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Abstract 

Models of population’s interaction among one or two preys and two predator 

mutualists are studied. Sufficient conditions for local and global stability of 

the equilibria and uniform persistence are presented. 

 

1. Introduction 

In this paper we study models involving one or two preys and two mutualistic 

predators. We study both facultative and obligate mutualism. An example of this type 

of mutualism occurs in Red Sea [3,8], where the effect of mutualism is to increase the 

predator functional response. There, Yellow saddle goatfish, P. cyclostouces, and bird 

wrasse, Gomphosus caeruleus, tackle coral reefs from both sides so that the prey may 

be driven toward each other and thereby caught and eaten. Without the cooperation 

between these two fish species, such prey would be available only minimally and with 

great difficulty. Hence, the effect of each predator population on the other is to 

increase hunting efficiency. In earlier studies such three species models are analyzed 

in [3,6]. Specifically sufficient conditions for uniform persistence are obtained. Other 

models involving mutualism are studied in ([7,9,10] and references theirin). 

In the next section we describe our model. We show that the model is meaningful, i.e. 

solutions with positive initial conditions stay positive and are bounded in forward 

time. In section 3 we consider existence of equilibria in case of facultative and 
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obligate mutualism and study their local stability. In section 4 we derive conditions 

for global asymptotic stability of interior equilibria of three/four dimensional 

subsystems/system. In section 5 we obtain sufficient conditions for uniform 

persistence. In the section 6 we study a special case of our model and present 

numerical examples to illustrate our results.  

 

2. The Model 

The model is: 

𝑑𝑥1

𝑑𝑡
= 𝑥1𝑔1(𝑥1) − 𝑦1𝑝1(𝑥1, 𝑦2) − 𝑦2𝑞1(𝑥1, 𝑦1), 

𝑑𝑥2

𝑑𝑡
= 𝑥2𝑔2(𝑥2) − 𝑦1𝑝2(𝑥2, 𝑦2) − 𝑦2𝑞2(𝑥2, 𝑦1), 

𝑑𝑦1

𝑑𝑡
= 𝑦1[−𝑠1(𝑦1) + 𝑐1𝑝1(𝑥1, 𝑦2) + 𝑐1̃𝑝2(𝑥2, 𝑦2)],                            (1) 

𝑑𝑦2

𝑑𝑡
= 𝑦2[−𝑠2(𝑦2) + 𝑐2𝑞1(𝑥1, 𝑦1) + 𝑐2̃𝑞2(𝑥2, 𝑦1)], 

𝑥𝑖(0) = 𝑥𝑖0 ≥ 0 , 𝑦𝑖(0) = 𝑦𝑖0 ≥ 0 , 𝑖 = 1,2, 

where the variables 𝑥1, 𝑥2 denote prey densities and 𝑦1, 𝑦2 that of predators. 

We assume the following hypotheses on the given functions, 

(𝐻1) all functions are continuously differentiable so that solution to I.V.P. (1) exist, 

are unique and can be continued for all positive time. 

(𝐻2)𝑔𝑖(𝑥𝑖) ∶  [0,∞) → 𝑅, 𝑔𝑖(0) > 0, 𝑔𝑖
′ < 0; There exist 𝐾𝑖’s such that 𝑔𝑖(𝐾𝑖) =

0, 𝑖 = 1,2. The constants 𝐾1 and 𝐾2 are the carrying capacities of 𝑥1 and 𝑥2 

respectively. 

The functions 𝑝𝑖(𝑥𝑖, 𝑦2), 𝑖 = 1,2 are predator response functions of the predator 𝑦1. 

We assume  

(𝐻3) 𝑝𝑖(0, 𝑦2) = 0,
𝜕𝑝𝑖

𝜕𝑥𝑖
≥ 0,

𝜕𝑝𝑖

𝜕𝑦2
≥ 0, 𝑖 = 1,2. 

These conditions imply that there is no predation in absence of prey and that the 

predator response function 𝑝𝑖(𝑥𝑖, 𝑦2) is an increasing function of density 𝑥𝑖. This 

hypothesis implies that 𝑦2 increases the predation by 𝑦1. 

We also assume 

(𝐻4)  𝑞𝑖(0, 𝑦1) = 0 ,
𝜕𝑞𝑖
𝜕𝑥𝑖

≥ 0, 𝑎𝑛𝑑
𝜕𝑞𝑖
𝜕𝑦1

≥ 0 , 𝑖 = 1,2.  

The positive constants rate of conversion 𝑐𝑖 and 𝑐𝑖̃  denote the rate of conversion of 
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prey biomass to predator biomass. 

(𝐻5)Finally 𝑠𝑖(𝑦𝑖) denotes the death rate of the predator 𝑦𝑖 and  
𝜕𝑠𝑖

𝜕𝑦𝑖
> 0 , 𝑖 = 1,2. 

The first result is: 

Theorem 1: The solutions to IVP (1) with positive initial conditions stay positive for 

𝑡 > 0.  

Proof – We rewrite first equation in (1) as,  

∫
𝑑𝑥1
𝑥1

𝑡

0

= ∫ {𝑔1(𝑥1(𝑠)) − 𝑦1(𝑠)
𝑝1(𝑥1(𝑠), 𝑦2(𝑠))

𝑥1(𝑠)
− 𝑦2(𝑠)

𝑞1(𝑥1(𝑠), 𝑦1(𝑠))

𝑥1(𝑠)
}

𝑡

0

 𝑑𝑠, 

where, lim
𝑥1→0

𝑝1(𝑥1,𝑦2)

𝑥1
=

𝜕𝑝1(0,𝑦2)

𝜕𝑥1
> 0, and lim

𝑥1→0

𝑞1(𝑥1,𝑦1)

𝑥1
=

𝜕𝑞1(0,𝑦1)

𝜕𝑥1
> 0 . 

