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Abstract 

In this paper we have studied the performance of the Bayes Shrinkage estimators for 

the scale parameter of the Finite Range Failure Time Distribution under the Squared 

Error Loss and the LINEX loss functions in the presence of a prior point information 

of the scale parameter when Type-II censored data are available. The properties of the 

minimax estimators are also discussed. 
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1. Introduction 

The observed data time data, economic data, industrial data etc; can be considered with 

a sudden change or failure in life test will occur therein. It is very important to know 

when and where a change will occur as failure. The observed ‘time of failure’ and 

‘average life’ of a component, measured from some specified time until it fails, is 

represented by a continuous random variable. Extensively in recent years, one 

distribution that has been used as a model to deal with such problems for product life is 

the Finite Range Failure time distribution. Its applications in life-testing problems and 

survival analysis have been widely advocated.  

            Mukherjee and Islam (1983) have proposed a finite range failure time 

distribution. For use in life testing problem the probability density function is given by 

 𝑓(𝑥; 𝑝, 𝜎) =
𝑝

𝑥
(

𝑥

𝜎
)

𝑝

    ; 𝑝, 𝜎 > 0 , 0 < 𝑥 ≤ 𝜎                                                                     (1.1) 

Where  𝑝 𝑎𝑛𝑑 𝜎 are scale and shape parameters. 

                 The Probability density function may be re-parameterized by taking 𝑝 =
1

𝜃
 

and then the pdf of re-parameterized finite range distribution be written as 
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𝑓(𝑥; 𝜎, 𝜃) =
1

𝜃𝑥
(

𝑥

𝜎
)

1

𝜃
  ; 𝜃 > 0, 𝜎 > 0 , 0 < 𝑥 ≤ 𝜎                                                             (1.2)   

Its distribution function is given by 

𝐹(𝑥; 𝜎, 𝜃) = (
𝑥

𝜎
)

1

𝜃
  ;   𝜃 > 0, 𝜎 > 0, 0 < 𝑥 < 𝜎                                                              (1.3) 

For the finite range distribution the rth raw moment is given by 

  𝜇𝑟
′ =

𝜎𝑟

(1+𝑟𝜃)
                                                                                                                      (1.4) 

Therefore, the mean and variance are given by 

  𝜇1
′ = 𝐸(𝑋) =

𝜎

1+𝜃
                                         (1.5) 

and 

 𝜇2
′ = 𝐸(𝑋2) =

𝜎2

1+2𝜃
                                                 (1.6) 

Therefore, 

  𝜇2 = 𝑉(𝑋) =
(𝜎𝜃)2

(1+2𝜃)(1+𝜃)2                                                                                                 (1.7) 

Let us suppose that n items are put to life test and terminate the experiment when 

𝒓(< 𝒏) items have failed. If  x1,……………..,xr denote the first r observations having 

a common density function is given by 

  𝑓(𝑥|𝜃) =  
𝑛!

(𝑛−𝑟)!
(

1

𝜃
)

𝑟

(∏
1

𝑥𝑖

𝑟
𝑖=1 ) 𝑒(

𝑇𝑟
𝜃

)
                                                                                (1.8) 

   Where 

   𝑇𝑟 =  [∑ 𝑙𝑜𝑔 (
𝑥𝑖

𝜎
) + (𝑛 − 𝑟)𝑙𝑜𝑔 (

𝑥(𝑟)

𝜎
)𝑟

𝑖=1 ]                                                                        (1.9) 

The maximum likelihood estimator (MLE) 𝜃 of 𝜃 is given by 

        𝜃  =  
𝑇𝑟

𝑟
                                                                                                                        (1.10) 

The pdf of 𝜽̂  is given by 

   𝑓(𝜃)  =  
(

𝑟

𝜃
)

𝑟

Γ(𝑟)
 (𝜃)

𝑟−1
𝑒−𝑟

𝜃̂

𝜃  ;   𝜃  > 0                                                                              (1.11) 

 In many situations, the experimenter has some prior information about the 

parameter in the form of a point guess value. To utilize this guess value, the shrinkage 

estimators have been discussed by a number of authors Prakash & Singh (2006, 2008). 

The shrinkage estimator performs better than the usual estimator when a guess value is 

approximately the true value of the parameter and sample size is small. A shrinkage 

estimator (Thompson, 1968) for the parameter θ when prior point guess value θ0 of θ 

is available, is defined as  

S = k θ̂ + (1 − k)θ0       ;              0 ≤ k ≤ 1                                                 (1.12) 
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Here θ̂ is any usual estimator of the parameter 𝑝 The shrinkage procedure has been 

applied in numerous problems, including mean survival time in epidemio- logical 

studies (Harries & Shakarki, 1979), forecasting of the money supply and improved 

estimation in sample surveys (Wooff, 1985).  

