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Abstract

In this paper we have studied the performance of the Bayes Shrinkage estimators for
the scale parameter of the Finite Range Failure Time Distribution under the Squared
Error Loss and the LINEX loss functions in the presence of a prior point information
of the scale parameter when Type-I1 censored data are available. The properties of the
minimax estimators are also discussed.
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1. Introduction

The observed data time data, economic data, industrial data etc; can be considered with
a sudden change or failure in life test will occur therein. It is very important to know
when and where a change will occur as failure. The observed ‘time of failure’ and
‘average life’ of a component, measured from some specified time until it fails, is
represented by a continuous random variable. Extensively in recent years, one
distribution that has been used as a model to deal with such problems for product life is
the Finite Range Failure time distribution. Its applications in life-testing problems and
survival analysis have been widely advocated.

Mukherjee and Islam (1983) have proposed a finite range failure time
distribution. For use in life testing problem the probability density function is given by

p
f(x;p,a)=£(£) ;p,o>0,0<x<o (1.2)

X \0O

Where p and o are scale and shape parameters.

The Probability density function may be re-parameterized by taking p = %
and then the pdf of re-parameterized finite range distribution be written as
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1

f(x;a,@)zi(f)g :0>0,0>0,0<x<o0 (1.2)

Ox \o

Its distribution function is given by

1

F(x;0,0)=(%)" ; 6>0,0>0 0<x<0 (1.3)
For the finite range distribution the rth raw moment is given by
r a’

:ur - (1+T9) (14)

Therefore, the mean and variance are given by
- -2

p =EX) = 110 (1.5)

and
1] 2 a2

wy = EX?) = 175 (L6)
Therefore,

_ __ (08)?

2 =V = o e (@.7)
Let us suppose that n items are put to life test and terminate the experiment when
r(< n) items have failed. If X1,................. ,xr denote the first r observations having
a common density function is given by

n! 1\" 1 Tr

f(x]6) = (n—7)! (5) ( ir=1x_i> 6(6) (1.8)

Where

T, = [Zirzl log (%) + (n—r)log (%)] (1.9)
The maximum likelihood estimator (MLE) 8 of @ is given by

~ Ty
0 =— (1.10)
The pdf of @ is given by
- L S
() = @) (8) eTE; 6 >0 (1.11)

)

In many situations, the experimenter has some prior information about the
parameter in the form of a point guess value. To utilize this guess value, the shrinkage
estimators have been discussed by a number of authors Prakash & Singh (2006, 2008).
The shrinkage estimator performs better than the usual estimator when a guess value is
approximately the true value of the parameter and sample size is small. A shrinkage
estimator (Thompson, 1968) for the parameter 6 when prior point guess value 6, of 6
is available, is defined as

S=k06+(1-k86, ; 0<k<1 (1.12)
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Here 8 is any usual estimator of the parameter p The shrinkage procedure has been
applied in numerous problems, including mean survival time in epidemio- logical
studies (Harries & Shakarki, 1979), forecasting of the money supply and improved
estimation in sample surveys (Wooff, 1985).

When positive and negative errors have different consequences, the use of
squared error loss function (SELF) in Bayesian estimation may not be appropriate. To
overcome this difficulty, Varian (1975) and Zellner (1986) proposed an asymmetric
loss function known as the LINEX loss function (LLF). The invariant version of LLF
for any parameter p is given by

6-6

LA =e* — aA—1, a # OandA=— (1.13)

The sign and magnitude of ‘a’ represents the direction and degree of asymmetry
respectively. The positive (negative) value of ‘a’ is used when overestimation is more
(less) serious than underestimation. The loss function (1.13) is approximately square
error and almost symmetric if |a | is near to zero. A number of authors have discussed
the estimation procedures under LLF criterion. A Few recent works under the Bayesian
and/or the LLF criterions are Nigam et al. (2003), Bellhouse (2004), Xu & Shi (2004),
Ahmadi et al. (2005), Prakash & Singh (2006), Singh et al. (2007), Ahmad et al. (2007),
Prakash & Singh (2008), among others.