Thus, 𝑥1(𝑡) = 𝑥10𝑒
∫ (𝑔1−

𝑦1𝑝1
𝑥1

−
𝑦2𝑞1
𝑥1

)𝑑𝑠
𝑡
0 > 0 

Proceeding similarly we can show 𝑥2(𝑡) > 0, 𝑦1(𝑡) > 0 and 𝑦2(𝑡) > 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 > 0. 

Theorem 2: Let 𝐺𝑖 = max
[0,𝐾𝑖]

(𝑠1(0) + 𝑔𝑖(𝑥)) 𝑥, 𝑖 = 1,2, 𝐿𝑖 = max
[0,𝐾𝑖]

(𝑠2(0) + 𝑔𝑖(𝑥)) 𝑥,

𝑖 = 1,2. 

Further let,  

𝒜 = {(𝑥1, 𝑥2, 𝑦1, 𝑦2) ∶ 0 ≤ 𝑥1 ≤ 𝐾1, 0 ≤ 𝑥1 ≤ 𝐾2, 0 ≤ 𝑐1𝑥1 + 𝑐1̃𝑥2 + 𝑦1 ≤

𝑐1𝐺1+𝑐1̃𝐺2

𝑠1(0)
, 0 ≤ 𝑐2𝑥1 + 𝑐2̃𝑥2 + 𝑦2 ≤

𝑐2𝐿1+𝑐2̃𝐿2

𝑠2(0)
}.                                                  (2) 

Then  

(i) 𝒜 is positively invariant. 

(ii) (𝑥1, 𝑥2, 𝑦1, 𝑦2) → 𝒜 𝑎𝑠 𝑡 → ∞ 

Proof – Let 0 ≤ 𝑥1(0) ≤ 𝐾1. Then 𝑢′ = 𝑢𝑔1(𝑢) , 𝑢(0) = 𝑥1(0), has solution 𝑢(𝑡) ≤

𝐾1. Thus by comparison Theorem [ 5 ], 𝑥1(𝑡) ≤ 𝐾1. In general, lim 𝑠𝑢𝑝𝑡→∞𝑥1(𝑡) ≤

𝐾1. 

Similarly  

0 ≤ 𝑥2(0) ≤ 𝐾2 𝑖𝑚𝑝𝑙𝑖𝑒𝑠, 𝑥2(𝑡) ≤ 𝐾2. In general, lim 𝑠𝑢𝑝𝑡→∞𝑥2(𝑡) ≤ 𝐾2. 

Next , 

(𝑐1𝑥1 + 𝑐1̃𝑥2 + 𝑦1)
′

≤ 𝑐1𝑥1𝑔1(𝑥1) + 𝑥2𝑐1̃𝑔2(𝑥2) − 𝑠1(0)𝑦1 − 𝑐1𝑥1𝑠1(0) − 𝑥2𝑐1̃𝑠1(0)

+ 𝑐1𝑥1𝑠1(0) + 𝑐1̃𝑥2𝑠1(0). 
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Set 𝑢 = 𝑐1𝑥1 + 𝑐1̃𝑥2 + 𝑦1 to get, 

𝑢′ + 𝑠1(0)𝑢 ≤ 𝑐1𝑥1(𝑠1(0) + 𝑔1(𝑥1)) + 𝑐1̃𝑥2(𝑠1(0) + 𝑔2(𝑥2)) 

≤ 𝑐1𝐺1 + 𝑐1̃𝐺2 

Solving for 𝑢(𝑡) and using comparison theorem, 

(𝑢𝑒𝑠1(0)𝑡 − 𝑢(0)) ≤
(𝑐1𝐺1+𝑐1̃𝐺2)(𝑒

𝑠1(0)𝑡−1)

𝑠1(0)
 , 

Or u(𝑡) ≤ 𝑢(0)𝑒−𝑠1(0)𝑡 +
(𝐶1𝐺1+𝑐1̃𝐺2)(1−𝑒

𝑠1(0)𝑡)

𝑠1(0)
 , 

𝑢(𝑡) ≤ 𝑒−𝑠1(0)𝑡 (𝑢(0) −
𝑐1𝐺1+𝑐1̃𝐺2

𝑠1(0)
) +

𝑐1𝐺1+𝑐1̃𝐺2

𝑠1(0)
 . 

So, 𝑐1𝑥1(0) + 𝑐1̃𝑥2(0) + 𝑦1(0) ≤
𝑐1𝐺1+𝑐1̃𝐺2

𝑠1(0)
 

Implies, 𝑐1𝑥1 + 𝑐1̃𝑥2 + 𝑦1 ≤
𝑐1𝐺1+𝑐1̃𝐺2

𝑠1(0)
 . 

In general,  

𝑐1𝑥1(𝑡) + 𝑐1̃𝑥2(𝑡) + 𝑦1(𝑡) ≤
𝑐1𝐺1 + 𝑐1̃𝐺2

𝑠1(0)
+ 𝜖, 𝑎𝑠 𝑡 → ∞ . 

Similar argument holds for 𝑐2𝑥1 + 𝑐2̃𝑥2 + 𝑦2 . 

 

3. Equilibria and their local stability 

In this section we study existence of equilibria depending on the form of mutualism. 