 When positive and negative errors have different consequences, the use of 

squared error loss function (SELF) in Bayesian estimation may not be appropriate. To 

overcome this difficulty, Varian (1975) and Zellner (1986) proposed an asymmetric 

loss function known as the LINEX loss function (LLF). The invariant version of LLF 

for any parameter  p is given by 

L(∆) = eα∆ −  α∆ − 1, α ≠ 0 and ∆ =
θ̂−θ

θ
                                                  (1.13) 

 

 The sign and magnitude of ‘α’ represents the direction and degree of asymmetry 

respectively. The positive (negative) value of ‘α’ is used when overestimation is more 

(less) serious than underestimation. The loss function (1.13) is approximately square 

error and almost symmetric if |α | is near to zero. A number of authors have discussed 

the estimation procedures under LLF criterion. A Few recent works under the Bayesian 

and/or the LLF criterions are Nigam et al. (2003), Bellhouse (2004), Xu & Shi (2004), 

Ahmadi et al. (2005), Prakash & Singh (2006), Singh et al. (2007), Ahmad et al. (2007), 

Prakash & Singh (2008), among others. 

 

2. The Estimators 

 Let x1, x2, … … … . xn be the life times of n items put to test under model (1.1) are 

recorded lives. 

The maximum likelihood estimate of θ is given by 

 θ̂ =
∑ 𝒍𝒐𝒈(

𝒙𝒊
𝝈

)n
i=1

n
                              (2.1) 

 

In Type-II censored sampling, where the test terminates as soon as the rth item fails r ≤
n. Let x1, x2, … … . xr be the observed failure times for the first r components. Then the 

likelihood function for the r failure items is  

𝑳(𝑥|𝜃) =  
𝒏!

(𝒏−𝒓)!
(

𝟏

𝜽
)

𝒓

(∏
1

𝒙𝒊

𝒓
𝒊=𝟏 ) 𝒆(

𝑻𝒓
𝜽

)
                                                                                  (2.2) 

   Where 

   𝑇𝑟 =  [∑ 𝑙𝑜𝑔 (
𝑥𝑖

𝜎
) + (𝑛 − 𝑟)𝑙𝑜𝑔 (

𝑥(𝑟)

𝜎
)𝑟

𝑖=1 ]  

which gives  

θ̂ =
Tr

𝑟
                                              (2.3)  
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The  pdf  of  θ̂ is gamma distribution as 

 𝑓(𝜃)  =  
(

𝑟

𝜃
)

𝑟

Γ(𝑟)
 (𝜃)

𝑟−1
𝑒−𝑟

𝜃̂

𝜃                                                      (2.4) 

Then  

f(Tr) =
rr

θrΓr
 Tr

r−1 exp (−
r Tr

θ
)                                        (2.5) 

The risks under the SELF is given by  

Rs(Tr) =  
θ2

r
                                         (2.6) 

where, suffix S denote the risk taken under the SELF criterions. 

The risks under the LLF 

RL(Tr) = e−α (1 −
α

r
)

−r

− 1                                         (2.7) 

where, suffix L denote the risk taken under the LLF criterions. 

 If parameter 𝜎 is known, the natural family of conjugate prior of 𝜃 is taken as the 

inverted Gamma distribution with probability density function  

g1(θ) =  
ba

Γa
 θ−(a+1) e− 

𝑏

θ    ,   a > 0 ,   𝑏 > 0                                                            (2.8) 

 

 In the situation where the researchers have no prior information about the 

parameter 𝜃, one may use the uniform, quasi or improper prior. A family of priors is 

given by 

g2(θ) =  θ−d e− 
cd

𝜃     ,         d > 0 ,   𝑐 > 0                                    (2.9) 

 

 If d = 0, we get a diffuse prior and if d = 1, c = 0 a non-informative prior is 

obtained. For a set of values of d and c, that satisfies the equality 

Γ(d − 1) =  (cd)(d−1) makes g2(θ) as a proper prior.  

