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Abstract

Models of population’s interaction among one or two preys and two predator
mutualists are studied. Sufficient conditions for local and global stability of
the equilibria and uniform persistence are presented.

1. Introduction

In this paper we study models involving one or two preys and two mutualistic
predators. We study both facultative and obligate mutualism. An example of this type
of mutualism occurs in Red Sea [3,8], where the effect of mutualism is to increase the
predator functional response. There, Yellow saddle goatfish, P. cyclostouces, and bird
wrasse, Gomphosus caeruleus, tackle coral reefs from both sides so that the prey may
be driven toward each other and thereby caught and eaten. Without the cooperation
between these two fish species, such prey would be available only minimally and with
great difficulty. Hence, the effect of each predator population on the other is to
increase hunting efficiency. In earlier studies such three species models are analyzed
in [3,6]. Specifically sufficient conditions for uniform persistence are obtained. Other
models involving mutualism are studied in ([7,9,10] and references theirin).

In the next section we describe our model. We show that the model is meaningful, i.e.
solutions with positive initial conditions stay positive and are bounded in forward
time. In section 3 we consider existence of equilibria in case of facultative and
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obligate mutualism and study their local stability. In section 4 we derive conditions
for global asymptotic stability of interior equilibria of three/four dimensional
subsystems/system. In section 5 we obtain sufficient conditions for uniform
persistence. In the section 6 we study a special case of our model and present
numerical examples to illustrate our results.

2. The Model

The model is:

dxq

a x191(x1) — y101(x1, ¥2) — ¥2q1 (%1, Y1),

d

f = x292(x2) = y1P2(X2,¥2) = Y242 (%2, ¥1),

d ~

% = y1[=51(y1) + c1p1(x1, ¥2) + €102 (x2, ¥2)], (1D
d ~

% = Yo[=52(y2) + c2q1(x1, ¥1) + E2q2(x2, y1)1,

xi(0) =x;0=20,y;(0) =y;0=0,i=1,2,
where the variables x;, x, denote prey densities and y,, y, that of predators.
We assume the following hypotheses on the given functions,

(H,) all functions are continuously differentiable so that solution to I.V.P. (1) exist,
are unique and can be continued for all positive time.

(Hy)gi(x;) : [0,0) - R, g;(0) >0,9; <0; There exist K;’s such that g;(K;) =
0,i = 1,2. The constants K; and K, are the carrying capacities of x; and x,
respectively.

The functions p;(x;,y,), i = 1,2 are predator response functions of the predator y;.
We assume

op; ap; )
(H3) pi(0,y,) = O'a—f; > 0,% >0i=12

These conditions imply that there is no predation in absence of prey and that the
predator response function p;(x;,y,) is an increasing function of density x;. This
hypothesis implies that y, increases the predation by y;.

We also assume

aq; aq;
H ; = > /> i =12.
(Hy) qi(0,y1) =0, ox, = 0, and 3y, 0, i=1,

The positive constants rate of conversion c; and ¢, denote the rate of conversion of
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prey biomass to predator biomass.
aSi

(Hs)Finally s;(y;) denotes the death rate of the predator y; and 3y,

>0, i=1.2

The first result is:

Theorem 1: The solutions to IVP (1) with positive initial conditions stay positive for
t>0.

Proof — We rewrite first equation in (1) as,

t dx, t P1(x1(5),3’2(5)) Q1(x1(5);3’1(5))
= x1(5)) — y1.(s) — ¥2(s) } ds,
0 xl j;) {gl( 1 ) yl xl(S) yZ xl(S)
where, lim p1(x1,Y2) _ 0p1(0,y2) > 0,and lim q1(x1,y1) _ 9q1(0,y1) >0.
x1—0 X1 0x4 x1—0 X1 0x4
t( . _Y1P1_Y241
ThUS, xl(t) = xloefo (gl X1 X1 )ds > 0

Proceeding similarly we can show x,(t) > 0,y;(t) > 0 and y,(t) > 0 for allt > 0.
Theorem 2: Let G; = gl’%(sl(O) +9:(0)x, i=12L; = Hﬁ%(sz (0) + g:(x)) x,
i=12.

Further let,

A ={(x1,x2,y1,y2) 0<x <K,0<x; <K,,0< ¢y +Cixy +y; <

€1G1+C1Gy ~ C2L1+G5 Ly
5.0’ 0<cx;+Cx, +y, < T } (2)
Then

(1) A is positively invariant.
(i) (x1,%2,¥1,¥2) > Aast - oo

Proof — Let 0 < x;,(0) < K;. Then u' = ug;(u) ,u(0) = x;(0), has solution u(t) <
K;. Thus by comparison Theorem [ 5], x;(t) < K;. In general, lim sup;_,o,x, (t) <
K;.

Similarly
0 < x,(0) < K, implies, x,(t) < K,. In general, lim sup;_,,x,(t) < K,.
Next ,

(c1xqy + Cix, + 1)’
< 01%191(x1) + %261 92(x3) — 51(0)y; — ¢1x151(0) — x,¢151(0)
+ ¢1x151(0) + €1x,5,(0).
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Setu = ¢yx1 + ¢1x, + y; 10 Qet,

U+ 51(0)u < c1%1(51(0) + g1 (1)) + E1x2(51(0) + g2(x2))
<Gy + 616G,

Solving for u(t) and using comparison theorem,

(C161+q62)(351(0)t—1)
51(0)

(uesl(o)t - u(O)) <

(€16, +871Gy)(1-e51(0)t)
+
51(0)

0 5@ {u0 - S5 4 5558

Or u(t) < u(0)e 510t

So, ¢1x1(0) + ¢1x,(0) + y,(0) < Clel-(FOE)IGZ
1

Implies, c;x; + C1x, +y; < €1G11C1Ga
51(0)

In general,

c1G1 + 616G,

s (0)

Similar argument holds for c,x; + Gx, + 5 .

c1x1(t) + Cix,(t) +y. (1) < +east > o,

3. Equilibria and their local stability
In this section we study existence of equilibria depending on the form of mutualism.
3.1.1 The Facultative Mutualism

In this section we consider the case when predators exhibit facultative mutualism, i.e.
when both predator populations are capable of surviving on their own, but are able to
sustain higher population numbers due to mutualism. Thus we require, 3 x,* such that,

—51(0) + ¢4p1(377,0) = 0, (3.1)

—51(0) + &p2 (377, 0) = 0, (32):(3)
<K, i=12.

