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Abstract 

To investigate the impact of  Poynting-Robertson (P-R) drag on the motion of 

a geocentric satellite in the Sun-Earth system with the assumption that all the 

three primaries lie in the ecliptic plane is the main objective of this paper. 

Following the perturbation technique in Section-2, we have examined the 

equations of motion by replacing r and   to their steady state values 0r  and 

0  respectively to reduce the equation in integral form. In Section-3, the series 

solution of the three-body problem  developed by the Lindstedt-Poincare 

method (L-P Method) has been compared graphically by different values of  a, 

e and
0 . In the Section-4, the periodicity and stability on the motion of a 

geocentric satellite in the Sun-Earth system under the effects of P-R drag have 

been derived using Poincare section. It has been concluded that the frequency 

of oscillation and the peak values of u increase as the coefficient of P-R drag q 
is increased. Also, it is seen that for same effect of drag, the satellite with 

greater value of a , e  and 0  has larger frequency of oscillation and larger 

peak values of u. 
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1. INTRODUCTION 

In celestial mechanics G3BP is determining the motions of initial set of positions, 

velocities and masses of the three bodies (Earth, Sun and Satellite) for a particular 

point in time in uniformity with the Newton’s law of motion and gravity. It can also 

be termed as a particular case of general N-body problem.  

The Doppler shift, the radiation pressure, and the Drag (Poynting) have been studied 

by Poynting(1903) and Robertson(1937) which comprised of a radiation force 

enforced on a particle by a radiating body. Bhatnagar and Gupta (1976) have 

discussed the effect of solar radiation pressure on resonance in the restricted problem . 

Klacka (1993,1994) has evaluated the effect of Solar radiation on the (interplanetary) 

dust particle and derive the general case of a spherical particle. Murray (1994) has 

investigated the stability and location of the five Lagrangian equilibrium points in the 

planar CR3BP when the third body is acted upon by a various drag. He also analysed 

the use of Jacobi constant of the circular restricted problem as a simple mean of 

investigating the stability of the equilibrium points in certain circumstances. The 3BP 

work has been carried on by many learned personalities like Ragos (1995), Ragos and 

Vrahatis (1955), Liou and Zouk (1995), Salaam (2008) and Kushvah (2009). The 

enormous contribution of these in the related field of study has served as a guiding 

light for many. 

 

In this paper, we propose to discuss the G3BP in the Sun-Earth system. It is 

considered that the Earth as center and Sun and Satellite are moving in elliptic orbits 

around it, with the assumption that all the three primaries are in an ecliptic plane. 

First, we derived the equations of motion of the Satellite (polar form) and then by 

using the perturbation technique to reduce the equations of motion in integral form. 

Next to this, we proposed to discuss the series solution by using Lindstedt-Poincare  

method. Finally, we have discussed the impact of P-R drag in the motion of the 

Satellite on the Sun-Earth system, by using the Poincare section. 

 

2. STATEMENT OF THE PROBLEM AND EQUATIONS OF MOTION 

Let S represents the Sun, S  the Satellite and E the Earth with their masses SM , SM  

and EM respectively. The mass of the Satellite is negligible compared to the masses 

of the Earth and the Sun. The system is revolving with the angular velocity            
and the Satellite is moving in ecliptic plane around the Earth with the same angular 

velocity  . 
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Fig.1 Configuration of the3BP       Fig. 2 Configuration of the 3BP with 

coordinate axis        

 

Let Er , sr  and r  represent the vectors from Sun and Earth, Sun and Satellite and 

Earth and Satellite respectively;   be the vernal equinox,   the angle between 

direction of the Satellite and the direction of vernal equinox,   the angle between 

direction of the Sun and the direction of vernal equinox  and c  the velocity of light. 

Let origin be at the center of the Earth with x , y and z   the co-ordinate system of the 

Satellite and unit vectors î , ĵ  and k̂  along the axes respectively.  Let  another system 

with origin at the center of the Earth and
 0x , 0y  and 0z  as set of co-ordinate system 

of the Sun in the same plane, with unit vectors 0i , 
0j  and 

0k  along the axes 

respectively (Fig. 2). 