3.1.1 The Facultative Mutualism  

In this section we consider the case when predators exhibit facultative mutualism, i.e. 

when both predator populations are capable of surviving on their own, but are able to 

sustain higher population numbers due to mutualism. Thus we require, ∃ 𝑥𝑖̅
∗ such that, 

−𝑠1(0) + 𝑐1𝑝1(𝑥1̅̅̅
∗, 0) = 0,                                                                                   (3.1)

−𝑠1(0) + 𝑐1̃𝑝2(𝑥2̅̅ ̅
∗, 0) = 0,                                                                                   (3.2)

𝑥𝑖̅
∗ < 𝐾𝑖 , 𝑖 = 1,2.                                                                                

} (3) 

If (3.1) does not hold, there exists no equilibrium in positive 𝑥1 − 𝑦1quadrant and 

hence has no periodic solution in it. Hence by Poincare Bendixson Theorem, 

equilibrium (𝐾1, 0,0,0)is globally asymptotically stable in the positive 𝑥1 − 𝑦1 

quadrant. Similar conclusion follows when (3.2) does not hold. 

Similarly, we require 
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−𝑠2(0) + 𝑐2𝑞1(𝑥1̃
∗, 0) = 0,                                                                                 (4.1)

−𝑠2(0) + 𝑐2̃𝑞2(𝑥2̃
∗, 0) = 0,                                                                                   (4.2)

𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑥𝑖̃
∗ < 𝐾𝑖 , 𝑖 = 1,2.                                                                                          

} (4) 

We conclude, that there exist equilibria 

𝐸0(0,0,0,0), 𝐸1(𝐾1, 0,0,0), 𝐸2(0, 𝐾2, 0,0), 𝐸3(𝑥1̅̅̅, 0, 𝑦1̅̅ ̅, 0), 𝐸4(0, 𝑥2̅̅ ̅, 𝑦11̅̅ ̅̅ , 0),

𝐸5(𝑥1̃, 0,0, 𝑦2̃), 𝐸6(0, 𝑥2̃, 0, 𝑦22̃), 𝐸7(𝑥31, 𝑥32, 𝑦31, 0), 𝐸8(𝑥41, 𝑥42, 0, 𝑦42), 𝐸9(𝑥51, 0, 𝑦51, 𝑦52)

 and 𝐸10(0, 𝑥62, 𝑦61, 𝑦62). Also interior equilibrium 𝐸∗(𝑥1
∗, 𝑥2

∗, 𝑦1
∗, 𝑦2

∗) may exist. One 

sufficient condition for existence of 𝐸∗ is that system (1) be uniformly persistent (see[ 

2 ]).  

3.1.2 Facultative – Obligate mutualism 

Next we consider the case when mutualism is obligate for one predator and facultative 

for the other. The mutualism will be obligate for 𝑦1, when  

−𝑠1(0) + 𝑐1𝑝1(𝐾1, 0) + 𝑐1̃𝑝2(𝐾2, 0) < 0                                                        (5.1)

It will be obligate for 𝑦2, when                                                                                    

−𝑠2(0) + 𝑐2𝑞1(𝐾1, 0) + 𝑐2̃𝑞2(𝐾2, 0) < 0                                                           (5.2)
} (5) 

When (5.1) holds then boundary equilibria 𝐸3, 𝐸4 and 𝐸7 do not exist. 

When (5.2) holds then equilibria 𝐸5, 𝐸6 and 𝐸8 do not exist. 

3.1.3 Obligate Mutualism 

When (5.1) and (5.2) both hold then mutualism is obligate for both 𝑦1and 𝑦2. In this 

case equilibria 𝐸3, 𝐸4, 𝐸5, 𝐸6, 𝐸7 and 𝐸8 do not exist. 

3.2 Stability of Equilibria 

Jacobian matrix 𝑉 of system (1) is, 

𝑉 =

[
 
 
 
 
𝑔1 + 𝑥1𝑔1

′ − 𝑦1𝑝1𝑥1 − 𝑦2𝑞1𝑥1 0 −𝑝1 − 𝑦2𝑞1𝑦1 −𝑦1𝑝1𝑦2 − 𝑞1
0 𝑔2 + 𝑥2𝑔2

′ − 𝑦1𝑝2𝑥2 − 𝑦2𝑞2𝑥2 −𝑝2 − 𝑦2𝑞2𝑦1 −𝑦1𝑝2𝑦2 − 𝑞2
𝑦1𝑐1𝑝1𝑥1 𝑦1𝑐1̃𝑝2𝑥2 −𝑠1 + 𝑐1𝑝1 + 𝑐1̃𝑝2 − 𝑦1𝑠1

′ 𝑐1𝑦1𝑝1𝑦2 + 𝑐1̃𝑝2𝑦2
𝑐2𝑦2𝑞1𝑥1 𝑐2̃𝑦2𝑞2𝑥2 𝑐2𝑦2𝑞1𝑦1 + 𝑐2̃𝑞2𝑦1𝑦2 −𝑠2 + 𝑐2𝑞1 + 𝑐2̃𝑞2 − 𝑦2𝑠2

′
]
 
 
 
 

 

𝑉(𝐸0) = 𝑑𝑖𝑎𝑔(𝑔1(0), 𝑔2(0), −𝑠1(0), −𝑠2(0)) 

So 𝐸0 is unstable in 𝑥1 and 𝑥2 directions and stable in 𝑦1 and 𝑦2 directions. Next,  

𝑉(𝐸1) =

[
 
 
 
𝐾1𝑔1

′ (𝐾1) 0 −𝑝1(𝐾1, 0) −𝑞1(𝐾1, 0)

0 𝑔2(0) 0 0

0 0 −𝑠1(0) + 𝑐1𝑝1(𝐾1, 0) 0

0 0 0 −𝑠2(0) + 𝑐2𝑞1(𝐾1, 0)]
 
 
 

 

The equilibrium 𝐸1(𝐾1, 0,0,0) is unstable in 𝑥2 direction. In 𝑦1 and 𝑦2 directions the 

eigenvalues are  
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−𝑠1(0) + 𝑐1𝑝1(𝐾1, 0) and −𝑠2(0) + 𝑐2𝑞1(𝐾1, 0) > 0, respectively. 