 If both of the parameters θ and σ are unknown in model (1.2), the joint prior 

distribution (Sinha, 1986) is considered as 

g3(θ, σ) = g1(θ). h(σ),      h(σ) =
1

𝑣
 ,   ;      0 < 𝑣                                              (2.10) 

 

3   Bayesian Shrinkage Estimator of 𝜽  when  𝝈 is known 

The posterior of 𝜃 using g1(𝜃) is 

ρ1(𝜃) =
L (x |θ)g1 (θ)

∫ L (x |θ)g1 (θ) dθ
∞

0

                                                                                   (3.1) 
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 =

𝒏!

(𝒏−𝒓)!
(

𝟏

𝜽
)

𝒓
(∏

1

𝒙𝒊

𝒓
𝒊=𝟏 )𝒆

(
𝑻𝒓
𝜽 )

  
ba

Γa
 θ−(a+1) e

− 
𝑏
θ

∫
𝒏!

(𝒏−𝒓)!
(

𝟏

𝜽
)

𝒓
(∏

1

𝒙𝒊

𝒓
𝒊=𝟏 )𝒆

(
𝑻𝒓
𝜽

)
  

ba

Γa
 θ−(a+1) e

− 
𝑏
θ dθ

∞
0

   

ρ1(θ)  =  
(rTr+b)(a+r)  e

−
(rTr+b)

θ
⁄

 θ−(a+r+1)

Γ(a+r)
                                                             (3.2) 

again which is inverted Gamma with (a+r) and (rTr + b) parameters. 

The Bayes estimator under squared error loss function (SELF) is  

θ̂ =  
(rTr+b)

(a+r−1)
 ; 

Which can be written as  

θ̂ =  ∅. (rTr + b)                                         (3.3) 

where,    ∅ =  (a + r + 1)−1 

We choose the parameters of prior density g1(θ) s.t. E (θ̂) = θ0  ,when θ0 is point 

guess value , which gives 

E(θ̂1) = θ0   

b = θ0(a − 1)                               (3.4) 

Substitute ‘b’ in eqn. (3.3), we get the Bayes estimator as 

θ1 =
rTr+θ0(a−1)

(a+r−1)
    

Again taking  k1 = r ∅1 , gives  

θ1 = k1Tr +
k1

r
(a − 1)θ0    

Some Shrinkage estimator θ̃1 is proposed as  

𝜃̃1 =  k1Tr + (1 − k1)θ0                                                                    (3.5) 

which is similar to shrinkage estimator ;   

Tr = k θ̂ +  (1 − k)θ0                

Again the  Bayes  estimator under L.L.F. for Natural Conjugate Prior  is 

 Eρ1
(

1

θ
 e−

a θ̂2
θ ) = eα Eρ (

1

θ
 )                                                               (3.6) 

  θ̂2 =  ∅2 ( rTr +  b)                                                      (3.7) 

Where, 

∅2 =  
1

α
 (1 − exp(−

α

(α+r+1)
)) 

again, E(θ̂2) = θ0 , gives   
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b =  θ0 (1 − r∅2)∅2
−1

                                                                             (3.8) 

 

Hence the Bayes shrinkage under LLF is obtain by replacing ‘b’ in (3.7) we get, 

θ̃2 =  k2Tr + (1 − k2)θ0,        k2 = r∅2                                      (3.9) 

The equation of risks function under SELF as 

 R(S)(θ̂i) = rθ2 ∅i
2 +  (θ(∅i − 1) + b∅i)

2                                             (3.10) 

For i =1, 2  

𝑅(𝐿)(𝜃𝑖) = exp (𝑎 (
∅i 𝑏

𝜃
− 1)) (1 − 𝑎∅i)

−𝑟 − 1 − 𝑎 (𝑟
𝑏

𝜃
− 1)                     (3.11) 

𝑅(𝑆)(𝜃̃𝑖) = 𝜃2  [ki
2 ( 

(r+1)

r 
+ δ(δ − 1 ) + (1 − δ)2 (1 − 2ki)]                                    (3.12) 

Where, 𝛿 =
𝜃

𝜃0
,            𝑖 = 1,2 

R(L)(𝜃̃𝑖) = ea((1−ki)δ−1) (1 −
αki

r
)−r − 1 + a(1 − δ)(1 − ki)                                        (3.13) 

The posterior density of g2(θ) is given as  

ρ2(θ) =  
(rTr+ cd)(r+d−1)

Γ(r+d−1)
 e− 

(rTr+ cd)

𝜃  θ−(r+d)                                                      (3.14) 

Equation (3.14) and equation (3.2) are same. Take 

d = (a + 1)   and  c =
b

a+1
  for calculation. 