If (3.1) does not hold, there exists no equilibrium in positive x; — y,quadrant and

hence has no periodic solution in it. Hence by Poincare Bendixson Theorem,

equilibrium (K3, 0,0,0)is globally asymptotically stable in the positive x; — y,;

quadrant. Similar conclusion follows when (3.2) does not hold.

Similarly, we require
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—5,(0) + c2q,(%77,0) = 0, (4.1)
—5,(0) + C29,(x77,0) = 0, (4.2) ; (4)
for some X, < K;,i =1,2.

We conclude, that there exist equilibria

E((0,0,0,0), E1 (K4, 0,0,0), E2 (0, K5, 0,0), E5 (%1, 0, y1, 0), E4(0, X3, y11, 0),

Es(x1,0,0,57), E¢(0,%7,0,V22), E7(x31, X32, V31, 0), Eg (X41, X42, 0, Va2), E9 (%51, 0, Y51, V52)
and E;0(0, x42, Ye1, Ve2)- Also interior equilibrium E*(x3, x5, y1,y,) may exist. One
sufficient condition for existence of E* is that system (1) be uniformly persistent (see[

2]).

3.1.2 Facultative — Obligate mutualism

Next we consider the case when mutualism is obligate for one predator and facultative
for the other. The mutualism will be obligate for y,, when

—51(0) + ¢1p1 (K1, 0) + E1p2(K3,0) <0 (5.1
It will be obligate for y,, when (5)
—52(0) + ¢2q1(K1,0) + 63q2(K3,0) <0 (5.2)

When (5.1) holds then boundary equilibria E5, E, and E, do not exist.
When (5.2) holds then equilibria Es, E, and Eg do not exist.
3.1.3 Obligate Mutualism

When (5.1) and (5.2) both hold then mutualism is obligate for both y;and y,. In this
case equilibria E5, E,, Es, Eg, E; and Eg do not exist.

3.2 Stability of Equilibria

Jacobian matrix V of system (1) is,

[9: t X101 = Y1Pix, — Yollix, 0 —P1 — Y2y, ~Vby, — 0 1
V= I 0 92t %202 = Y1P2x, — Y2lox, D2 ~ Yooy, —Y1D2y, — 42 I
| Y16 D1y, Y1€1P2x2 =5t op tGp, — %Sy YD1y, T EipZyz |
l GY201x, CAi}’z‘szz C2Y2 iy, T Ei‘byllh =S+ GG + GG - yzséj

V(E,) = diag(g:(0), g2(0), —s1(0), —s,(0))

So E, is unstable in x; and x, directions and stable in y; and y, directions. Next,

[thi (K1) 0 —p1(K1,0) —q,(K1,0) ]
V) = 0 92(0) 0 0

1 [ 0 0 —s,(0) + c;p,(Ky, 0) 0 J

0 0 0 —5,(0) + c,q,(K4,0)

The equilibrium E; (K4, 0,0,0) is unstable in x, direction. In y, and y, directions the
eigenvalues are
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_51(0) + Clpl(Kli O) and _52(0) + Cqu(Kl, 0) > 0, I’ESpECtIVE|y

Same way E, (0, K5, 0,0) is unstable in x; direction. The eigenvalues of V(E,) in y,
and y, direction are —s;(0) + ¢;p2(K,, 0) and —s,(0) + ¢3q, (K3, 0). respectively.
Also,

I[gl(x_l) +191(%) - }71p1x1(x_1, 0) 0 —p1(%,0) ~J1D1y, (%,0) - q (75_1')71)]
o 0 92(0) = 7124, (0,0) 0 0
V[E;(%;, 0,51, 0)] = o : P o
s [ C1)1P1x, (#,0) 0 =517 €1Y1P1y, (%,0)

0 0 0 =5,(0) + ¢0: (%3, 71)

So V(E3) has eigenvalue g,(0) — ¥1p,x,(0,0) in x, — direction. The eigenvalue in
y, — direction is —s,(0) + c,q, (7, y7). The other two eigenvalues are roots of

22 + (ay + y1s1 ) A + a1 V151 (01) + 17191 (%7, 0)pyy, (37,0) = 0,
where, a; = g1 (x7) + X191 (X1) — Y1P1x, (X1, 0).

Proceeding same way V(E,(0, %z, 17, 0) )has eigenvalues g, (0) — ¥11p1x,(0,0) and
—s,(0) + ¢3q,(x3, ¥11) in x4 and y, directions, respectively. The other two
eigenvalues will be given by,

22 + (e + y1155(710)) A + 271151 (V11) + E11P2 (X2, 0)pay, (%2,0) = 0,
where, a; = g,(%3) + X395 (X2) — Y11D2x, (%2, 0).

Also, V(Es(%7,0,0,75)) has eigenvalues g,(0) — ¥3q,y,(0,0) and —s, (0) +
c,p1(X7,¥7) in x, and y,directions. The other two eigenvalues are the roots of

A+ (053 + 335, (575))/1 + a3¥35;(32) + V26201 (%7, 0)q15, (37,0) = 0,
where, az = g,(x7) + X191 (X1) — ¥2q1x, (37, 0).

V(ES(O, X3, 0,372’2))has eigenvalues g, (0) — ¥32q14,(0,0) and —s;(0) +
¢1p2 (%3, ¥32) in x, and y, directions. The other two eigenvalues are roots of

A*+ (“4 + 37;255(}7;2))1 + a4 Y225;(722) + 6252202 (X7,0) g2y, (33, 0) = 0,

where, a, = g,(37) + X592 (%7) — ¥22q2x, (X2, 0).