 

2.1 EQUATIONS OF MOTION IN POLAR FORM 

                         1 2 3,S SM F f f f    

where         1  ,s

s

rf F
r

        2

( )
 ,s s

s

v r rf F
c r


       3  ,
vf F
c

            (Ragos,1995)  

            the measure of the radiation pressure, velocity of   .F v S   

SF  = the P-R drag (per unit mass) due to the Sun acting on the Satellite , as  

mentioned in Fig.1 

The  motion (relative) of the Satellite with regard to the Earth is given by 

              ,SS ES S S SE
s E

ES

F F F M Fr r r
M M

 
      
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where 

 
3 3

3

, ,

, Gravitational constant.

E

S S S E
S SESS

s E

ES
ES

GM M GM MF r F r
r r

GM M
F r G

r

   

  

 

Thus 

 3 3

( )
(1 ) .s S s sE

g E g
s E s

r GM v r rGM vr qF r r q F
r r r c r c

 
        

 
 

Where 2
1 , , .S S

g
g s

F GMq p p F
F r

     

 2

3

S

E

GM
r

    (Motion of the Earth relative to the Sun) , also 

 ˆ ˆ ˆ ˆ ˆˆ ˆ, , cos sin , cos sin .E E EE EE Er ri r r r r i j r r i r j             

Using the above values in the equations of motion (in vector form) can be written as

  

 2

3 3
ˆ ˆ(cos sin ) (1 ) . (1)

ss
E

sE
S g

s s

v rr rGM vr qGM r r i j q F
r r c r c

   

 
        

 
By rotating frame of reference, we get 

      
2

2
ˆ ˆ ˆ ˆ ˆ2 , (2)

r rr i i r i r i i
t t t


    

   
         
   

 

where K̂  . 

By applying the procedure of Bhatnagar and Mehra (1986), the equations of motion  

are given as 

 2
2 2

2 2 3 2

ˆˆ ( ) ˆcos( ) (1 ) ( ) , (3)
( )

s S sE
E S s

s s s

v ir i GM v rGMd r r r qGM q r i
dt r r r cr c

   
   

         
  

 

 

   2

2

3 2

ˆˆ ( ) ˆsin( ) (1 ) ( ) . (4)s S s
E S s

s s s

v jd r r j r GM v rr r qGM r q r j
dt r r cr c


  

   
        

  

 

These are required equations of motion in Polar form and in the synodic coordinate 

system. 
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2.2 EQUATIONS OF MOTION AFTER PERTURBATION 

Equations (3) and (4) are not integrable hence the perturbation technique  is followed 

by us and replacing r  and   to their steady state values 0r  and 0  respectively. 

Placing these steady state values in the right-hand side of equations (3) and (4), we get 

 2
2 2

02 2 3 2

ˆˆ ( ) ˆcos( ) (1 ) ( ) , (5)s S sE
E S s

s s s

v ir i GM v rGMd r r r t qGM q r i
dt r r r cr c

   
   

         
  

   2

2

0 0 0 03 2

ˆˆ ( ) ˆsin( ) (1 ) ( ) . (6)s S s
E S s

s s s

v jd r r j GM v rr r t qGM r q r r j
dt r r cr c


  

   
        

  

Now     0 0 0 0
ˆ ˆsin cos .

E

s
s E

rv r r t i r t r j
t

       


       


 

With the help of above values and the transformations:  

     0 0 0 0 0
ˆ ˆˆ ˆ ˆ ˆ ˆ ˆcos sin , sin cos , .i i j j i j k k         

We obtain the following: 
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2
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Taking 
2r   = constant, 1r u ,  we have 

   
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2
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Let us consider 
0 0t t      , say.  Since 1e  , we have 

1

0 1 0(1 cos ) 1 coske t k e t     . 