 

4.   Bayesian Shrinkage estimator if both the parameter are unknown 

 For Finite Range  p.d.f. equation. (1.2), the Joint posterior with respect  to 

g3 (θ, σ) is given by 

ρ3(θ, σ) =
L (x |θ, σ)g3 (θ,σ)

∫ L (x |θ, σ)g3 (θ,σ) dθ
∞

0

                                                                                 (4.1) 

ρ3(θ, σ) =

1

ν 
 

𝒏!

(𝒏−𝒓)!
(

𝟏

𝜽
)

𝒓
(∏

1

𝒙𝒊

𝒓
𝒊=𝟏 )𝒆

(
𝑻𝒓
𝜽 )

  
ba

Γa
 θ−(a+1) e

− 
𝑏
θ

∫ ∫      
1

ν 
 

𝒏!

(𝒏−𝒓)!
(

𝟏

𝜽
)

𝒓
(∏

1

𝒙𝒊

𝒓
𝒊=𝟏 )𝒆

(
𝑻𝒓
𝜽

)
  

ba

Γa
 θ−(a+1) e

− 
𝑏
θ dθ dσ

∞
0  θ,σ

∞
0

   

Let,  𝑤 =  
1

ν 
∏

1

𝒙𝒊

𝒓
𝒊=𝟏  

ρ3(θ, σ) =
w θ−(r+a+1)exp{−

 Tr+b

θ
}

∫ w 
Γr+a

( Tr+b)(r+a)dσ
σ

                          (4.2) 

The Marginal density of ‘𝜃’ is obtained as 
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ρ4(θ) =
L (x |θ)g3 (θ,σ)

∫ L (x |θ)g3(θ,σ) dθ 
∞

0

                                         

ρ4(θ) =
p−(r+a+1)  ∫ w e

(−
 Tr+b

𝜃
)ν

0 dσ

∫ w 
Γ(r+a)

( Tr+b)(r+a)dσ
ν

0

                                     (4.3) 

Hence Bayes Estimator of the parameter  ‘θ’ under SELF  

p̂3 =
I(w,(r+a−1) )

(r+a+1)I(w,(r+a) )
                                       (4.4) 

Where, I [t1, t2] = ∫ t1 (rTr + b)−t2  dσ
ν

0
    

Similarly the Bayes estimator of  ‘𝜃’ under LLF is  

I [w′, (r + a − 1)] =  eαI[w, (r + a) ]                                                   (4.5) 

Where, 

 w′ = w (1 −
αθ̂4

 (rTr+b
)

−(r+a−1)

 

 

5   Minimax Estimator 

 Let, τ =  {Fθ: θ ϵ Θ} be a family of distribution functions and ‘D’ be a class of 

estimators of the parameter  θ. Suppose d∗ ϵ D is a Bayes estimator against a prior π (θ) 

on the parameter space ‘Θ’. Then the Bayes estimator d∗ is said to be minimax 

estimator, If the risk function of d∗  is independent on Θ. 

 When the shape parameter σ  is considered to be known, the Bayes estimator for 

the parameter 𝜃 corresponding to the SELF and LLF are given respectively in the 

equations (3.3) and (3.7). 

 Further, the expressions of the risk for these Bayes estimators corresponding to 

the considered loss criterion are given in equation (3.10) and (3.11) respectively. 

 Both expressions of the risk involves the parameter ‘𝜃’. Hence, the Bayes 

estimator θ̂1 and θ̂2 are not minimax estimators. These under the natural family of the 

conjugate prior the Minimax estimators do not exist. 

 Now the Bayes estimators corresponding to the posterior ρ2(θ) given in equation 

(3.14) are obtained respectively under both loss criterion as  

θ̂5 =  ∅5rTr                                 (5.1) 

Where, 

 ∅5 = (r + d − 2)−1 

And  p̂6 =  ∅6rTr                                  (5.2) 

Where, 
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 ∅6 =
1

α
  (1 − exp(−

α

r+d
)) 

The risks of these Bayes estimators corresponding to SELF and the LLF are given 

respectively as 

R(S)(θ̂i) = θ2 (r(r + 1) ∅i
2 +  −2r ∅i)                                      (5.3) 

And 

 R(L)(θ̂i) = e−α (1 − α∅i)
−r −  1 −  α(r∅i − 1)                                      (5.4) 

  Where, i = 5,6  

 It is observed that the Bayes estimator  θ̂5  and  θ̂6 are not the minimax estimator 

corresponding to the loss criterion SELF. However, the risk of Bayes estimator 

θ̂5 and θ̂6 are independent of the parameter ‘𝜃’ under the LLF criterion. Hence both 

estimators θ̂5 and θ̂6 are minimax estimator under LLF loss function. 