Next,
91(x31) + 23191 (%31) = YsiP1y, (431, 0) 0 ~p1(131,0) ~Ts1Piy, (131, 0)
v _ 0 92 (x33) + X391 (x30) = Y31Pax, (Gs2 0) P, 0) ~Y31P2y, (432, 0) = go(¥32, ¥31)
(B, (x5, %3, 931, 0)] = ~ , ~
CiY31P1x, (431, 0) CY31Pz, (K2, 0) ~Y3151 (031) ¢ Y31y, (X1, 0) + Cipay, (30 0)
0 0 0 =5(0) + 01(51,931) + G2 (%30, Y1)

Eigenvalue of V (E;(x31, X32, ¥31,0)) in y,— direction is

&1 = —52(0) + c2q1(x31,¥31) + E2q2(x32,¥31).
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Other eigenvalues are the roots of
B+ A%+ A+ pu; =0
where, p; = —(y3151(y31) + a4 + a3) ,
Uz =az +a; (az + ¥3151(¥31) + C1Y31P1x, (231, 0)p1 (x31, 0)),
U3z = —Q103 — AC1Y31P1x, (x31,0)p1(x31,0) ,
a; = gi(x3;) + x3;9{(x3;) — Y31Dix;(x3;,0),1 = 1,2.
and az = €1y31P2(x32, 0)P2x, (X32,0) — ¥3151(¥31)a;
Similarly, the eigenvalue of V(Eg(x41, X42, 0,42)) in y,— direction is &, = —s,(0) +
191 (%41, Ya2) €102 (Xaz, Yaz)-
Other eigenvalues are given by the roots of
B4y 22 +y,1+y;=0
Y1 = —(Vazs2(Vaz) + as + as)
Y2 = Qg T a4 (a5 + V4252 (Va2) + C2Ya2q1x, (X41-0)q1 (X4, 0))
Y3 = —Q486 — A5C2Ya2q1x, (K41, 0)q1 (x4, 0)
Qi3 = Gi(X4i) + X4, 9 (Xai) — Var Qix; (%43, 0), 1 = 1,2,
and ag = €3¥42q2(X42, 0)q2x, (X42,0) — Y4255 (Vaz)as
Eigenvalue of V(Eg(xs1,0, ¥s1, ¥s2)) in x, - direction is
3 = 92(0) — ¥51P2x,(0,¥52) — Y5202, (0, ¥51).
Other eigenvalues are given by the roots of
2>+ (Y5151 + Y5252)4%
- [91(}’5151 + ¥5252)
+ (V5161912 (1 + Y521y, ) + C2Vsau, (Vs1P1y, + @1))
- ()’51}’525155 - Cz)’szQ1y1C1}’51p1y2)] A
+ Ys161P12,{(P1 + Y5241y, ) V5252 + C2Y5201y, (V51P1y, + q1)}
+ ¢2¥5212,{(P1 + Y5241y, )C1Vs51P1y, + V5151 (Vs1P1y, +41)} = 0
where, e; = g1 + X191 — Y1P1x; — Y2qix,-

Above as well as below all functions are evaluated at the equilibrium under
consideration.
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Eigenvalue of V(E10(0, x4, Y61, V62)) in x4 - direction is

4 = 91(0) — ¥61P1x, (0, ¥62) — Y6241, (0, ¥61). Other eigenvalues are the roots of
2+ (V6151 + Vo252 — €2) A2

- [62(3’6151 + Y6252)

+ (}’61C~1272x2 (p2 + y62q2y1) + 2Y6242x, (3’61p2y2 + QZ)) — Y61Y625152

+ CE}’61}’62612y1€~1P2y2] A

+ J’61C~1P2x2{(P2 + }’62%3/1)}’6252 + 63Y6242y, (Y61P2y2 + ‘h)}
+ GY62925,{(P2 + Y6242y, ) E1V61P2y, + Y6152 (Ve1P2y, + 42)} = 0,

where, e, = g; +x,9; — ViP2x, — V292x,-

We now obtain conditions of asymptotic stability of interior equilibrium E* :

[9: + X0 = ViPry, = Yaliy, 0 —P1 ~ Y2l NPy, ~ @]
4= (aij) _ 0 92 %292 : b2y, ~ V2lzy, P2~ yZ,qul “ViPzy, : a4z
)by, C1)1P2y, s G)1by, + GY1D2y,
Y2ty C;yzqzxz Y21y, T CEYZ‘Izyl =253

Computing det(A- A1) = 0 we get

FQA) =24+ a3 + a,2% + azd + a, =0,

where,

a = — Xtay,

az =ml—m2+ (ay; + az2)(ass + as) + a0, + By,
az = —(ai1 +az) ml— ay1a55(ass + ags) + 1+ 72,

ay =mla;az; + 8 + 6+ 83,01 = —(a13a31 + a14a41),
Y1 = (@13G2; + m5)azy — a4y (M6 — A1405,),

81 = mb aza4 — M5 azaz:,

Yo = ayy M2+ az; m3 —ay, m4, 8§, = ayq (a4, m4d — az, m3)
03 =m7 (az1a42 — A41032).

ml = 33044 — A34043, M2 = Gp3037 + U404 ,

M3 = Ap3044 — A24043, M4 = Ap3034 — Az4033,

M5 = Q43044 — A14Q43, M6 = Ay30a34 — A14033,

and m7 = aq3a54 — Aq4053.

All the entries of matrix A above are assumed to be computed at E* (x3, x5, V1, ¥5)-

The result below follows from Hurwitz’s theorem [1]:
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Theorem 3: The interior equilibrium E*(x71, x5, y1,v,) is asymptotically stable if
a; >0, 1<i<4aia,a; — a3 — o?a, > 0.

4. Global Stability

In this section we obtain conditions of global asymptotic stability of four, boundary
equlibria that are interior to three dimensional subsystems and the interior equilibrium

of (1).

The results of boundary equilibria will be used to obtain conditions for uniform

persistence in the next section.

We set Ry, = {(x,y,2)|x > 0,y > 0,z > 0}, and define Ry, to be the closure of
R%,, and, so on.

