𝑟−𝜉)θ(𝑟+𝜉+1) ∏ 𝑥

𝑖
(𝑝−1)

𝑟

𝑖=1
.exp[−{

𝜃

𝑝
+

𝑝

𝜆
+pθ}]𝑑𝜃𝑑𝑝 

         (23) 

Approximate Bayes Estimators 

The Bayes estimators of a function 𝜇 = 𝜇(𝜃, 𝑝) of the unknown parameter 𝜃 and p 

under squared error loss is the posterior mean 

�̂�𝐴𝐵𝑆 = 𝐸(𝜇|𝑥) =
∬ 𝜇(𝜃,𝑝)𝐺(𝜃,𝑝|𝑥)𝑑𝜃𝑑𝑝

∬ 𝐺(𝜃, 𝑝|𝑥).𝑑𝜃.𝑑𝑝
 ;          (24) 

To evaluate (23) consider the method of Lindley approximation (Lindley (1980))  

𝐸(𝜇(𝜃, 𝑝)|𝑥) =
∫ 𝜇(𝜃).𝑒(𝑙(𝜃)+𝜌(𝜃))𝑑𝜃     

∫ 𝑒(𝑙(𝜃)+𝜌(𝜃))𝑑𝜃
;         (25) 

Where (𝜃) = log 𝑔(𝜃) , and 𝑔(𝜃) is an arbitrary function of 𝜃  and 𝑙(𝜃) is the loga-

rithm likelihood function 

The Lindley approximation for two parameter is given by 

𝐸(�̂�(𝜃, 𝑝)|𝑥) = 𝜇(𝜃, 𝑝) +
𝐴

2
+ 𝜌1𝐴12  + 𝜌2𝐴21 +

1

2
[𝑙30𝐵12 + 𝑙21𝐶12 + 𝑙12𝐶21 + 𝑙03𝐵2

1 
],   (26) 

where 

𝐴 = ∑ ∑ 𝜇𝑖𝑗𝜎𝑖𝑗
2
1

2
1 ;   𝑙𝜂𝜖 = (𝛿(𝜂+𝜖)𝑙|𝛿𝜃1

𝜂
𝛿𝜃2

𝜖); where(𝜂 + 𝜖) = 3    for 𝑖, 𝑗 = 12 ;   𝜌𝑖 =

(𝛿𝜌|𝛿𝜃𝑖);  

𝜇𝑖 =
𝛿𝜇

𝛿𝜃𝑖
 ;      𝜇𝑖𝑗 =

𝛿2𝜇

𝛿𝜃𝑖𝛿𝜃𝑗
  ; ∀𝑖 ≠ 𝑗 ; 

𝐴𝑖𝑗 = 𝜇𝑖𝜎𝑖𝑗 +  𝜇𝑗𝜎𝑗𝑖 ;   𝐵𝑖𝑗 = (𝜇𝑖𝜎𝑖𝑖 + 𝜇𝑗𝜎𝑖𝑗)𝜎𝑖𝑖  ;  𝐶𝑖𝑗 = 3𝜇𝑖𝜎𝑖𝑖𝜎𝑖𝑗 + 𝜇𝑗(𝜎𝑖𝑖𝜎𝑗𝑗 + 2𝜎𝑖𝑗
2 ); 
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Where 𝜎𝑖𝑗 is the (i,j)th element of the inverse of matrix {−𝑙𝑗𝑗}; 𝑖, 𝑗 = 1,2 s.t. 𝑙𝑖𝑗 =
𝛿2𝑙

𝛿𝜃𝑖𝛿𝜃𝑗
.  

All the function in above equations are evaluated at MLE of  (𝜃1, 𝜃2).In our case 

(𝜃1𝜃2) = (𝜃, 𝑝); 𝑆𝑜 𝜇(𝜃) = 𝜇(𝜃, 𝑝) 

To apply Lindley approximation (23), we first obtain 𝜎𝑖𝑗 , elements of the inverse of 

{−𝑙𝑗𝑗}; 𝑖, 𝑗 = 1,2,which can be shown to be  

𝜎11 =
𝑀

𝐷
,  𝜎12 = 𝜎21  =

𝛿1

𝐷
,𝜎22 =  

𝑟

𝐷 𝜃2, where  𝑀 = (
𝑟

𝑝2 + 𝜃𝛿2);  𝐷 = [
𝑟

𝜃2 (
𝑟

𝑝2 + 𝜃2𝛿2)];   

𝛿2 = ∑ 𝑥𝑖
𝑝r

i=1
(𝑙𝑜𝑔𝑥𝑖)2 + (𝑛 − 𝑟)𝑥𝑟

𝑝(𝑙𝑜𝑔𝑥𝑟)2;  

To evaluate  𝜌𝑖 , take the joint prior 𝐺(𝜃|𝑝)  

𝐺(𝜃|𝑝) =
1

𝜆Γ𝜉
𝑝−𝜉θ(𝜉−1). exp [{−

𝜃

𝑝
+

𝑝

𝜆
}]  ; (𝜃, 𝑝, 𝜆, 𝜉) > 0, 

⇒ 𝜌 = log[𝐺(𝜃|𝑝)] = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 − 𝜉𝑙𝑜𝑔𝑝 − (𝜉 − 1)𝑙𝑜𝑔𝜃 −
𝜃