On simplifying the equation (8) we get 

 

     

       
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h t h t h t h t

h t h t
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   

   

 

        

          

         

     

 

 

  

Fig. 3. Graph of Eq. (9) for 0.0000469251a  , 

0.0071e  , 0 708.102   and 0.25q  . 

Fig. 4. Graph of Eq. (9) for 0.0000469251a  ,     

0.0071e  , 0 708.102   and 0.75q  . 

 

 
 

Fig. 5. Graph of Eq. (9) for 0.0000526604a  , 

    0.0635e  ,
0 890.602   and 0.25q   

Fig. 6. Graph of Eq. (9) for 0.0000526604a  ,     

  0.0635e  , 0 890.602   and 0.75q   

 

Using the complementary function and particular integral, the complete solution of 

equation (9) is given by  



Impacts of Poynting-Robertson Drag on the Motion of a Geocentric Satellite: Sun-Earth System 627 

  31 2
0 02 2 2

0 0 0 0

4
02 2

0 0

5 6
0 02 2 2 2

0 0 0 0

7 8
02 2

0 0

cos sin cos( )
2 ( )

sin( )
( )

cos 2( ) sin 2( )
(2 2 ) (2 2 )

cos 2(2 )
(2 )

CC C tu A t t t

C t

C Ct t

C Ct

 





 
 




 
       

     

 
  

   

   
      

          

 
   

   
0.

2 2

0 0

9 10
0 0. .

2 2 2 2

0 0 0 0

1311 12
02 2 2 2 2 2

0 0 0 0

sin(2 )

(2 )

cos(2 3 ) sin(2 3 )

(2 3 ) (2 3 )

cos sin cos( 2 )
( ) ( ) ( 2 )

t

C Ct t

CC Ct t





 

 

  
  

 
 

 
    

   
   

        
             

     
         

            

14
02 2

0 0

sin( 2 ) (10)
( 2 )

t

C t


 
   
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3. SERIES SOLUTION BY L-P METHOD  

In this section, we have to derive the approximate solution for u  as function of time t. 

For the first approximation, we suppose that the energy of the Satellite which is  is 

bound to near the Earth as origin. For this let us write Equation (9) in the standard 

form as 

2
2

02
( ) 0, (11)

d u u h t
dt

    

1 2 0 3

4 5 0 6 0 7 0

8 0 9 0 10 0 11 0

12 0 13 0 14 0 15

where ( ) cos cos

sin cos( ) sin( ) sin 2( )

cos(2 ) sin(2 ) cos( ) sin( ) (12)

cos(3 ) sin(3 ) sin( 2 ) sin

h t h h t h t

h t h t h t h t

h t h t h t h t

h t h t h t h



   

   

  

   

         

        

          0(3 2 ) .t 
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Fig. 7. Graph of Eq. (10) for

0.0000469251a  , 0.0071e  ,

0 708.102   and 0.25q         

Fig. 8. Graph of Eq. (10) for

0.0000469251a     0.0071e  ,

0 708.102   and 0.75q        

 

  

Fig. 9. Graph of Eq. (10) for

0.0000526604a  ,  0.0635e  ,

0 890.602   and 0.25q       

Fig. 10. Graph of Eq. (10) for

0.0000526604a    0.0635e  ,

0 890.602   and 0.75q    

Parameters ih s  refer to Appendix. Let us write    
2 3

0 1 2 3( ) ( ) ( ) (13)u u h t u h t u h t u    

Now we define an independent variable   as t   , where 

2 3

0 1 2 3( ) ( ) ( ) (14)h t h t h t        
 

Using t    in the equation (11) we found  

2 2

0 ( ) 0 (15)u u h t   

Using the equations (13) and (14) in equation (15), we get  

 2

0 0 0 0, (16)u u  

 

 2

0 1 1 0 1 02 1 0, (17)u u u      

 

 2 2

0 2 2 0 1 1 1 0 2 02 ( 2 ) 0, (18)u u u u          

 