We consider the question of global asymptotically stability of E,(x34, x3,, ¥31,0) for
the system,

x1 = ax191(x1) — y101(x1, 0),
Xy = X292(x2) — y1p2(x2,0),

y1 = ¥1[=s1(y1) + c1p1(x1,0) + E1p, (x5, 0)]
x1(tg) = x10 = 0,x,(tg) = X209 = 0,y1(tp) = y10 = 0.

We will find sufficent conditions, such that E- (x5, X35, V31, 0) is globally

asymptotically stable in RY ..

We define V (x4, x5, y1)[ 4]:
2

X; y
V(x1,%x2,y1) = Z (Xi — X3; — X3j Ing_l,> + V1= Y31~ Y3 logy—l.

im1 3i 31

V is positive definite about E; (x31, X32, V31, 0). Also V (x4, x5, V1) = 4+, 8S x4, X,
and/or y,tend to zero.

Computing ‘2—: along the solutions, we get

av

— P2(x2,0)
dt

pl (xll 0)]
X1 2

= (X1 — x31) laéh(xﬂ W + (xz — x32) lgz (x2) =1
+ (1 — ¥3){=51(y1) + c1p1(x1,0) + E1po (x5, 0)}
=% =1 lijy

where,



924 Yogendra Singh and Ravinder Kumar

p1(x31,0) p1<x11,o)]} |

X31 X

11 = (g — x31) {0[91(9(1) — 913+ [

(x1—x31)

(1 — ¥31)p1(x31,0),

li=0,1;3=- Xa1

P2(x32,0) _ pz(xz.o)]}
X32 X2 ,

l,1 =0, = (x; — x33) {gz(xz) — 92(x32) + ¥4 [

I3 = —xl;(xz — X32) (¥1 — ¥31)P2 (%32, 0), I3 = 1 (71 — ¥31)[p1(x1,0) —
p1(x31,0)],

I3 = 171 — ¥31)[P2(x2, 0) — P2 (x32, 0)], 33 = —(¥1 — Y30 [s1(r1) — 51 (¥31)]-
We set

g = (g — x31)*my3 (X1, 1), My, = 0,

Lz + 131 = 2(x; — x31) (1 — ¥31)ma3(x1),

Lz = (x2 = x32) "M, (x7),

laz + L3z = 2(x2 — x32) (Y1 — ¥31)Ma3(x2),

l33 = (y; — 3’31)2"133(3’1),

and

m;; = m;j, [>]
Thus

Y _ xTMx,

dt

X1 — X31

where, M =(m;; ), x = (xz - st).
V1= Y3

Also from Theorem 2 we have that A, =

~ c1G1+¢{G
{(x1;x2,3’1)|0 <x<K,0<x, <K% +Cixp+y; < -

52(0) } IS an

attracting set for the subsystem in RY . ..

Theorem 4: Let the symmetric matrix M be negative definite in A,. Then
E;(x31,X32,y31,0) is globally asymptotically stable in RY ...

Proof : The solutions are bounded and the largest invariant set of
{x € R} . .|V =0} = {E;}. Hence E; is globally asymptotically stable in

X1X2Y1

R% . x,y, [11].

Next we consider the question of global asymptotically stability of Eg(x41, X42,0, V42)
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for the system
x; = axyg1(x1) — ¥2q:(x1,0),
Xy = %202(X2) — ¥2q2(x2,0),

V2 = Y2[=52(y2) + ¢2q1(x1,0) + E3q2(x2,0)]
x1(to) = X109 = 0,x3(tp) = X290 = 0,¥,(tp) = y20 = 0.
We define a Lyapunov function V((xy, X2, y2),

2

X V2
V(x1,%2,¥2) = Xi — Xg; — X4i 10— | + Y2 — Vaz — Yao logy—.

im1 41 42

V is positive definite about Eg(x41, X42,0, V42). Also V (xq, x5, y,) = +0, as x; and/or
y,tend to zero, i = 1,2. Computing time derivative of V along the solutions, we get,

av
P (1 — x41) {“ g1(x1) — i}—j% (x4, 0)} + (x2 — x42) {gz(xz) - i/_qu (x2, 0)}

+ (V2 = Ya){—52(32) + ¢c291(x1,0) + E3q2(x2, 0)}

—\"3 l

T j=1"%j

q1(x41,0) Q1(x1,0)]}
X1 X1 '

lig = (g — x41) {a[gl(xl) —g1(xs )] + 2 [

_ (x1—x41)
X41

li=0,1;3 = (J’z - 3’42)%(9541.0) )

q2(x42,0) Q2(x22’0)]} ,

X42 X

l1 =0, = (x; — x42) {gz(xz) — 92(X42) + Y2 [
1
lyz = —E(xz — X42) (V2 = Y42)92(%42,0) ,
l31 = c2(¥2 — Ya2)[q1(x1,0) — q1(x41,0)], 13,
= (2 — ¥a2)[q2(x2,0) — g2 (x42, 0)],
l33 = _(J’Z - }’42)[52 (}’2) - SZ(J’42)]-
Next, we define n;;'s , such that
li1 = (@ — x41)2n11(x1,y2), Ny, = 0,113 + 137 = 2(x1 — x41)(y2 —
Vaz)Ny3(X1),
lyy = (x; — x42)2n22(x2,y2) v g+ 13 = 2(x, — x42)(y2 - y42)n23(x2),

l33 = (y2 — Y42)2n33()’2);
and
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nij = lel', i >]
Thus
av
— = = xTNx,
X1 — X471
N=(nij), X =| X2 — Xy
Y2 = Va2

Also from Theorem 2 we have: A, =
~ L1+C;L
{(x1;x2,3’2)|0 Sx <K, 0<% S Kj, 0005 + 63X +y, < 2t

52(0)
Proceeding as in Theorem 4, we get:

} IS an
attracting set for the subsystem in RY . ..
Theorem 5: Let the symmetric matrix N be negative definite in A,. Then
Eg(x41,%42,0,Y42) is globally asymptotically stable in Ry 5,

Next we consider global stability of E, for the submodel in Ry, ,,.: we define a
Lyapunov function V(x;, y;, v,):

V(xl, Y1, }’2) = (x1 — X571 — X351 log;:) + Zl 1 (yl Vsi — Vsi logyy—:i).