 The following statistical problem (Minimax Estimation) is equivalent to some 

two person zero sum game between the Statistician (Player-II) and Nature (Players-I). 

Hence the pure strategies of nature are the different values of ‘𝜃’ in the interval (0, ∞) 

and the mixed strategies of nature are the prior densities of 𝜃 in the interval (0, ∞). The 

pure strategies of Statistician are all possible decision functions in the interval (0, ∞).  

 The expected value of the loss function is the risk function and it is the gain of 

the Player-I. Further, the Bayes risk is defined as 

  R∗ (η, θ̂B) =  Eθ R(θ̂B)  

Here, the expectation has been taken under the prior density of parameter ‘𝜃’. If the 

loss function is continuous in both the estimator θ̂B and the parameter ‘𝜃’ and convex 

in θ̂B for each value of 𝜃 then there exist measures η∗ and θ̂B for all θ and θ̂B so that, 

the following relation holds: 

  R∗ (η, θ̂B) ≤ R∗ (η∗, θB) ≤ R∗ (η∗, θ̂∗
B)  

 The number R∗ (η∗, θ̂∗
B) is known as the value of the game and η∗ and θ̂∗

B are 

the corresponding optimum strategies of the Player-I and Player-II. 

 In statistical terms η∗  is the least favorable prior density of 𝜃 and the estimator 

θ̂∗
B is the minimax estimator. In fact, the value of the game is the loss of the Player-II. 

Hence, the optimum strategy of Player-II and the value of game are given as. 

 

Optimum Strategy Corresponding Loss Value of Game 

θ̂5 =  ∅5rTr LLF e−α(1 − α∅5)−r − 1 − α(r∅5 − 1) 

θ̂6 =  ∅6rTr LLF e−α(1 − α∅6)−r − 1 − α(r∅6 − 1) 
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6 NUMERICAL   ANALYSIS 

The relative efficiencies of the Bayes shrinkage estimator 𝜃𝑖̃ (𝑖 = 1,2) relative to the 

UMVU estimator 𝑇𝑟 under the SELF and the LLF criterions are defined as  

RE(S)(𝜃𝑖̃, Tr) =
R(S)(Tr)

R(S)(𝜃𝑖̃)
,    (i=1,2)                                                (6.1) 

and 

RE(L)(𝜃𝑖̃, Tr) =
R(L)(Tr)

R(L)(𝜃𝑖̃)
, (i=1,2)                                                           (6.2) 

  The expressions of relative efficiencies are the functions of r, α, δ and a whereas 

RE(S)(𝜃𝑖̃, Tr) is independent with ‘a’. For the selected set of values r =

 (05(05)20) ; 𝛼 =  (0.25(0.25)1.00)  ; δ =  (0.10(0.10)0.70)         and a =
 (1.00, 1.25, 1.50,2.00, 3.00, 5.00)  the relative efficiencies have been calculated in 

percentage and presented in Tables- (1)-(4), respectively. The numerical findings are 

presented here only for r =  05  when risk criterion is the LLF.  

Table- 1 

𝐑𝐞𝐥𝐚𝐭𝐢𝐯𝐞 𝐄𝐟𝐟𝐢𝐜𝐢𝐞𝐧𝐜𝐞𝐬 𝐨𝐟 𝐒𝐡𝐫𝐢𝐧𝐤𝐚𝐠𝐞 𝐄𝐬𝐭𝐢𝐦𝐚𝐭𝐨𝐫𝐬 𝐮𝐧𝐝𝐞𝐫 𝐒𝐄𝐋𝐅 

 

r 

 