Same way 𝐸2(0, 𝐾2, 0,0) is unstable in  𝑥1 direction. The eigenvalues of 𝑉(𝐸2) in 𝑦1 

and 𝑦2 direction are −𝑠1(0) + 𝑐1̃𝑝2(𝐾2, 0) and −𝑠2(0) + 𝑐2̃𝑞2(𝐾2, 0). respectively. 

Also,  

𝑉[𝐸3(𝑥1̅ , 0, 𝑦1̅ , 0)] =

[
 
 
 
 
𝑔1(𝑥1̅) + 𝑥1̅𝑔1

′ (𝑥1̅) − 𝑦1̅𝑝1𝑥1(𝑥1̅ , 0) 0 −𝑝1(𝑥1̅, 0) −𝑦1̅𝑝1𝑦2(𝑥1̅, 0) − 𝑞1(𝑥1̅, 𝑦1̅)

0 𝑔2(0) − 𝑦1̅𝑝2𝑥2(0,0) 0 0

𝑐1𝑦1̅𝑝1𝑥1(𝑥1̅ , 0) 0 −𝑠1
′(𝑦1̅)𝑦1̅ 𝑐1𝑦1̅𝑝1𝑦2(𝑥1̅, 0)

0 0 0 −𝑠2(0) + 𝑐2𝑞1(𝑥1̅ , 𝑦1̅) ]
 
 
 
 

 

 So 𝑉(𝐸3) has eigenvalue 𝑔2(0) − 𝑦1̅̅ ̅𝑝2𝑥2(0,0) in 𝑥2 – direction. The eigenvalue in 

𝑦2 – direction is −𝑠2(0) + 𝑐2𝑞1(𝑥1̅̅̅, 𝑦1̅̅ ̅). The other two eigenvalues are roots of  

𝜆2 + (𝛼1 + 𝑦1̅̅ ̅𝑠1
′(𝑦1̅̅ ̅))𝜆 + 𝛼1𝑦1̅̅ ̅𝑠1

′(𝑦1̅̅ ̅) + 𝑐1𝑦1̅̅ ̅𝑝1(𝑥1̅̅ ̅, 0)𝑝1𝑥1(𝑥1̅̅ ̅, 0) = 0, 

where, 𝛼1 = 𝑔1(𝑥1̅̅̅) + 𝑥1̅̅̅𝑔1
′ (𝑥1̅̅̅) − 𝑦1̅̅ ̅𝑝1𝑥1(𝑥1̅̅̅, 0). 

Proceeding same way 𝑉(𝐸4(0, 𝑥2̅̅ ̅, 𝑦11̅̅ ̅̅ , 0))has eigenvalues 𝑔1(0) − 𝑦11̅̅ ̅̅ 𝑝1𝑥1(0,0)  and 

−𝑠2(0) + 𝑐2̃𝑞2(𝑥2̅̅ ̅, 𝑦11̅̅ ̅̅ ) in 𝑥1 and 𝑦2 directions, respectively. The other two 

eigenvalues will be given by, 

𝜆2 + (𝛼2 + 𝑦11̅̅ ̅̅ 𝑠2
′ (𝑦11̅̅ ̅̅ ))𝜆 + 𝛼2𝑦11̅̅ ̅̅ 𝑠1

′(𝑦11̅̅ ̅̅ ) + 𝑐1̃𝑦11̅̅ ̅̅ 𝑝2(𝑥2̅̅ ̅, 0)𝑝2𝑥2(𝑥2̅̅ ̅, 0) = 0, 

where, 𝛼2 = 𝑔2(𝑥2̅̅ ̅) + 𝑥2̅̅ ̅𝑔2
′ (𝑥2̅̅ ̅) − 𝑦11̅̅ ̅̅ 𝑝2𝑥2(𝑥2̅̅ ̅, 0). 

Also, 𝑉(𝐸5(𝑥1̃, 0,0, 𝑦2̃)) has eigenvalues 𝑔2(0) − 𝑦2̃𝑞2𝑥2(0,0) and −𝑠1(0) +

𝑐2𝑝1(𝑥1̃, 𝑦2̃) in 𝑥2 and 𝑦1directions. The other two eigenvalues are the roots of  

𝜆2 + (𝛼3 + 𝑦2̃𝑠2
′ (𝑦2̃))𝜆 + 𝛼3𝑦2̃𝑠2

′ (𝑦2̃) + 𝑦2̃𝑐2𝑞1(𝑥1̃, 0)𝑞1𝑥1(𝑥1̃, 0) = 0, 

where, 𝛼3 = 𝑔1(𝑥1̃) + 𝑥1̃𝑔1
′ (𝑥1̃) − 𝑦2̃𝑞1𝑥1(𝑥1̃, 0).  

𝑉(𝐸6(0, 𝑥2̃, 0, 𝑦22̃))has eigenvalues 𝑔1(0) − 𝑦22̃𝑞1𝑥1(0,0) and −𝑠1(0) +

𝑐1̃𝑝2(𝑥2̃, 𝑦22̃) in 𝑥1 and 𝑦1directions. The other two eigenvalues are roots of  

𝜆2 + (𝛼4 + 𝑦22̃𝑠2
′ (𝑦22̃))𝜆 + 𝛼4𝑦22̃𝑠2

′ (𝑦22̃) + 𝑐2̃𝑦22̃𝑞2(𝑥2̃, 0)𝑞2𝑥2(𝑥2̃, 0) = 0, 

where, 𝛼4 = 𝑔2(𝑥2̃) + 𝑥2̃𝑔2
′ (𝑥2̃) − 𝑦22̃𝑞2𝑥2(𝑥2̃, 0). 