V is positive definite about Eq(xs5q, 0, Y51, ¥s52). Also as x; and/ory; - 0,V — 400,
i=1,2.

Computing the time derivative of V along the solutions of we get,

d_V = (2 — xe1) gy (xy) — p1(x1,¥2) _ q1(x1, 1)
dr A 51 91\X1) =M1 X Y2 X
+ (V1 — ¥s2){=51(y1) + c1p1(x1,¥2)}
+ (V2 — Y52 ){—=52(y2) + €291 (x4, 1)}
=X j=1 Lijy
where,

P1(X51,Y52) _ p1(x1'J’52)) +
Xs51 X1

li1 = (g — xs59) {a[gl(xl) —g1(xs)]1+ 0 (
q1(X51,¥51) _ q1(Xs51,¥51)
Y2 ( )},

X51 X1

li, = —(X1 Xs1) {()’1 Vs1)P1(X51, Vs2) + [Q1(x1,}’1) CI1(’¢1J’51)]},
Y (V2 — ¥s2)
liz = —(x —x51) [P1(x1;}’2) p1(x1,¥s52)] + TCI1(X51;3’51) )
1

lyy =c1(y; — YSl){P1(x1'}’2) —p1(xs51,¥2)},
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Lz = =1 — y5)[s1 (1) — s1(¥s51)],
laz = ¢;(¥1 — ¥51)[P1(Xs51, ¥2) — P1(X51, ¥52)],
l31 = (72 = ¥s2)c20q1 (X1, ¥1) — g1 (x50, 1)},
lsz = c2(¥2 = ¥52) [—q1(X51, ¥51) + g1 (%51, 1)),
sz = —(y2 = ¥52)[52(¥2) — 52(¥52)] -
We set
Ly = (o = x)?r1 (e, Y1, ¥2), bz + Lo = 20 — x50) (V1 — Y50)7112 (X1, Y1, ¥2)
Lz + 131 = 20 — x50 (V2 — ¥s2)113(X1, Y1, ¥2), Loz = (1 — ¥51)°122 (1)
Loz + 13z = 2(y1 — Y5123 (72) (V2 — ¥s2), las = (V2 — ¥52)°133(¥2)-
Define
rij =1 > j,R = (1)),
So,V = xTR x,
Also from Theorem 2, A5 =
1G1

{(x1:3’1;}’2)|0 <x <K;,0<¢x+y; < %:Cﬁﬁ +y, <

CaLg

52(0)

} is an attracting

set for the subsystem in Ry ..

X1~ Xs51
where, R = (r;;) and x = [ Y1 — ¥s1 |.

Y2 = ¥s2
We obtain the following result:
Theorem 6: Whenever the symmetric matrix R is negative definite on A5, the
equilibrium Eq(xs4, 0, ys1,Ys2) is globally asymptotically stable in Ry, ..
In order to obtain global asymptotic criteria for the equilibrium E;,(0, xX¢2, V61, Ve2) IN
R} We define a Lyapunov function V (x,, v1, y2) ,

X2Y1Y2!
V(xZ; }’1; )’2) = (xz - x62 - x62 108%) +Zi2=1 (yl _Y6i _y6i logyy_ell) '

V is positive definite about E;( (0, Xg2, Y61, Ve2)- Also V — 400 as x, or y; tend to
0+,i=1,2.

Computing the time derivative of V along the solutions, we get
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d_V = (x, — xey) (x,) — p2(x2,¥2) _ q2(x2,y1)
dt 2 62)192\X>2 Y1 X V2 X
+ (V1 — Ye){=51(y1) + c1p1(x2,¥2)}
+ (V2 — Yo ){—52(y2) + c2q1(x2, y1)}
— 3] ) l[]!
where,

P2 (X62,Y62) P2(X2,¥62) q2(X62.Y61)
X62 X2

i1 = (xz — x62) {92 (x2) — g2(x62) + 1 (

QZ(xZ'y61))},

X2

X62

liz = =(x2 — x62) {%62 (V1 — Y61)P2(X62, V62) + [CIZ(XZ:JH) CIz(xz;Ym)]}

(J’2 %2)

liz =—(x; — xsz){ [p2(x2, ¥2) — P2(X2, ¥62)] + QZ(x62'Y61)}

1 = (1 — Ye )02 (%2, ¥2) — P2 (X62,¥2)} Loz = (3’1 — Vo) [51(¥1) — s1(¥e1)],

l3 = (V1 — Ye1)Cilp2(X62,¥2) — P2(X62, V62D s 31 = (V2 — ¥62) E2lq2 (X2, ¥1) —
q2(X62, Y1)}

l3; = G2 — Y62)[—02(X62, V61) + @2 (x62, Y11, L33 = (72 — Ye2) [52(¥2) —
s;(¥e2)] -

We set

i1 = (g — x62)%t11 (%2, Y1, ¥2), liz + lp1 = 2002 — X62) (V1 — Yer)t12 (X2, Y1, ¥2),
Lis + 131 = 2(x; — %62) (V2 — Ye2)t13(x2, Y1, ¥2)s Loz = (V1 — Ye1)*ta2 (1),

L + 13z = 2(y1 — Ye)t23s (2) (V2 — ¥62): L33 = (V2 — ¥62)*t33(v2),

Define

tij = tjili >],T = (tl])

So
V =xTTx,

Xy — Xg2
Where, = <)’1 —Ye1 |.

Y2 — Ve2
Also from Theorem 2, A, =

~ c1G

{(xz,yl,y2)|0 <x, <K,,0<&x, +y, < 61(02) 0<Gx,+y, < (o)} isan

attracting set for the subsystem in R} Thus we have:

X2Y1Y2"
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Theorem 7: Whenever the symmetric matrix T is negative definite in the region A,
the equilibrium E; (0, x4,, V51, ¥s2) is globally asymptotically stable in R}

X2y1y2
Lastly we derive conditions for global stability of interior equilibrium E*

Define a Lyapunov function V (x4, x5, ¥4, V2)-

2 2

V(xy, X3, y1, ¥2) = z <xi —Xi — X Ing_i> + z <)’i —Yi — Vi logy—;)
l

i=1 ¢ i=1
V' is positive definite about E*(x7, x5, ¥1,y5).Also as x; and/or y; - 0,V —» 400 , i =
1,2.