𝑝
−

𝑝

𝜆
 

Therefore 

𝜌1 =
𝜕𝜌

𝜕𝜃
=

(𝜉−1)𝜃

𝜃
−

1

𝑝
; and 𝜌2 =

𝜃

𝑝2 −
1

𝜆
−

𝜉

𝑝
; 

Further more  

𝑙21 = 0 ; 𝑙12 = −𝛿2 ; 𝑙03 =
2𝑟

𝑝3 − 𝜃𝛿3; 𝑎𝑛𝑑  𝑙30 =
2𝑟

𝜃3 ; 

Where                𝛿3 = ∑ 𝑥𝑖
𝑝r

i=1
(𝑙𝑜𝑔𝑥𝑖)3 + (𝑛 − 𝑟)𝑥𝑟

𝑝(𝑙𝑜𝑔𝑥𝑟)3 

By substituting above values in equation (26), yields the Bayes estimator under PLF 

using Lindley approximation denoted by  �̂�𝐴𝐵𝑆 

�̂�𝐴𝐵𝑃𝐿 = 𝐸(𝜇(𝜃, 𝑝)) = 𝜇(𝜃, 𝑝) + Q + 𝜇1𝑄1 + 𝜇2𝑄2;       (27) 

Where Q                =
1

2
[𝜇11𝜎11 + 𝜇21𝜎21 + 𝜇12𝜎12 + 𝜇22𝜎22];  

Q1 =
1

𝜃2𝐷2 [
𝑀𝜃𝐷

𝑝
(𝑝(𝜉 − 1) − 1) +

𝜃2𝛿1𝐷

λ𝑝2
{λθ − 𝑝2 − λξp} 

+
𝑟𝑀2

𝜃
−

𝑟𝑀𝛿1

2
− 𝜃2𝛿1

2𝛿2 +
𝑟2

𝑝3 𝛿1 −
𝜃𝑟𝛿1

 𝛿3

2
]; 

Q2 =
1

𝜃2𝐷2 [
𝜃 𝛿1𝐷

𝑝
(𝑝(𝜉 − 1) − 𝜃) +

r𝐷

λ𝑝2
{λθ − 𝑝2 − λξp} 

+ 
𝑟𝑀𝛿1

𝜃
−

3𝛿1𝑟𝛿2

2
+

𝑟2

𝜃2𝑝3
−

𝑟2𝛿3

2𝜃
]; 

All the function of right hand side of the equation (27) are to be evaluated for 𝜃𝑀𝐿 and 

�̂�𝑀𝐿 . 
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Approximate Bayes Estimate of Hazard Function Under Precautionary Loss 

function   

with equations in (27), the different Approximate Bayes estimators Under PLF using 

Lindley's approximation given by  

Special cases.  

substituting 𝜇(𝜃, 𝑝) = 𝐻 in equation (27), we get the Approximate Bayes estimator of 

Hazard rate H=H(t) as 

�̂�𝐴𝐵𝑃𝐿 = 𝐻 [1 +
1

𝑝𝜃 𝐷
ϕ +

𝑄1

𝜃
+

(1+𝑝𝑙𝑜𝑔 𝑡)

𝑝
𝑄2] at (𝜃𝑀𝐿 , �̂�𝑀𝐿)      (28) 

where 

ϕ = [𝛿2 +  
2r𝑙𝑜𝑔𝑡

𝜃
(2 + 𝑝𝑙𝑜𝑔 𝑡)] 

Numerical Calculations and Comparison  

The numerical calculations are done by using R Language programming and results 

are presented in form of tables.  

1. The values of and are generated from the equations (21-22) for given 𝜉=2, and 

𝜆=3, which comes out to be 𝜃=0.32 and p=0.31. For these values of and p the 

Weibull random variates are generated. 

2. Taking the different sizes of samples n=25 (10) 65 with failure censoring, 

MLE's, the Approximate Bayes estimators, and their respective MSE's (in pa-

renthesis) by repeating the steps 500 times, are presented in the tables from (1), 

for t=2, R(t)=0.68, H(t)=0.024 and hyper parameters of prior distribution 𝛼 =2 

, and  𝛽 =3.  

3. Table(1) presents the Approximate Bayes estimator of hazard rate function H(t) 

of Weibull density under QLF and MLE's and the respective MSE's for differ-

ent sample sizes. The estimators have lower efficiency for larger sample sizes. 

The under �̂�𝐴𝑃𝐵𝐿  under PLF are more efficient than others. 

Table (1):-Mean and MSE'S of 𝑅(𝑡) 

(λ = 2, ξ = 3, θ = 0.32, p = 0.31, t = 2, R(t) = 0.68, H(t) = 0.24) 

n r �̂�𝑴𝑳 �̂�𝑩𝑷𝑳 �̂�𝑨𝑩𝑷𝑳 

25 15 0.682737 0.928220 0.777489 

  [2.77138e-05] [1.588131e-05] [1.02131 e-06] 

35 20 0.656174 0.931363 0.791756 

  [4.40161e-06] [1.319123e-06] [1.08097e-06] 

45 25 0.617673 0.943833 0.794756 

  [2.69877e-05] [1.878563e-05] [1.01193 e-05] 

55 30 0.810926 0.899141 0.766703 

  [1.85604e-06] [1.112163e-05] [1.00741 e-06] 

65 35 0.819139 0.619528 0.768143 
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  [2.3901e-06] [8.5114e-06] [1.6458e-06] 
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