Next, 

𝑉[𝐸7(𝑥31 , 𝑥32 , 𝑦31 , 0)] =

[
 
 
 
 
𝑔1(𝑥31) + 𝑥31𝑔1

′ (𝑥31) − 𝑦31𝑝1𝑥1(𝑥31 , 0) 0 −𝑝1(𝑥31 , 0) −𝑦31̅̅̅𝑝1𝑦2(𝑥31 , 0)

0 𝑔2(𝑥32) + 𝑥32𝑔1
′ (𝑥32) − 𝑦31𝑝2𝑥2(𝑥32 , 0) −𝑝2(𝑥32 , 0) −𝑦31𝑝2𝑦2(𝑥32 , 0) − 𝑞2(𝑥32 , 𝑦31)

𝑐1𝑦31𝑝1𝑥1 (𝑥31 , 0) 𝑐1̃𝑦31𝑝2𝑥2 (𝑥32 , 0) −𝑦31𝑠1
′(𝑦31) 𝑐1𝑦31𝑝1𝑦2(𝑥31 , 0) + 𝑐1̃𝑝2𝑦2(𝑥32 , 0)

0 0 0 −𝑠2(0) + 𝑐2𝑞1(𝑥31 , 𝑦31) + 𝑐2̃𝑞2(𝑥32 , 𝑦31)]
 
 
 
 

 

Eigenvalue of 𝑉(𝐸7(𝑥31, 𝑥32, 𝑦31, 0)) in 𝑦2– direction is  

𝜉1 = −𝑠2(0) + 𝑐2𝑞1(𝑥31, 𝑦31) + 𝑐2̃𝑞2(𝑥32, 𝑦31).  
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Other eigenvalues are the roots of  

𝜆3 + 𝜇1𝜆
2 + 𝜇2𝜆 + 𝜇3 = 0 

where, 𝜇1 = −(𝑦31𝑠1
′(𝑦31) + 𝑎1 + 𝑎2) , 

𝜇2 = 𝑎3 + 𝑎1 (𝑎2 + 𝑦31𝑠1
′(𝑦31) + 𝑐1𝑦31𝑝1𝑥1(𝑥31, 0)𝑝1(𝑥31, 0)), 

𝜇3 = −𝑎1𝑎3 − 𝑎2𝑐1𝑦31𝑝1𝑥1(𝑥31, 0)𝑝1(𝑥31, 0) , 

𝑎𝑖 = 𝑔𝑖(𝑥3𝑖) + 𝑥3𝑖𝑔𝑖
′(𝑥3𝑖) − 𝑦31𝑝𝑖𝑥𝑖(𝑥3𝑖, 0), 𝑖 = 1,2. 

and 𝑎3 = 𝑐1̃𝑦31𝑝2(𝑥32, 0)𝑝2𝑥2(𝑥32, 0) − 𝑦31𝑠1
′(𝑦31)𝑎2 . 

Similarly, the eigenvalue of 𝑉(𝐸8(𝑥41, 𝑥42, 0, 𝑦42)) in 𝑦1– direction is 𝜉2 = −𝑠1(0) +

𝑐1𝑝1(𝑥41, 𝑦42)+𝑐1̃𝑝2(𝑥42, 𝑦42).  

Other eigenvalues are given by the roots of 

𝜆3 + 𝛾1𝜆
2 + 𝛾2𝜆 + 𝛾3 = 0 

𝛾1 = −(𝑦42𝑠2
′ (𝑦42) + 𝑎4 + 𝑎5) 

𝛾2 = 𝑎6 + 𝑎4 (𝑎5 + 𝑦42𝑠2
′ (𝑦42) + 𝑐2𝑦42𝑞1𝑥1(𝑥41. 0)𝑞1(𝑥41, 0)) 

𝛾3 = −𝑎4𝑎6 − 𝑎5𝑐2𝑦42𝑞1𝑥1(𝑥41, 0)𝑞1(𝑥41, 0) 

𝑎𝑖+3 = 𝑔𝑖(𝑥4𝑖) + 𝑥4𝑖𝑔𝑖
′(𝑥4𝑖) − 𝑦42𝑞𝑖𝑥𝑖(𝑥4𝑖, 0), 𝑖 = 1,2, 

and 𝑎6 = 𝑐2̃𝑦42𝑞2(𝑥42, 0)𝑞2𝑥2(𝑥42, 0) − 𝑦42𝑠2
′ (𝑦42)𝑎5 

Eigenvalue of 𝑉(𝐸9(𝑥51, 0, 𝑦51, 𝑦52)) in 𝑥2 - direction is  

𝜉3 = 𝑔2(0) − 𝑦51𝑝2𝑥2(0, 𝑦52) − 𝑦52𝑞2𝑥2(0, 𝑦51).  