Computing the time derivate of V along the solutions of (1) we get,

d_V = (ty —x) g, (xy) — p1(x1,¥2) _ q1(x1,¥1)
dt 1 1 g1(Xq V1 X Y2 X
\ p2(x2,¥2) q2(x2,¥1)
+ (x; —xz){gz(xz)—Y1 Sl ) 22l
X2 X2
+ (1 —YyD{=s1(y1) + c1p1(x1,¥2) + E1p2(x2,¥2)}
+ (V2 — ¥y ){=52(y2) + c2q1(x1,¥1) + 3q2(x2,¥1)}
i,j=1%j »
where,
liy = (x — Xf){ [91(x1) — g1 (xD] + 1 (pl(xllyz) pl(ill,yz)) +y, (ql(ajccl;.yl) _ ql(zll.yl))},
l12 == 0,
_ * pl(xl yZ)
liz =—(x1 — x1) {()’1 )— [CI1 (X1, y1) — q1 (x1')’1)]}
2 —y2)
lig = —(x1 — x1){ [p1(x1,¥2) — p1 (1, ¥3)] + —2%(951’3’1)}
1

l21 = 0,

[pz(xz2 Y3) pz(xz,yé)] +y, [qz(xE,yI) _ QZ(xz:J’D]} ,

Xy x5 Xy

laz = (X3 — x3) {gz(xz) g2(x3) +y1
lps = —(x; — xé){z_z [q2(x2,¥1) — q2(x2, y1)] +xi;[(Y1 —yD)p2(x3,y)1}

s = —(x3 — xz){ [p2(x2,¥2) — P2(x2,¥5)] + M(yz - y;)} )

X2
l31 = c1(y1 — YD1 (X1, ¥2) — P (X1, ¥2)}
l3; = &1 (y1 — yP2(x2,¥2) — 2(x3,¥2)}



930 Yogendra Singh and Ravinder Kumar

lzz = =1 —yDIs1(v1) —s1 (D],

lza = (1 = yOiP1 (61, ¥2) — pa(xt, y2)len + [p2(x3,¥2) — 2 (32, ¥2)1é1}
lyg = 2 — y2)e2{q1 (k1. 1) — g1 (x5, 1)}

liz = (V2 = ¥2)E{q2(x2,71) — g2 (x3, 1)},

lyz = (V2 =y eal—qu (1, y1) + @1 (1, y)] + Glg2(x2, v1) — g2 (2, yD1}
lia = =2 = ¥2)[52(v2) — s:(¥2)] -

We set

i = (g = x1)?ug (X, y1,52),

Liz =0, b3+ 131 = 20 — x1) (1 — yDuaz (x4, Y1, ¥2),

La+ 1l =200 = x1) 2 — ¥2)u14(x1,¥1,¥2), by = 0,

Lo = (g — %3)%Up2 (X2, Y1, ¥2), Loz + I3z = 2002 — x3) (71 — YD a3 (X2, Y1, ¥2),
la + Ly = 200 — x3) (V2 — y2)U2a (X2, ¥1,¥2), laz = (1 — ¥1)*uas (1),

lag + Lz = 21 — yDUza V2 2 = ¥3), laa = (V2 — ¥3)*uas (072,

Define

Ujj = W, L > .

So, V=xTUx,

Xy — X]
Xy — X
where, U = (u;;) and x = i
() y1— Y1
Y2 — Y3

Theorem 8: When matrix U is negative definite on <A, the equilibrium
E*(x1,x3,¥1,¥5) is globally asymptotically stable in R¥ . ...

Proof : The solutions are bounded and the largest invariant set of

{x € R x,y.y, |V = 0} = {E*}. Hence the result follows from [11].

5. Uniform Persistence

We study the question of uniform persistence [2] of system (1) in this section.
Define

P(x) = x{ %2y yh (xg + x3)°

InP=y;Inx; +y,Inx, +6Iny; + ulny, + eln(x; + x;)
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_ dInP _ 1 b
dt P
. p1(x1,y2) q1(x1,¥1)
=111 91(x1) =1 — )2
X1 X1

P2 (x2,¥2) QZ(x21y1)>
- Y2

+V2 <92 (x2) —» X, xz

+ 5(_51 (1) + c1p1(x1,¥2) + Cip2 (xz'YZ))
+ ﬂ(_SZ(J/z) + c2q1(x1, 1) + 55‘12(352:3’1))

X1+ x5

(X191 — Y1P1 — Y201) + X292 — Y1P2 — ¥242]

931

It is sufficient to show ([ 6 ]), that there exist positive constants y;,y,, 8, u and € such

that ¢y > 0 at all boundary equilibria. That is we require,

¥191(0) +7292(0) — 5,(0)6 —5,(0)u + € mi”(éh(o)xgz (0)) >0
¥292(0) + 8(—51(0) + ¢1p1 (K3, 0)) + p(—5,(0) + 244 (K;,0)) > 0
91(0)y, + 5(_51(0) + 1p2 (K, 0)) + H(_Sz (0) + 63q,(K;, 0)) >0

72 (9200) = P2, (0.0)) + 1(=5:(0) + 20, 7)) > 0
71 (9:(0) = Fiipa,, (0.0)) + (=5,(0) + G022, 77)) > 0
72 (9:00) = 7202, 0.0)) + 8(=5:(0) + 0y (7, 7)) > 0

71 (90 = 7201, 0.0)) + 6(=5,(0) + Ep,(%5, 7)) > 0

H(_Sz(o) + c2q1(x31,¥31) + Ezqz(x32,y31)) >0
5(_51(0) + 101 (X41, Ya2) + ﬁpz(xz;z:ﬂz)) >0