2. The Estimators

Let Xq,X5, e .o ... Xy D€ the life times of n items put to test under model (1.1) are
recorded lives.

The maximum likelihood estimate of 6 is given by

D6,

n

6= (2.1)

In Type-II censored sampling, where the test terminates as soon as the r'" item fails r <
n. Let x4, X5, ... ... X, be the observed failure times for the first r components. Then the
likelihood function for the r failure items is

L(x]0) = == (3) ( ?=1xii)e(%) 2.2)

(n-r)'\o

Where
I = [2121 log (%) + (n—r)log (x(r))]

o

which gives

a="l (2.3)

r
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The pdf of 8 is gamma distribution as

R 0N -1 8
£) = 2 (@) @4
Then
f(T,) = e:;r T," ' exp (— rel) (2.5)

The risks under the SELF is given by
92
Ry(Ty) = + (2.6)

where, suffix S denote the risk taken under the SELF criterions.
The risks under the LLF

R (T,) = e™@ (1 - %) —1 2.7)
where, suffix L denote the risk taken under the LLF criterions.

If parameter o is known, the natural family of conjugate prior of 6 is taken as the
inverted Gamma distribution with probability density function

a b
g:(0) == 6"@Ve s , a>0, b>0 (2.8)

In the situation where the researchers have no prior information about the
parameter 6, one may use the uniform, quasi or improper prior. A family of priors is
given by

cd
g,(0)=0"9¢" , d>0, c>0 (2.9)

If d = 0, we get a diffuse prior and if d = 1, ¢ = 0 a non-informative prior is
obtained. For a set of values of d and c, that satisfies the equality

I'(d—1) = (cd)@ D makes g,(8) as a proper prior.

If both of the parameters 6 and o are unknown in model (1.2), the joint prior
distribution (Sinha, 1986) is considered as

g3(0,0) = g,(0).h(0), h(e)==, ; 0<w (2.10)

3 Bayesian Shrinkage Estimator of & when o is known
The posterior of 8 using g,(0) is

L (§ |e)81 )
JooL (X [0)gy (0)do

p1(8) = (3.1)
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(n-7)! )

o nl (1\T 1\ (Ir) pa _ _b
Iy () (Mo )el @) Ro-ev e aan

n! (1>r(]'[{=1xii)e(%r) %e—(aﬂ) e_%

(rTp+b)@+D) e_(rTr+b)/9 p—(at+r+1)

p1(8) = T (3.2)

again which is inverted Gamma with (a+r) and (rT, + b) parameters.

The Bayes estimator under squared error loss function (SELF) is

A (Te+b) |

0= (a+r-1)’

Which can be written as

6= 0.(rT, + b) (3.3)

where, @ = (a+r+1)7?

We choose the parameters of prior density g;(8) s.t. E (8) = 8, ,when 8, is point
guess value , which gives

E(6,) =0
b=06y(a—1) (3.4)
Substitute ‘b’ in eqn. (3.3), we get the Bayes estimator as

rT +0y(a—-1)
(a+r-1)

91 =
Again taking k; =r @, , gives

91 = ler + %(a - 1)90

Some Shrinkage estimator 8, is proposed as

9~1 = ler + (1 - kl)eo (35)
which is similar to shrinkage estimator ;

T,=k06+ (1-k)6,

Again the Bayes estimator under L.L.F. for Natural Conjugate Prior is

ab
Ep, (3¢7°) =B, (3) (3.6)
6, = 0, (rT, + b) (3.7)
Where,
0, = ¢ (1= exp(— )

again, E(8,) = 0, , gives
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b= 6, (1- I"@z)@z_l (3.8)

Hence the Bayes shrinkage under LLF is obtain by replacing ‘b’ in (3.7) we get,

éz = kZTI‘ + (1 - kz)eo, kz = FQZ (39)
The equation of risks function under SELF as
Res)(8;) = 162 ¢;° + (8(; — 1) + b@;)? (3.10)
Fori=1,2