Other eigenvalues are given by the roots of  

𝜆3 + (𝑦51𝑠1
′ + 𝑦52𝑠2

′ )𝜆2

− [𝑒1(𝑦51𝑠1
′ + 𝑦52𝑠2

′ )

+ (𝑦51𝑐1𝑝1𝑥1(𝑝1 + 𝑦52𝑞1𝑦1) + 𝑐2𝑦52𝑞1𝑥1(𝑦51𝑝1𝑦2 + 𝑞1))

− (𝑦51𝑦52𝑠1
′𝑠2
′ − 𝑐2𝑦52𝑞1𝑦1𝑐1𝑦51𝑝1𝑦2)] 𝜆

+ 𝑦51𝑐1𝑝1𝑥1{(𝑝1 + 𝑦52𝑞1𝑦1)𝑦52𝑠2
′ + 𝑐2𝑦52𝑞1𝑦1(𝑦51𝑝1𝑦2 + 𝑞1)}

+ 𝑐2𝑦52𝑞1𝑥1{(𝑝1 + 𝑦52𝑞1𝑦1)𝑐1𝑦51𝑝1𝑦2 + 𝑦51𝑠1
′(𝑦51𝑝1𝑦2 + 𝑞1)} = 0 

where, 𝑒1 = 𝑔1 + 𝑥1𝑔1
′ − 𝑦1𝑝1𝑥1 − 𝑦2𝑞1𝑥1 . 

Above as well as below all functions are evaluated at the equilibrium under 

consideration. 
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Eigenvalue of 𝑉(𝐸10(0, 𝑥62, 𝑦61, 𝑦62)) in 𝑥1 - direction is 

𝜉4  =  𝑔1(0) − 𝑦61𝑝1𝑥1(0, 𝑦62) − 𝑦62𝑞1𝑥1(0, 𝑦61). Other eigenvalues are the roots of 

𝜆3 + (𝑦61𝑠1
′ + 𝑦62𝑠2

′ − 𝑒2)𝜆
2

− [𝑒2(𝑦61𝑠1
′ + 𝑦62𝑠2

′ )

+ (𝑦61𝑐1̃𝑝2𝑥2(𝑝2 + 𝑦62𝑞2𝑦1) + 𝑐2̃𝑦62𝑞2𝑥2(𝑦61𝑝2𝑦2 + 𝑞2)) − 𝑦61𝑦62𝑠1
′𝑠2
′

+ 𝑐2̃𝑦61𝑦62𝑞2𝑦1𝑐1̃𝑝2𝑦2] 𝜆

+ 𝑦61𝑐1̃𝑝2𝑥2{(𝑝2 + 𝑦62𝑞2𝑦1)𝑦62𝑠2
′ + 𝑐2̃𝑦62𝑞2𝑦1(𝑦61𝑝2𝑦2 + 𝑞2)}

+ 𝑐2̃𝑦62𝑞2𝑥2{(𝑝2 + 𝑦62𝑞2𝑦1)𝑐1̃𝑦61𝑝2𝑦2 + 𝑦61𝑠2
′(𝑦61𝑝2𝑦2 + 𝑞2)} = 0, 

where,  𝑒2 = 𝑔1 + 𝑥2𝑔2
′ − 𝑦1𝑝2𝑥2 − 𝑦2𝑞2𝑥2 . 

We now obtain conditions of asymptotic stability of interior equilibrium 𝐸∗ : 

𝐴 = (𝑎𝑖𝑗) =

[
 
 
 
 
𝑔1 + 𝑥1𝑔1

′ − 𝑦1𝑝1𝑥1
− 𝑦2𝑞1𝑥1

0 −𝑝1 − 𝑦2𝑞1𝑦1
−𝑦1𝑝1𝑦2

− 𝑞1

0 𝑔2 + 𝑥2𝑔2
′ − 𝑦1𝑝2𝑥2

− 𝑦2𝑞2𝑥2
−𝑝2 − 𝑦2𝑞2𝑦1

−𝑦1𝑝2𝑦2
− 𝑞2

𝑐1𝑦1𝑝1𝑥1
𝑐1̃𝑦1𝑝2𝑥2

−𝑦1𝑠1
′ 𝑐1𝑦1𝑝1𝑦2

+ 𝑐1̃𝑦1𝑝2𝑦2
𝑐2𝑦2𝑞1𝑥1

𝑐2̃𝑦2𝑞2𝑥2
𝑐2𝑦2𝑞1𝑦1

+ 𝑐2̃𝑦2𝑞2𝑦1
−𝑦2𝑠2

′
]
 
 
 
 

 

 Computing 𝑑𝑒𝑡( 𝐴 –  𝜆 𝐼 )  =  0 we get  

𝐹(𝜆) = 𝜆4 + 𝛼1𝜆
3 + 𝛼2𝜆

2 + 𝛼3𝜆 + 𝛼4 = 0,                 

where, 

𝛼1 = − ∑ 𝑎𝑖𝑖
4
1  ,   

𝛼2 = 𝑚1 −𝑚2 + (𝑎11 + 𝑎22)(𝑎33 + 𝑎44) + 𝑎11𝑎22 + 𝛽1 , 

𝛼3 =  −(𝑎11 + 𝑎22)  𝑚1 − 𝑎11𝑎22(𝑎33 + 𝑎44) + 𝛾1 + 𝛾2, 

𝛼4 = 𝑚1 𝑎11𝑎22  +  𝛿1 + 𝛿2 + 𝛿3, 𝛽1 = −(𝑎13𝑎31 + 𝑎14𝑎41),  

 𝛾1 = (𝑎13𝑎22 +𝑚5)𝑎31 − 𝑎41(𝑚6 − 𝑎14𝑎22), 

𝛿1 = 𝑚6 𝑎22𝑎41 −𝑚5 𝑎22𝑎31,         

𝛾2 =  𝑎11 𝑚2 + 𝑎32 𝑚3 − 𝑎42 𝑚4,  𝛿2 =  𝑎11 (𝑎42 𝑚4 − 𝑎32 𝑚3) 

𝛿3 = 𝑚7 (𝑎31𝑎42 − 𝑎41𝑎32). 