𝛅 

𝐚 

1.00 1.25 1.50 2.00 3.00 5.00 

05 

0.10 1.1189 1.2226 1.4359 1.2359 8.5241 0.63789 

0.20 1.142 1.2458 1.6569 2.0054 1.7422 1.40374 

0.30 1.1267 1.2606 1.8266 3.2005 4.6623 4.97794 

0.40 1.1268 1.2658 1.8904 4.0004 1.0568 3.30581 

0.50 1.1276 1.2608 1.8265 3.2022 4.6619 4.97765 

0.60 1.1243 1.2464 1.6573 2.0008 1.7426 1.40383 

0.70 1.1189 1.2224 1.4364 1.2307 8.522 0.63851 

10 

0.10 1.0788 1.1466 1.2904 1.1122 7.269 0.49829 

0.20 1.0822 1.1614 1.4276 1.6664 1.4277 1.08246 

0.30 1.0834 1.1704 1.5266 2.3809 3.3889 3.64698 

0.40 1.0845 1.1732 1.5622 2.7768 6.2504 1.73564 

0.50 1.0842 1.1705 1.5266 2.3809 3.3897 3.64673 

0.60 1.0822 1.1612 1.4292 1.6666 1.4284 1.08209 

0.70 1.0778 1.1465 1.2902 1.1109 0.7272 0.49823 

15 

0.10 1.0577 1.1098 1.2176 1.0587 0.6743 0.43219 

0.20 1.0617 1.1204 1.3169 1.5004 1.2779 0.92691 

0.30 1.0629 1.1270 1.3852 2.0008 2.7654 2.98193 

0.40 1.0629 1.1278 1.4103 2.2502 4.5148 1.13897 

0.50 1.0626 1.1264 1.3856 2.0003 2.7654 2.98249 

0.60 1.0612 1.1202 1.3574 1.5003 1.2786 0.92784 

0.70 1.0586 1.1092 1.2174 1.0586 0.6743 0.43168 

20 
0.10 1.0456 1.0869 1.1733 1.0314 0.6494 0.39483 

0.20 1.0478 1.0956 1.2523 1.4008 1.1936 0.83795 
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0.30 1.0501 1.1005 1.3039 1.7816 2.3965 2.58227 

0.40 1.0502 1.1022 1.3221 1.9605 3.6102 8.41322 

0.50 1.0508 1.1006 1.3034 1.7816 2.3957 2.58249 

0.60 1.0489 1.0952 1.2524 1.4004 1.1932 0.83768 

0.70 1.0459 1.0868 1.1729 1.0314 0.6494 0.39464 

 

Table- (1) shows that the Bayes shrinkage estimator 𝜃1̃ performs uniformly well for 

small a ≤ 3.00  with respect to the UMVU estimator 𝑇𝑟 under the SELF. The effective 

interval (the interval in which the relative efficiency is more than one) decreases with 

the sample size r as well as ′a′ increases under the SELF. The efficiency attains 

maximum at the point δ =  1.00   and the gain in efficiency decreases as r increases for 

all considered values of δ when other parametric values are fixed. Further, the gains in 

efficiencies increase as α increases in the interval 0.10 ≤ δ ≤ 0.70 with other fixed 

parametric values.  

 On the other hand, when the risk criterion is the LLF Table- (2) the estimator 

𝜃1̃ performs uniformly well with respect to 𝑇𝑟 when sample size is small 𝑟 (≤ 10) for 

all considered values of parametric space but for a large sample size, this property holds 

in the interval 0.20 ≤ 𝛿 ≤ 0.60. The gain in efficiency increases when ‘a’ increases for 

all considered values of 𝛿 with small sample size 𝑟 (≤ 10) and in the interval 𝛿 ≤ 0.70  

otherwise, under other fixed parametric values. Other properties are similar to the 

SELF-criterion.  