A @i b — b
Ruy(8) = exp(a (%2 -1)) - av) " —1-a(rz-1) (3.11)

A (r+1)
Risy(8:) =02 [k (B2 486 -1) + (1 - 8)?% (1 - 2ky)| (3.12)
Where, § = i, i=12

o

Ry (6;) = €280 (1 - 1 — 1 4 a(1 - §)(1 - k) (3.13)

The posterior density of g, (8) is given as

(tTp+ cd)r+d-1  _ (Trtcd)

Pp®= e e 7 o (3.14)

Equation (3.14) and equation (3.2) are same. Take

d=(a+1) and c= % for calculation.

4. Bayesian Shrinkage estimator if both the parameter are unknown

For Finite Range p.d.f. equation. (1.2), the Joint posterior with respect to
g5 (0,0) is given by

L(x |0,0)gs (8,0)

YO 4.1
Pa(6,) Jo L (X |8, 0)g3 (8,0)do (4.1)
1 0 M\ (1) () b2, _b
p3(0,0) = V("'”’(E) (Hi=1x_i)e(9) R0 @ e®
) - - T .
o f‘:oe'f’ vl(n%'r)'(%) (Hleli)e(F) %6‘(6‘“) e 8dodo

1 1
Let, w= —[[i_,—
v l_[’_1x,-
w e—(r+a+1)exp{_ Tre’rb}

p3(6,0) = e (4.2)

oW ( Tr+b)(r+a)d6

The Marginal density of ‘6’ is obtained as
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L (X ]0)gs (6,0)

e = [
P4(6) Jo L(x|08)gs(6,0)do
p-(r+a+1) fgwe(_TrTH))do
p4(0) = Pw M) (4.3)
0 (Tr+b)(r+a)

Hence Bayes Estimator of the parameter ‘0’ under SELF

~ I(w,(r+a-1))

P3 = Grarniwarra)) (4.4)
Where, I [t;,t,] = [t; (T, + b) ™2 do

Similarly the Bayes estimator of ‘6’ under LLF is

[[w,(r+a—1)] = e“Ilw,(r+a)] (4.5)

Where,
—(r+a-1)
r_ _ aby
w=w (1 (rTr+b)

5 Minimax Estimator

Let, T = {Fg:0 € 0} be a family of distribution functions and ‘D’ be a class of
estimators of the parameter 6. Suppose d* € D is a Bayes estimator against a prior t (8)
on the parameter space ‘©’. Then the Bayes estimator d* is said to be minimax
estimator, If the risk function of d* is independent on G.

When the shape parameter ¢ is considered to be known, the Bayes estimator for
the parameter 6 corresponding to the SELF and LLF are given respectively in the
equations (3.3) and (3.7).

Further, the expressions of the risk for these Bayes estimators corresponding to
the considered loss criterion are given in equation (3.10) and (3.11) respectively.

Both expressions of the risk involves the parameter ‘0°. Hence, the Bayes
estimator 8, and 8, are not minimax estimators. These under the natural family of the
conjugate prior the Minimax estimators do not exist.

Now the Bayes estimators corresponding to the posterior p,(8) given in equation
(3.14) are obtained respectively under both loss criterion as

05 = OcrT, (5.1)
Where,

Ps=(r+d-2)""1
And pg = QerT; (5.2)

Where,



954 Prof. Uma Srivastava & Parul Yadav

06 == (1—exp(—73)

The risks of these Bayes estimators corresponding to SELF and the LLF are given
respectively as

Res)(8;) = 02 (r(r + 1) @;° + —2r 0;) (5.3)

And

Ry(B)=e*(1—ad)"— 1— a@®; — 1) (5.4)
Where, i = 5,6

It is observed that the Bayes estimator 8 and 8, are not the minimax estimator
corresponding to the loss criterion SELF. However, the risk of Bayes estimator

6 and 6, are independent of the parameter ‘6’ under the LLF criterion. Hence both
estimators 65 and 6, are minimax estimator under LLF loss function.