𝑚1 =  𝑎33𝑎44 − 𝑎34𝑎43, 𝑚2 = 𝑎23𝑎32 + 𝑎24𝑎42 , 

𝑚3 = 𝑎23𝑎44 − 𝑎24𝑎43, 𝑚4 =  𝑎23𝑎34 − 𝑎24𝑎33, 

𝑚5 = 𝑎13𝑎44  −  𝑎14𝑎43,   𝑚6 = 𝑎13𝑎34 − 𝑎14𝑎33,  

and 𝑚7 = 𝑎13𝑎24 − 𝑎14𝑎23. 

All the entries of matrix A above are assumed to be computed at 𝐸∗(𝑥1
∗, 𝑥2

∗, 𝑦1
∗, 𝑦2

∗).  

The result below follows from Hurwitz’s theorem [1]: 
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Theorem 3: The interior equilibrium 𝐸∗(𝑥1
∗, 𝑥2

∗, 𝑦1
∗, 𝑦2

∗)  is asymptotically stable if  

𝛼𝑖 > 0, 1 ≤ 𝑖 ≤ 4, 𝛼1𝛼2  ⍺3  −   ⍺3  
2 − ⍺1

2⍺4 > 0. 

4. Global Stability 

In this section we obtain conditions of global asymptotic stability of four, boundary 

equlibria that are interior to three dimensional subsystems and the interior equilibrium 

of (1). 

The results of boundary equilibria will be used to obtain conditions for uniform 

persistence in the next section. 

We set 𝑅𝑥𝑦𝑧
+ = {(𝑥, 𝑦, 𝑧)|𝑥 > 0, 𝑦 > 0, 𝑧 > 0}, and define 𝑅𝑥𝑦𝑧

+̅̅ ̅̅ ̅̅  to be the closure of 

𝑅𝑥𝑦𝑧
+   and, so on. 

We consider the question of global asymptotically stability of 𝐸7(𝑥31, 𝑥32, 𝑦31, 0) for 

the system, 

𝑥1
′ = 𝛼𝑥1𝑔1(𝑥1) − 𝑦1𝑝1(𝑥1, 0), 

𝑥2
′ = 𝑥2𝑔2(𝑥2) − 𝑦1𝑝2(𝑥2, 0),       

   

𝑦1
′ = 𝑦1[−𝑠1(𝑦1) + 𝑐1𝑝1(𝑥1, 0) + 𝑐1̃𝑝2(𝑥2, 0)] 

𝑥1(𝑡0) = 𝑥10 ≥ 0, 𝑥2(𝑡0) = 𝑥20 ≥ 0, 𝑦1(𝑡0) = 𝑦10 ≥ 0. 

We will find sufficent conditions, such that 𝐸7(𝑥31, 𝑥32, 𝑦31, 0) is globally 

asymptotically stable in 𝑅𝑥1𝑥2𝑦1
+ . 

We define 𝑉(𝑥1, 𝑥2, 𝑦1)[ 4]: 

𝑉(𝑥1, 𝑥2, 𝑦1) =∑(𝑥𝑖 − 𝑥3𝑖 − 𝑥3𝑖 log
𝑥𝑖
𝑥3𝑖
)

2

𝑖=1

+ 𝑦1 − 𝑦31 − 𝑦31 log
𝑦1
𝑦31

. 

𝑉 is positive definite about 𝐸7(𝑥31, 𝑥32, 𝑦31, 0). Also 𝑉(𝑥1, 𝑥2, 𝑦1) → +∞, as 𝑥1, 𝑥2 

and/or 𝑦1tend to zero. 

Computing 
𝑑𝑉

𝑑𝑡
 along the solutions, we get 

𝑑𝑉

𝑑𝑡
= (𝑥1 − 𝑥31) [𝛼𝑔1(𝑥1) − 𝑦1

𝑝1(𝑥1, 0)

𝑥1
] + (𝑥2 − 𝑥32) [𝑔2(𝑥2) − 𝑦1

𝑝2(𝑥2, 0)

𝑥2
]

+ (𝑦1 − 𝑦31){−𝑠1(𝑦1) + 𝑐1𝑝1(𝑥1, 0) + 𝑐1̃𝑝2(𝑥2, 0)} 

      =∑ 𝑙𝑖𝑗
3
𝑖,𝑗=1 , 

where, 
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𝑙11 = (𝑥1 − 𝑥31) {𝛼[𝑔1(𝑥1) − 𝑔1(𝑥31)] + 𝑦1 [
𝑝1(𝑥31,0)

𝑥31
−
𝑝1(𝑥1,0)

𝑥1
]} , 

𝑙12 = 0, 𝑙13 = −
(𝑥1−𝑥31)

𝑥31
(𝑦1 − 𝑦31)𝑝1(𝑥31, 0), 

𝑙21 = 0, 𝑙22 = (𝑥2 − 𝑥32) {𝑔2(𝑥2) − 𝑔2(𝑥32) + 𝑦1 [
𝑝2(𝑥32,0)

𝑥32
−
𝑝2(𝑥2,0)

𝑥2
]} , 

𝑙23 = −
1

𝑥32
(𝑥2 − 𝑥32)(𝑦1 − 𝑦31)𝑝2(𝑥32, 0), 𝑙31 = 𝑐1(𝑦1 − 𝑦31)[𝑝1(𝑥1, 0) −

𝑝1(𝑥31, 0)], 

𝑙32 = 𝑐1̃(𝑦1 − 𝑦31)[𝑝2(𝑥2, 0) − 𝑝2(𝑥32, 0)],  𝑙33 = −(𝑦1 − 𝑦31)[𝑠1(𝑦1) − 𝑠1(𝑦31)]. 