V2 (92(0) ~ Ys1Pzy, 0,ys2) — Y5242y, (0')’51)) >0

V1 (91(0) - J’61P1x1(0:)’62) ~ Vez2d1y, (o, )’61)> >0

(6.1)
(6.2)
(6.3)

(6.4)
(6.5)
(6.6)

(6.7)

(6.8)
(6.9)

(6.10)

(6.11)

Let boundary equilibria E;, 3 < i < 10 be globally asymptotically stable in their

respective subsystems. Then

gl(o) - Eplxl(o'o) > 01 gl(o) - }7;2611,51 (0,0) > 0!
92(0) — %qzxz (0,0) >0, 92(0) — V1P2y, (0,0) >0,

—5,(0) + cq,(x1,¥1) >0, —52(0) + &39,(33,y11) > 0,
—51(0) + ¢;p, (37, 57) > 0, —51(0) + ¢1p, (%7, ¥22) > 0,
Recall from section 3.2

&1 = —=52(0) + 291 (x31,¥31) + G3q2(X32,Y31),

2 = —51(0) + 191 (X41, Ya2) + €102 (X42, Vaz2),
3 =92(0) — Ys51D2y, (0,¥s2) — Ys24z2y, (0,¥51),
and

4 =9:1(0) — YG1P1X1(0’3’62) - Y62‘hx1(0'Y61)-

(6)

1 (7

)



932 Yogendra Singh and Ravinder Kumar

For positive small § and u (6.1) holds.

From conditions (3) and (4) equalities (6.2) and (6.3) above hold.
When &; > 0, 1 <i < 4, using (7), inequalities (6.4) — (6.11) hold.
We thus have the following results:

Theorem 9: Let hypotheses (H,) — (Hs) hold and condition of facultative mutualism
hold. Further E;,3 < i < 10 exist and be globally stable in their respective octants.
When &; > 0, 1 <i < 4, system (1) will be uniformly persistent.

Theorem 10: Let hypotheses (H;) — (Hs) hold and mutualism be obligate for y; (i.e.
condition (5.1) holds). Furthermore let E, E, E;, 8 < i < 10 be globally stable in
their respective octants. When &; > 0,2 < i < 4, system (1) will be uniformly
persistent.

In next result we give conditions for uniform persistence when mutualism is obligate
for y,.

Theorem 11: Let hypotheses (H;) — (Hs) hold and mutualism be obligate for y, (i.e.
condition (5.2) holds). Further let E5, E,, E;, Eq and E, be globally stable in their
respective positive octants. When & > 0,&; > 0 and &, > 0, system (1) is uniformly
persistent.

When mutualism is obligate for both y, and y,, equilibria E;, 3 < i < 8 do not exist,
and we have:

Theorem 12: Let hypotheses (H,) — (Hs) hold. Further let mutualism is obligate for
both y; and y, (i.e. (5.1) and (5.2) hold). Let Eq and E;, be globally stable in RY ,, .

and Ry, respectively. If &5 > 0 and &, > 0 then system is uniformly persistent,

6. Special case
Finally we present a special case of model (1):

We consider the system

dx, X
E =04 (1 - ?1) X1 — 1 (X1, ¥2)¥1 — 41 (x1, Y1)y

dx,
dt
dy, -
ar Vil=s11 = S12y1 + 1P (X1, ¥2) + G102 (%2, ¥2)}

dy,

dar = ¥2{—521 = S22¥2 + €2q1 (%1, Y1) + 6305 (x2, ¥1)} )

x
=a; (1 - _2) X2 — P2(X2, y2)¥1 — 2(X2, 1) ¥2
Kz )

For global stability of all equilibria, below(except Eg(x41,%42,0, y42)) we take

pi(xi,¥2) = pinxi, (X, Y1) = quuxiys, i = 1,2. (10)
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For Eg, we set:

pi(Xi, ¥2) = Di1XiY2,

qi(x;, y1) = qinx;, i = 1,2.

(11)

The model considered exhibits commensalism between y; and y,.

A set of sufficient conditions for existence of E; , 7 < i < 10 is that the
corresponding submodel be uniformly persistent [ 2 ]. The constants L;, G; ,i = 1,2,
are as in Theorem 2. Computing matrix M as in Theorem 4, we get

a;
—— 0
K
a;
M = 0 N
K,
(c1 = Dpyr (61— Dpay
2 2

Corollary 1: E; will be globally stable in R;

For Eg , we get

X1X2Y1 !

0

a,
K;

q11(cz —1) q1(Gz — 1)

2
By Theorem 5, we have:

Corollary 2: When N is negative definite, Eg is globally stable

Next let Eq(xsq, 0, Y51, ¥s2) €Xist.

2

Computing symmetric matrix R as in Theorem 6,

R = (ry;), is given by

1
T = —Z—i, r2(y2) = E{(C1 — Dp11 — q11¥2}

(c1 — Dp1a]
2

(€1 — Dp21
2

—S12

whenever M is negative definite.

q11(c2 — D]
2
q21(62 = 1)
2
—S22

H +
in Rxlxzyz.

1 1
r13(y1) = 5%1(3’1 — Ys51), T2z = —S12, T3 = 5911C2Xs1

p
T33 = —S32, |112(0)| = %|C1 -1,

Now, proceeding as in Theorem 2 of section 2,

c1G
Y1 <019 = 511(01)

——+¢,forlarget, y, < 6,9 =

CaLy
52(0)

+ €, for large t.

933
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Thus,
1
712 (829) | = 2 |p11(c1 — 1) — q11029], rizmax = max{|r12(0)[, [112(829) [}
d11
T3 ()| < Tmax{ySL |619 — ¥511} = rizmax
Corollary 3: Let Eq(xsq, 0, V51, ¥s,) €Xists and
a
2> T1oMax + ry3 Max, Syp > 17,Max + a3, Syp > r13max + 3. (12)

K

Then Ej is globally stable in Ry ..