The following statistical problem (Minimax Estimation) is equivalent to some
two person zero sum game between the Statistician (Player-11) and Nature (Players-1I).
Hence the pure strategies of nature are the different values of ‘0’ in the interval (0, o)
and the mixed strategies of nature are the prior densities of 8 in the interval (0, ). The
pure strategies of Statistician are all possible decision functions in the interval (0, o).

The expected value of the loss function is the risk function and it is the gain of
the Player-1. Further, the Bayes risk is defined as

R* (n,08) = Eq R(Bp)

Here, the expectation has been taken under the prior density of parameter ‘6°. If the
loss function is continuous in both the estimator 8z and the parameter ‘6’ and convex

in B for each value of 8 then there exist measures n* and 85 for all 8 and 65 so that,
the following relation holds:

R*(n,0) <R* (n",0) <R* (1", 8%)
The number R* (n*,87g) is known as the value of the game and n* and 8 are
the corresponding optimum strategies of the Player-I and Player-11.

In statistical terms n* is the least favorable prior density of 8 and the estimator
6"y is the minimax estimator. In fact, the value of the game is the loss of the Player-11.
Hence, the optimum strategy of Player-11 and the value of game are given as.

Optimum Strategy/Corresponding Loss Value of Game
B = DT, LLF e “(1—aPs) " —1—a(rds — 1)
05 = BerT; LLF e (1-aPe)" -1 —a(fs—1)
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6 NUMERICAL ANALYSIS

The relative efficiencies of the Bayes shrinkage estimator 8, (i = 1,2) relative to the
UMVU estimator T, under the SELF and the LLF criterions are defined as

~ R(s)(Tp) .
RE(S)(HU Tr) = R((Z))(gl), (|:1,2) (61)
and

~ R (Ty) .
REQ (0 T) =5 @y (712 (6.2)

The expressions of relative efficiencies are the functions of r,«, § and a whereas

RE(S)(QVL, Tr) is independent with ‘a’. For the selected set of valuesr =
(05(05)20) ; @ = (0.25(0.25)1.00) ;6 = (0.10(0.10)0.70) and a=
(1.00,1.25,1.50,2.00,3.00,5.00) the relative efficiencies have been calculated in
percentage and presented in Tables- (1)-(4), respectively. The numerical findings are
presented here only for r = 05 when risk criterion is the LLF.

Table- 1

Relative Efficiences of Shrinkage Estimators under SELF

a

r, 8 1.00 1.25 1.50 2.00 3.00 5.00
0.10 | 1.1189 1.2226 1.4359 1.2359 8.5241 0.63789
0.20 1.142 1.2458 1.6569 2.0054 1.7422 1.40374
0.30 | 1.1267 1.2606 1.8266 3.2005 4.6623 4.97794
05| 0.40 | 1.1268 1.2658 1.8904 4.0004 1.0568 3.30581
0.50 | 1.1276 1.2608 1.8265 3.2022 4.6619 4.97765
0.60 | 1.1243 1.2464 1.6573 2.0008 1.7426 1.40383
0.70 | 1.1189 1.2224 1.4364 1.2307 8.522 0.63851
0.10 | 1.0788 1.1466 1.2904 1.1122 7.269 0.49829
0.20 | 1.0822 1.1614 1.4276 1.6664 1.4277 1.08246
0.30 | 1.0834 1.1704 1.5266 2.3809 3.3889 3.64698
10| 0.40 | 1.0845 1.1732 1.5622 2.7768 6.2504 1.73564
0.50 | 1.0842 1.1705 1.5266 2.3809 3.3897 3.64673
0.60 | 1.0822 1.1612 1.4292 1.6666 1.4284 1.08209
0.70 | 1.0778 1.1465 1.2902 1.1109 0.7272 0.49823
0.10 | 1.0577 1.1098 1.2176 1.0587 0.6743 0.43219
0.20 | 1.0617 1.1204 1.3169 1.5004 1.2779 0.92691
0.30 | 1.0629 1.1270 1.3852 2.0008 2.7654 2.98193
15| 0.40 | 1.0629 1.1278 1.4103 2.2502 4.5148 1.13897
0.50 | 1.0626 1.1264 1.3856 2.0003 2.7654 2.98249
0.60 | 1.0612 1.1202 1.3574 1.5003 1.2786 0.92784
0.70 | 1.0586 1.1092 1.2174 1.0586 0.6743 0.43168
0.10 | 1.0456 1.0869 1.1733 1.0314 0.6494 0.39483
0.20 | 1.0478 1.0956 1.2523 1.4008 1.1936 0.83795