 2 2

0 3 3 0 1 2 1 0 2 1 1 2 1 3 02 ( 2 ) 2( ) 0. (19)u u u u u               
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The general solution of the equation (16) is 0 1 2cos sinu C C   , where 1C  and 2C  are  

constants of integration. Taking initial conditions 0 (0)u C  and 0 (0) 0u   the complete 

solution of the equation (16) can be given as  

0 cos (20)u C 

Putting the values of 0u  and 0u  in the equation (17) we found 

1
1 1 2

0

21
cos (21)u u C 


  

 

 Equating the coefficient of cos  to zero, we get 

1 1 12

1
,   0 (22)u u   



The general solution of the equation (22) is  

1 3 4cos sin , (23)u C C  

where 3C  and 4C  are constants of integration. Taking initial conditions 1(0)u C  and 

1(0) 0u   the complete solution of the equation (22) can be given as 

1 2

0

(1 cos )
cos . (24)u C 




 


Substituting the values of 0u , 0u , 1u , 1u  and 1 0   in the equation (18) we get 

2
2 2

0

2
cos . (25)u u C 


 



Equating the coefficient of cos  to zero, we get   

2 2 20, 0 (26)u u     

The general solution of the equation (26) is  

2 5 6cos sin , (27)u C C    

where 5C  and 6C  are constants of integration. Taking initial conditions 2 (0)u C  and 

2 (0) 0u   the complete solution of the equation (26) can be given as  

2 cos . (28)u C 

Substituting the values of 0u , 0u , 1u , 1u , 2u , 2u , 1  and 2  in the equation (19), we 

get 

3
3 3

0

2
cos . (29)u u C 


 



Equating the coefficient of  cos  to zero, we get  

3 3 30, 0. (30)u u     

The general solution of the equation (30) is  

3 7 8cos sin , (31)u C C    
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where 7C  and 8C  are constants of integration. Taking initial conditions
 3(0)u C and

3(0) 0u  , the complete solution of the equation (30) can be given as  

3 cos . (32)u C   

Proceeding in the same way and taking the values of ( 0,1,2,3, )iu i    in the equation 

(13), the values of u  can be given as 

  1 2 0 3 4 5 0cos cos cos si  n cosu C t h h t h t h t h t             

             6 0 7 0 8 0 9 0sin sin 2 cos 2 sin(2 )h t h t h t h t               

               10 0 11 0 12 0 13 0cos sin cos 3 sin 3h t h t h t h t              

              14 0 15 0 2

0

1
sin 2 sin 3 2 cos 1 cosh t h t C t t 

 
          

 

 

         
  1 2 0 3 4 5 0cos cos sin cosh h t h t h t h t           

 

        

   9 0 10 0 11 0sin(2 ) cos sinh t h t h t         

             12 0 13 0 14 0cos 3 sin 3 sin 2h t h t h t            

          
2

15 0 1 2 0 3 4sin 3 2 cos cos c s  os inh t C t h h t h t h t           

            5 0 6 0 7 0 8 0cos sin sin 2 cos 2h t h t h t h t                

       9 0 10 0 11 0 12 0sin(2 ) cos sin cos 3h t h t h t h t             

   
3

13 0 14 0 15 0sin(3 ) sin( 2 ) sin(3 2 ) cos (33)h t h t h t C t              

 

  

Fig. 11. Graph of Eq. (33) for

0.0000469251a  , 0.0071e  ,

0 708.102  , 0.25q  , 0 1.5t   

Fig. 12. Graph of Eq. (33) for

0.0000469251a   0.0071e  ,

0 708.102  , 0.75q  , 0 1.5t   

   76 0 80 0sin) 2n cosi ( 2sh t h t h t         



Impacts of Poynting-Robertson Drag on the Motion of a Geocentric Satellite: Sun-Earth System 631 

 

 
 

Fig. 13. Graph of Eq. (33) for

0.0000526604a  , 0.0635e  ,

0 890.602  , 0.25q  , 0 1.5t   

Fig. 14. Graph of Eq. (33) for

0.0000526604a  0.0071e  ,

0 708.102  , 0.75q  , 0 1.5t   

 