Proof:

Under condition(12), R is a symmetric diagonally dominant matrix in A5 . By
Gersgorin theorem if A is an eigenvalue then there exists 1 < i < 3 such that

A< Tii + erij|

Jj#i

Also |rii| > Zkiilrikl and < 0, ] =1,2,3. ThUS, T + Zj¢i|rij| <0

i.e. eigenvalues of R in A5 are negative and by Theorem 6 Ej is globally stable in

+
Rx1J/1J/2'

Next, let E1((0, X¢2, Vo1, Yo2) €XIists. From Theorem 2, y;(t) < 6;,, for large t, = 1,2.

where,

€1G;

_ 2Ly
5110 -
S11

+E, 6210=_521 +6,

Computing symmetric matrix T, as in Theorem 7, then

r= (tij)3x3

where,

t11 = _Ia(_z b2 (V) = %{Pm(ﬁ =1 —qy2} tiz = %%1(}’1 —Y61) s b2z = —S12,
tr3 = ;[CIusze.z] » L33 = —S32,

and

tljzt]lll>_]
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Define,

tipmax = %maxﬂtlz (0),t12(8210)} s tigmax = %max{qzﬂ’ep q21(610 — Ye1)}
We require

Z—z > tiomax + tyz3max, Sip > tipymax + tys, Sy, > tiymax +

tys. (13)

Then we have the following result:

Corollary 4: Let E;4(0, x62, Vo1, Ve2) €Xists and inequalities (13) hold.

Then E, is globally asymptotically stable in Ry, ...

For global stability of E*, we computingL, as in Theorem 8,

a 1 1
Uy = _K_i' U, =0, uy3 = ;{(C& = Dp11 — q11Y2} U = 5%1()’1 -y1),
ap 1 ~ 1 ~ *
Uzp = %, Uz3 = ;{(C& — Dp21 — q21Y2}, Uza = 5%1@23’1 — Y1), U33 = —S;13,
1 ~
Uzy = E(szIQ11 + (3X3q21), Uga = —Sp3 .

uij=ujl-, l>j,1$l,]$4‘

Next, if E*(x7, x5, y1,y3) exists in interior of Ry ., y,, Define

1 1
l;zmax = Emax{l(cl — Dpi1l, [(cs = Dp11 — q11621} Liamax = qulmax{(& -
yi)yit,

1 - - 1 - .
lyzmax = Emax{lcl — 1|p21, [(61 — Dp21 — 421621}, lramax = 5‘121(0251 - ¥1),

€1G1+C1 G, CL1+C1Ly

where, §; = ,and 6, =

S11 S21
The next result is clear from Theorem 8.

Corollary 5: Let E*(x], x5, y1,V5) exists and

a a
K—1 > lymax + 1 ,max, K—Z > l,asmax + l,max,
1 2

S12 > lijzmax + lymax + lymax, and sy, > ljymax + lymax + 13, .
Then E™ is globally stable.
Below we present specific examples:

Wlth al == az = 1, Kl == 0.8, KZ == 1,p11 = .4’, p21 = .3, Cl == 2.5, é\i = 3.5,
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S11 = .5, S12 = 15, E7(X31, X32,¥Y31, 0) = (05977, 08103, 06323, 0) EX|StS a.nd the

symmetric matrix
-1.25 0 .3
M=| 0 -1 .375

03 .375 -1.5

IS negative definite as its eigenvalues are —1.8263,—1.1716,—.7521. Hence by
Theorem 4 E-, is globally stable in R

X1X2Y1*
Wlth a1 = az = 1, Kl = KZ = 1, qll = 04, C2 == 25,65 = 35, qu = 03, 521 =
0.5 and s,, = 1.50.

Equilibrium Eg(x41, X42,0,y4,) = (0.7201,0.7901, 0, 0.6998) exists and symmetric
matrix N in Theorem 5 is

-1 0 .3
0 -1 .3750
0.3 .375 -1.5

and has eigenvalues —1.7914, —1 and — 0.7086. Thus Ejg is globally stable in
R+

X1X2Y2"

N =

Wlth a1 = 22, Kl = 085, pll = 04'5, qll = 21, Sll = 05, 812 = 252,
Sy1 = 0065, Soo = 175, C1 = 2.4 and Cy = 34‘7, Eg(.XSI, 0,y51,y52) =
(0.823,0,0.1543,0.0157) exists and conditions (12) of Corollary 3 are satisfied.

Thus E, is globally stable in RY,, ..

With a, = 1.8, K, = 0.80, p;; = 0.4, pyy = 42, gyy = .25, 544 = 0.50,

S12 = 19,5, =0.1, s, =1, ¢ =2.55and ¢, = 3.5, E14(0,X62, V61, Ve2) =
(0,0.768,0.1698,0.0141) exists. Also conditions of Corollary 4 are satisfied and E
is globally stable in R}

X2Y1¥2*
Witha, =1, K; =2, a, = 1.05, K, = 1, p;; = 0.365, q4; = 0.25, p,; = .30,
q21 = 0.5, 541 =04, 54, =037, s, =04, 5,,=090,¢c;, =1, ¢ =15, ¢, =
1.2, and ¢; = 2.5, interior equilibrium E*(x3, x5, y1,¥5) =
(1.2352,0.7106, 1.0017, 0.0669) exists. The conditions of Corollary 5 are also
satisfied and E™ is globally stable.

Next we illustrate Theorem 11.

Witha, = 1.8,a, = 1.8, K; = 0.8, K, = 0.8, p;; = 0.4, p,; = 42,5, = 0.5,
S12 =19,55; =0.1, s, =1, ¢ = 2.55, ¢, =3.5,6;, =3.5,¢, =35, =
3.5,q11 = 0.25 and q,; = 0.25, equilibria E,(0,0,0,0), E,(0.8,0,0,0),
E,(0,0.8,0,0), E5(0.4902,0,3.3971,0), E,(0,0.3401,1.7847,0),
E,(0.7086,0.7040,0.5140,0), E5(0.7730,0,0.1518,0.0027) and
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E;((0,0.7680,0.1698,0.0141) exist. Further E5, E,, E, Eq and E,, are globally stable
in their respective octants. Finally, &, = 0.5355, é; = 1.7361,¢&, = 1.7315. are
positive and by Theorem 11 system (9) with p;, g; as given by (10) is uniformly

persistent.
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