20
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0.30 | 1.0501 1.1005 1.3039 1.7816 2.3965 2.58227
0.40 | 1.0502 1.1022 1.3221 1.9605 3.6102 8.41322
0.50 | 1.0508 1.1006 1.3034 1.7816 2.3957 2.58249
0.60 | 1.0489 1.0952 1.2524 1.4004 1.1932 0.83768
0.70 | 1.0459 1.0868 1.1729 1.0314 0.6494 0.39464

Table- (1) shows that the Bayes shrinkage estimator 8; performs uniformly well for
small a < 3.00 with respect to the UMVU estimator T,. under the SELF. The effective
interval (the interval in which the relative efficiency is more than one) decreases with
the sample size r as well as ‘a’ increases under the SELF. The efficiency attains
maximum at the point § = 1.00 and the gain in efficiency decreases as r increases for
all considered values of 6 when other parametric values are fixed. Further, the gains in
efficiencies increase as a increases in the interval 0.10 < & < 0.70 with other fixed
parametric values.

On the other hand, when the risk criterion is the LLF Table- (2) the estimator
0, performs uniformly well with respect to T, when sample size is small r (< 10) for
all considered values of parametric space but for a large sample size, this property holds
in the interval 0.20 < § < 0.60. The gain in efficiency increases when ‘a’ increases for
all considered values of & with small sample size r (< 10) and in the interval § < 0.70
otherwise, under other fixed parametric values. Other properties are similar to the
SELF-criterion.

Table- 2
Relative Efficiences of Shrinkage Estimators under LLF
r =05 a
a () 1.00 1.25 1.50 2.00 3.00 5.00