Table- 2 

         𝐑𝐞𝐥𝐚𝐭𝐢𝐯𝐞 𝐄𝐟𝐟𝐢𝐜𝐢𝐞𝐧𝐜𝐞𝐬 𝐨𝐟 𝐒𝐡𝐫𝐢𝐧𝐤𝐚𝐠𝐞 𝐄𝐬𝐭𝐢𝐦𝐚𝐭𝐨𝐫𝐬 𝐮𝐧𝐝𝐞𝐫 𝐋𝐋𝐅 

𝒓 = 𝟎𝟓 𝐚 

𝜶 𝛅 1.00 1.25 1.50 2.00 3.00 5.00 

0.25 

0.10 1.1364 1.2834 1.6459 1.4876 1.0429 1.01285 

0.20 1.1449 1.2955 1.8403 2.3579 2.0766 1.67652 

0.30 1.1504 1.2958 1.9556 3.6154 5.4009 5.76955 

0.40 1.1524 1.3010 1.9570 4.2401 1.1418 3.61787 

0.50 1.1287 1.2616 1.8308 3.2411 4.8408 5.27279 

0.60 1.1156 1.2310 1.6227 1.9924 1.7803 1.44353 

0.70 1.1036 1.1741 1.3643 1.2142 1.1520 1.13491 

0.50 

0.10 1.1539 1.3179 1.9504 1.8878 1.3369 1.01763 

0.20 1.1700 1.3504 2.0769 2.9134 2.6049 2.10555 

0.30 1.1844 1.3754 2.1063 4.2663 6.5836 7.04196 

0.40 1.1976 1.3912 2.1564 4.6859 1.2954 4.22397 

0.50 1.1359 1.2779 1.8865 3.4245 5.2806 5.871793 

0.60 1.11.9 1.2319 1.6338 2.0689 1.9079 1.56062 

0.70 1.1059 1.1809 1.3719 1.2478 1.1889 1.16219 

0.75 

0.10 1.1847 1.3825 2.3036 2.5673 1.8404 1.41078 

0.20 1.2102 1.4368 2.4287 3.8544 3.5119 2.84393 

0.30 1.2343 1.4858 2.4819 5.3705 8.6322 9.25591 
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0.40 1.2579 1.5267 2.5246 5.5109 1.5687 5.17394 

0.50 1.1578 1.3222 2.0300 3.8549 6.1810 7.05526 

0.60 1.1305 1.2589 1.7205 2.2878 2.1929 1.81164 

0.70 1.1126 1.1942 1.4222 1.3604 1.1989 1.17373 

1.00 

0.10 1.2423 1.5049 2.7489 3.8943 2.8306 2.18447 

0.20 1.2789 1.5880 3.0770 5.6787 5.3005 4.30109 

0.30 1.3145 1.6667 3.2657 7.1632 1.2676 1.36488 

0.40 1.3511 1.7430 3.2841 7.4944 2.1476 7.19681 

0.50 1.2059 1.4209 2.3514 4.7977 8.0837 9.48784 

0.60 1.1592 1.3376 1.9508 1.7941 2.8118 2.35295 

0.70 1.1329 1.2539 1.5876 1.6378 1.2404 1.19202 

 

The Bayes shrinkage estimator 𝜃2̃ performs well for all considered values of the 

parametric space when a ≤ 10.00 with respect to 𝑇𝑟 under the SELF. 

The gain in efficiency increases when ‘𝛼’ increases in the interval  0.10 ≤ 𝛿 ≤ 0.70 

for all considered parametric values when a ≤ 10.00. Other properties of the estimator 

𝜃2̃ are similar to the estimator 𝜃1̃ under the SELF.  

Table - 3 

𝐑𝐞𝐥𝐚𝐭𝐢𝐯𝐞 𝐄𝐟𝐟𝐢𝐜𝐢𝐞𝐧𝐜𝐞𝐬 𝐨𝐟 𝐒𝐡𝐫𝐢𝐧𝐤𝐚𝐠𝐞 𝐄𝐬𝐭𝐢𝐦𝐚𝐭𝐨𝐫𝐬 𝐮𝐧𝐝𝐞𝐫 𝐋𝐋𝐅 

𝒓 = 𝟎𝟓 𝐚 

𝜶 𝛅 1.00 1.25 1.50 2.00 3.00 5.00 

0.25 0.10 1.4011 1.3789 1.2606 1.0114 1.0143 0.61751 

0.20 1.8487 1.9338 1.9975 1.9081 1.6314 1.36426 

0.30 2.4074 2.5482 3.0787 4.0784 4.8818 4.94667 

0.40 2.6426 2.8502 3.7558 6.5686 1.4541 3.98498 

0.50 2.4074 2.5491 3.0787 4.0779 4.8821 4.94599 

0.60 1.8992 1.9346 1.9979 1.9080 1.6309 1.36343 

0.70 1.4049 1.3800 1.2606 1.0114 1.0138 0.61802 

0.50 0.10 1.3787 1.3504 1.2300 1.0924 1.0767 0.61609 

0.20 1.9355 1.9616 2.0005 1.8926 1.6204 1.36008 

0.30 2.5545 2.6920 3.2049 4.1530 4.8969 4.94266 

0.40 2.8590 3.0740 4.0114 6.9020 1.5027 4.06494 

0.50 2.5540 2.6920 3.2049 4.1530 4.8970 4.94263 

0.60 1.9350 1.9610 2.0002 1.8924 1.6204 1.35902 

0.70 1.3787 1.3506 1.2298 1.0928 1.0767 0.61587 

0.75 0.10 1.3479 1.3200 1.1980 1.1740 1.1000 0.61409 

0.20 1.9627 1.9805 1.9980 1.8771 1.6100 1.35601 

0.30 2.7014 2.8350 3.3290 4.2241 4.9117 4.93805 

0.40 3.0889 3.3118 4.2800 7.2500 1.5530 4.14669 

0.50 2.7015 2.8350 3.3290 4.2242 4.9116 4.93802 

0.60 1.9627 1.9807 1.9980 1.8761 1.6098 1.35596 
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0.70 1.3481 1.3186 1.1990 1.1740 1.1000 0.61437 