 

  

Fig. 15. Graph of Eq. (33) for

0.0000469251a  , 0.0071e  ,

0 708.102  , 0.25q  , 0 40t   

Fig. 16. Graph of Eq. (33) for

0.0000469251a   0.0071e  ,

0 708.102  , 0.75q  , 0 40t   

 

  

Fig. 17. Graph of Eq. (33) for

0.0000526604a  ,  0.0635e  , 

0 890.602  , 0.25q  , 0 40t   

Fig. 18. Graph of Eq. (33) for

0.0000526604a   0.0071e  ,

0 708.102  , 0.75q  , 0 40t   
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4. POINCARE SECTION: Discussions 

We have analyzed the impacts of P-R drag by putting different values of a , e  and 

0  for two different Satellites on the motion of a geocentric satellites in the Sun-

Earth system in light of (a) motion of the 3BP, (b) solution of the three-body problem, 

(c) series solution by Lindstedt-Poincare method. 

For the datum of the Satellite a , e  and 0  mentioned in Fig. (3) and (4), it is 

observed that as P-R drag increases, the frequency of oscillation of the Satellite and 

the values of u  decreases. Similarly for the datum of another Satellite a , e  and 0  

mentioned in Fig. (5) and Fig. (6), it is also observed that as P-R drag increases, the 

frequency of oscillation of the Satellite as well as u  decreases. From Fig. set (3 and 5) 

and Fig. set (4 and 6), it can also be concluded that the Satellite with greater value of

a , e  and 0  has larger frequency of oscillation and larger peak values of u. 

For the datum of the Satellite a , e  and 0  mentioned in Fig. (7) and Fig. (8), it is 

further observed that as P-R drag increases in the solution of the 3BP, the frequency 

of oscillation of the satellite and the values of u  increases. Similarly for the datum of 

next Satellite a , e  and 0  mentioned Fig. (9) and Fig. (10), it is also observed that as 

P-R drag increases, the frequency of oscillation of the satellite and the values of u  

increases. From Fig. set (7 and 9) and Fig. set (8 and 10), it can also be concluded that 

the Satellite with greater value of a , e  and 0  has larger frequency of oscillation and 

larger peak values of u .  

For the datum of the satellite a , e  and 0  mentioned in the captions of Fig. (11) and 

Fig. (12), the graphs of the series solution of Lindstedt-Pioncare within time interval

0 1.5t  , it is observed that as P-R drag increases, the frequency of oscillation and 

the values of u  increases. Similarly for the datum of next satellite a , e  and 0  

mentioned in the captions of Fig. (13) and Fig. (14), it is observed that as P-R drag 

increases, the frequency of oscillation and the values of u  increases. From Fig. set 

(11and 13) and Fig. set (12 and 14), it can also be concluded that the satellite with 

greater value of a , e  and 0  has larger frequency of oscillation and larger peak 

values of u. 

For the datum of the satellite a , e  and 0  mentioned in Fig. (15) and Fig. (16), 

within time interval 0 40t  , the frequency of oscillation of the satellite increases 

and the values of u  increases and decreases as the value of P-R drag increased. It is 

observed that when time interval lies between 0 and 4, values of t  decreases with 

increase in the values of u . When t  increased from 4 to 16, values of u  decreases 

positively and increases negatively. Further, when t  increased from 16 to 25, values 

of u  decreases negatively. When the values of t  increased from 25 to 38, values of u 

increase positively and decreases negatively. Furthermore, if t  increased from 38 to 

40, the values of u  increases positively and the graphs gets repeated after that. 
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Similarly, the satellite with greater values of a , e  and 0  mentioned in Fig. (17) and 

Fig. (18) has larger frequency of oscillation and larger peak values of u within the 

same interval. In short, it can be seen that the graphs look like similar to the Fig. (15 

and 16) within the same sub time intervals. Thus, we conclude that as we increase P-R 

drag ( 0.75q  ) throughout the manuscript, its effects are clearly visible in various 

figures.  
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