0.10 | 1.1364 | 1.2834 | 1.6459 1.4876 | 1.0429 1.01285
020 | 1.1449 | 1.2955 | 18403 | 2.3579 | 2.0766 1.67652
0.30 | 1.1504 | 1.2958 | 1.9556 | 3.6154 | 5.4009 5.76955
025|040 | 11524 | 1.3010 | 1.9570 | 4.2401 | 1.1418 3.61787
0.50 | 1.1287 1.2616 | 1.8308 | 3.2411 | 4.8408 5.27279
0.60 | 1.1156 | 1.2310 | 1.6227 1.9924 | 1.7803 1.44353
0.70 | 11036 | 1.1741 | 1.3643 1.2142 | 1.1520 1.13491
0.10 | 1.1539 | 1.3179 | 1.9504 | 1.8878 | 1.3369 1.01763
0.20 | 1.1700 | 1.3504 | 2.0769 | 2.9134 | 2.6049 2.10555
0.30 | 1.1844 | 13754 | 2.1063 | 4.2663 | 6.5836 7.04196
050|040 | 11976 | 13912 | 2.1564 | 4.6859 | 1.2954 4.22397
0.50 | 1.1359 | 1.2779 | 1.8865 | 3.4245 | 5.2806 5.871793
0.60 | 1.119 1.2319 | 16338 | 2.0689 | 1.9079 1.56062
0.70 | 1.1059 | 1.1809 | 1.3719 1.2478 | 1.1889 1.16219
0.10 | 1.1847 1.3825 | 2.3036 | 2.5673 | 1.8404 1.41078
0.75] 0.20 | 1.2102 1.4368 | 2.4287 | 3.8544 | 3.5119 2.84393
030 | 1.2343 | 1.4858 | 2.4819 | 5.3705 | 8.6322 9.25591
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0.40 | 1.2579 | 15267 | 2.5246 | 5.5109 | 1.5687 5.17394
0.50 | 1.1578 | 1.3222 | 2.0300 | 3.8549 | 6.1810 7.05526
0.60 | 1.1305 | 1.2589 | 1.7205 | 2.2878 | 2.1929 1.81164
0.70 | 11126 | 1.1942 | 1.4222 1.3604 | 1.1989 1.17373
0.10 | 1.2423 | 1.5049 | 2.7489 | 3.8943 | 2.8306 2.18447
0.20 | 1.2789 | 15880 | 3.0770 | 5.6787 | 5.3005 4.30109
030 | 1.3145 | 1.6667 | 3.2657 | 7.1632 | 1.2676 1.36488
1.00| 040 | 1.3511 | 1.7430 | 3.2841 | 7.4944 | 2.1476 7.19681
050 | 1.2059 | 1.4209 | 2.3514 | 4.7977 | 8.0837 9.48784
0.60 | 1.1592 1.3376 | 1.9508 1.7941 | 2.8118 2.35295
0.70 | 1.1329 | 1.2539 | 1.5876 1.6378 | 1.2404 1.19202

The Bayes shrinkage estimator 8, performs well for all considered values of the
parametric space when a < 10.00 with respect to T;. under the SELF.

The gain in efficiency increases when ‘a’ increases in the interval 0.10 < 6 < 0.70
for all considered parametric values when a < 10.00. Other properties of the estimator
0, are similar to the estimator 8; under the SELF.

Table -3
Relative Efficiences of Shrinkage Estimators under LLF
r =05 a
a [ 1.00 1.25 1.50 2.00 3.00 5.00

0.25] 0.10 1.4011 1.3789 1.2606 1.0114 1.0143 0.61751

0.20 1.8487 1.9338 1.9975 1.9081 1.6314 1.36426

0.30 2.4074 2.5482 3.0787 4.0784 4.8818 4.94667

0.40 2.6426 2.8502 3.7558 6.5686 1.4541 3.98498

0.50 2.4074 2.5491 3.0787 4.0779 4.8821 4.94599

0.60 1.8992 1.9346 1.9979 1.9080 1.6309 1.36343

0.70 1.4049 1.3800 1.2606 1.0114 1.0138 0.61802

0.50| 0.10 1.3787 1.3504 1.2300 1.0924 1.0767 0.61609

0.20 1.9355 1.9616 2.0005 1.8926 1.6204 1.36008

0.30 | 2.5545 2.6920 3.2049 4.1530 4.8969 4.94266

0.40 2.8590 3.0740 4.0114 6.9020 1.5027 4.06494

0.50 2.5540 2.6920 3.2049 4.1530 4.8970 4.94263

0.60 1.9350 1.9610 2.0002 1.8924 1.6204 1.35902

0.70 1.3787 1.3506 1.2298 1.0928 1.0767 0.61587

0.75] 0.10 1.3479 1.3200 1.1980 1.1740 1.1000 0.61409

0.20 1.9627 1.9805 1.9980 1.8771 1.6100 1.35601

0.30 2.7014 2.8350 3.3290 4.2241 4.9117 4.93805

0.40 | 3.0889 3.3118 4.2800 7.2500 1.5530 4.14669

0.50 2.7015 2.8350 3.3290 4.2242 4.9116 4.93802

0.60 1.9627 1.9807 1.9980 1.8761 1.6098 1.35596
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0.70 1.3481 1.3186 1.1990 1.1740 1.1000 0.61437