1.00 0.10 1.3160 1.2870 1.1697 1.2569 1.1534 0.61208 

0.20 1.9821 2.0000 1.9987 1.8600 1.6000 1.35003 

0.30 2.8478 2.9769 3.4500 4.2915 4.9250 4.94008 

0.40 3.3340 3.5640 4.5630 7.6085 1.6045 4.23009 

0.50 2.8482 2.9776 3.4500 4.3000 4.9245 4.93465 

0.60 1.9824 1.9939 2.0000 1.8592 1.5994 1.35208 

0.70 1.3200 1.2858 1.1689 1.2567 1.1528 0.61207 

 

Under the LLF criterion Table (4), the estimator 𝜃2̃ also performs well for a ≤ 10.00  

with respect to 𝑇𝑟 and the gain in efficiency increases as ‘𝛼’ increases for all considered 

values of parametric space. Other properties of 𝜃2̃ are similar to the Bayes shrinkage 

estimator 𝜃1̃ under the LLF criterion. The gain in efficiency is larger for the Bayes 

shrinkage estimator 𝜃2̃ under the LLF-criterion with respect to the SELF-criterion.  

Table - 4 

𝐑𝐞𝐥𝐚𝐭𝐢𝐯𝐞 𝐄𝐟𝐟𝐢𝐜𝐢𝐞𝐧𝐜𝐞𝐬 𝐨𝐟 𝐒𝐡𝐫𝐢𝐧𝐤𝐚𝐠𝐞 𝐄𝐬𝐭𝐢𝐦𝐚𝐭𝐨𝐫𝐬 𝐮𝐧𝐝𝐞𝐫 𝐋𝐋𝐅 

𝒓 = 𝟎𝟓 𝐚 

𝜶 𝛅 1.00 1.25 1.50 2.00 3.00 5.00 

0.25 0.10 1.00 1.50 2.00 2.50 5.00 10.00 

0.20 16700 1.6480 1.5228 1.2320 1.0480 0.76266 

0.30 21828 2.2390 2.3500 2.2700 1.9460 1.63009 

0.40 2.6500 2.8223 3.4669 4.7000 5.6628 5.72891 

0.50 2.7678 3.0000 3.9756 7.0420 1.5780 4.36696 

0.60 2.4215 2.5661 3.1151 4.1819 5.1067 5.24819 

0.70 1.8674 1.9050 1.9867 1.9300 1.6739 1.40217 

0.50 0.10 1.3455 1.3239 1.2402 1.0010 1.0008 0.61407 

0.20 2.0561 2.0310 1.8868 1.5460 1.2074 0.98479 

0.30 2.7073 2.7747 2.9144 2.8200 2.4255 2.04227 

0.40 3.2547 3.4682 4.2748 5.7842 6.9390 6.98348 

0.50 3.2688 3.5345 4.7002 8.3264 1.8630 5.14354 

0.60 2.6880 2.8430 3.4325 4.5904 5.6419 5.85897 

0.70 1.9503 1.9879 2.0705 2.0349 1.7907 1.51209 

0.75 0.10 1.3588 1.3400 1.2458 1.0309 1.0103 0.63663 

0.20 2.7212 2.6922 2.5132 2.0844 1.6523 1.36092 

0.30 3.6010 3.6928 3.8837 3.7635 3.2504 2.75193 

0.40 4.2806 4.5699 5.6578 7.6677 9.1513 9.16883 

0.50 4.3138 4.6537 5.9424 10.5646 23.6617 9.02684 

0.60 3.1689 3.3499 4.0388 5.4028 6.7077 7.0347 

0.70 2.1640 2.2056 2.3074 2.3005 2.0584 1.75096 

1.00 0.10 1.4376 1.4205 1.3360 1.1285 1.0426 0.70677 

0.20 4.0366 4.0000 3.7496 3.1462 2.5257 2.10398 
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0.30 5.36.00 5.5000 5.7926 5.6238 4.8784 4.15289 

0.40 6.28.44 6.7237 8.3744 11.3846 13.5362 1.36003 

0.50 6.74.86 6.8367 8.3884 1.4510 33.6700 92.9681 

0.60 4.13.59 4.3702 5.2878 7.1210 8.9348 9.49512 

0.70 2.65.89 2.7150 2.8616 2.9038 2.6446 2.26809 
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