1.00| 0.10 1.3160 1.2870 1.1697 1.2569 1.1534 0.61208
0.20 1.9821 2.0000 1.9987 1.8600 1.6000 1.35003
0.30 2.8478 2.9769 3.4500 4.2915 4.9250 4.94008
0.40 3.3340 3.5640 45630 7.6085 1.6045 4.23009
0.50 2.8482 2.9776 3.4500 4.3000 4.9245 4.93465
0.60 1.9824 1.9939 2.0000 1.8592 1.5994 1.35208
0.70 1.3200 1.2858 1.1689 1.2567 1.1528 0.61207

Under the LLF criterion Table (4), the estimator 8, also performs well for a < 10.00
with respect to T, and the gain in efficiency increases as ‘a’ increases for all considered
values of parametric space. Other properties of 8, are similar to the Bayes shrinkage
estimator 8; under the LLF criterion. The gain in efficiency is larger for the Bayes
shrinkage estimator 8, under the LLF-criterion with respect to the SELF-criterion.

Table - 4
Relative Efficiences of Shrinkage Estimators under LLF
r =05 a
a [ 1.00 1.25 1.50 2.00 3.00 5.00

0.25| 0.10 1.00 1.50 2.00 2.50 5.00 10.00
0.20 | 16700 1.6480 | 1.5228 1.2320 1.0480 0.76266
0.30 | 21828 2.2390 | 2.3500 2.2700 1.9460 1.63009
0.40 | 2.6500 | 2.8223 | 3.4669 4.7000 5.6628 5.72891
0.50 | 2.7678 | 3.0000 | 3.9756 7.0420 1.5780 4.36696
0.60 | 2.4215 | 25661 | 3.1151 4.1819 5.1067 5.24819
0.70 | 1.8674 | 1.9050 | 1.9867 1.9300 1.6739 1.40217

0.50| 0.10 | 1.3455 | 1.3239 | 1.2402 1.0010 1.0008 0.61407
0.20 | 2.0561 | 2.0310 | 1.8868 1.5460 1.2074 0.98479
0.30 | 2.7073 | 2.7747 | 2.9144 2.8200 2.4255 2.04227
0.40 | 3.2547 | 3.4682 | 4.2748 5.7842 6.9390 6.98348
0.50 | 3.2688 | 3.5345 | 4.7002 8.3264 1.8630 5.14354
0.60 | 2.6880 | 2.8430 | 3.4325 4.5904 5.6419 5.85897
0.70 | 1.9503 | 1.9879 | 2.0705 2.0349 1.7907 1.51209

0.75| 0.10 | 1.3588 | 1.3400 | 1.2458 1.0309 1.0103 0.63663
0.20 | 2.7212 | 2.6922 | 2.5132 2.0844 1.6523 1.36092
0.30 | 3.6010 | 3.6928 | 3.8837 3.7635 3.2504 2.75193
0.40 | 4.2806 | 4.5699 | 5.6578 7.6677 9.1513 9.16883
0.50 | 4.3138 | 4.6537 | 5.9424 | 10.5646 | 23.6617 | 9.02684
0.60 | 3.1689 | 3.3499 | 4.0388 5.4028 6.7077 7.0347
0.70 | 2.1640 | 2.2056 | 2.3074 2.3005 2.0584 1.75096

1.00| 0.10 | 1.4376 | 1.4205 | 1.3360 1.1285 1.0426 0.70677
0.20 | 4.0366 | 4.0000 | 3.7496 3.1462 2.5257 2.10398
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0.30 | 5.36.00 | 5.5000 | 5.7926 5.6238 4.8784 4.15289

040 | 6.28.44 | 6.7237 | 8.3744 | 11.3846 | 13.5362 | 1.36003

0.50 | 6.74.86 | 6.8367 | 8.3884 1.4510 33.6700 | 92.9681

0.60 | 413,59 | 4.3702 | 5.2878 7.1210 8.9348 9.49512

0.70 | 2.65.89 | 2.7150 | 2.8616 2.9038 2.6446 2.26809
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