We set 

𝑙11 = (𝑥1 − 𝑥31)
2𝑚11(𝑥1, 𝑦1),𝑚12 = 0, 

𝑙13 + 𝑙31 = 2(𝑥1 − 𝑥31)(𝑦1 − 𝑦31)𝑚13(𝑥1), 

𝑙22 = (𝑥2 − 𝑥32)
2𝑚22(𝑥2), 

𝑙23 + 𝑙32 = 2(𝑥2 − 𝑥32)(𝑦1 − 𝑦31)𝑚23(𝑥2), 

𝑙33 = (𝑦1 − 𝑦31)
2𝑚33(𝑦1), 

and 

𝑚𝑖𝑗 = 𝑚𝑗𝑖 , 𝑖 > 𝑗. 

Thus  

𝑑𝑉

𝑑𝑡
= 𝑥𝑇𝑀𝑥, 

where, M =(𝑚𝑖𝑗 ), 𝑥 = (

𝑥1 − 𝑥31
𝑥2 − 𝑥32
𝑦1 − 𝑦31

). 

Also from Theorem 2 we have that 𝒜1 =

{(𝑥1, 𝑥2, 𝑦1)|0 ≤ 𝑥1 ≤ 𝐾1, 0 ≤ 𝑥2 ≤ 𝐾2, 𝑐1𝑥1 + 𝑐1̃𝑥2 + 𝑦1 ≤
𝑐1𝐺1+𝑐1̃𝐺2

𝑠1(0)
} is an 

attracting set for the subsystem in 𝑅𝑥1𝑥2𝑦1
+ . 

Theorem 4: Let the symmetric matrix M be negative definite in 𝒜1. Then 

𝐸7(𝑥31, 𝑥32, 𝑦31, 0) is globally asymptotically stable in 𝑅𝑥1𝑥2𝑦1
+ . 

Proof : The solutions are bounded and the largest invariant set of 

{𝑥 ∈  𝑅𝑥1𝑥2𝑦1
+ |𝑉̇ = 0} = {𝐸7}. Hence 𝐸7 is globally asymptotically stable in 

𝑅𝑥1𝑥2𝑦1
+ [11]. 

Next we consider the question of global asymptotically stability of 𝐸8(𝑥41, 𝑥42, 0, 𝑦42) 
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for the system 

𝑥1
′ = 𝛼𝑥1𝑔1(𝑥1) − 𝑦2𝑞1(𝑥1, 0), 

𝑥2
′ = 𝑥2𝑔2(𝑥2) − 𝑦2𝑞2(𝑥2, 0),       

   

𝑦2
′ = 𝑦2[−𝑠2(𝑦2) + 𝑐2𝑞1(𝑥1, 0) + 𝑐2̃𝑞2(𝑥2, 0)] 

𝑥1(𝑡0) = 𝑥10 ≥ 0, 𝑥2(𝑡0) = 𝑥20 ≥ 0, 𝑦2(𝑡0) = 𝑦20 ≥ 0. 

We define a Lyapunov function V((𝑥1, 𝑥2, 𝑦2), 

𝑉(𝑥1, 𝑥2, 𝑦2) =∑(𝑥𝑖 − 𝑥4𝑖 − 𝑥4𝑖 log
𝑥𝑖
𝑥4𝑖
)

2

𝑖=1

+ 𝑦2 − 𝑦42 − 𝑦42 log
𝑦2
𝑦42
. 

𝑉 is positive definite about 𝐸8(𝑥41, 𝑥42, 0, 𝑦42). Also 𝑉(𝑥1, 𝑥2, 𝑦2) → +∞, as 𝑥𝑖 and/or 

𝑦2tend to zero, 𝑖 = 1,2.  Computing time derivative of V along the solutions, we get, 

𝑑𝑉

𝑑𝑡
= (𝑥1 − 𝑥41) {𝛼 𝑔1(𝑥1) −

𝑦2
𝑥1
𝑞1(𝑥1, 0)} + (𝑥2 − 𝑥42) {𝑔2(𝑥2) −

𝑦2
𝑥2
𝑞2(𝑥2, 0)}

+ (𝑦2 − 𝑦42){−𝑠2(𝑦2) + 𝑐2𝑞1(𝑥1, 0) + 𝑐2̃𝑞2(𝑥2, 0)} 

=∑ 𝑙𝑖𝑗
3
𝑖,𝑗=1 , 

𝑙11 = (𝑥1 − 𝑥41) {𝛼[𝑔1(𝑥1) − 𝑔1(𝑥41)] + 𝑦2 [
𝑞1(𝑥41,0)

𝑥41
−
𝑞1(𝑥1,0)

𝑥1
]}, 

𝑙12 = 0, 𝑙13 = −
(𝑥1−𝑥41)

𝑥41
(𝑦2 − 𝑦42)𝑞1(𝑥41, 0) , 

𝑙21 = 0, 𝑙22 = (𝑥2 − 𝑥42) {𝑔2(𝑥2) − 𝑔2(𝑥42) + 𝑦2 [
𝑞2(𝑥42,0)

𝑥42
−
𝑞2(𝑥2,0)

𝑥2
]} , 

𝑙23 = −
1

𝑥42
(𝑥2 − 𝑥42)(𝑦2 − 𝑦42)𝑞2(𝑥42, 0) , 

𝑙31 = 𝑐2(𝑦2 − 𝑦42)[𝑞1(𝑥1, 0) − 𝑞1(𝑥41, 0)], 𝑙32
= 𝑐2̃(𝑦2 − 𝑦42)[𝑞2(𝑥2, 0) − 𝑞2(𝑥42, 0)], 

𝑙33 = −(𝑦2 − 𝑦42)[𝑠2(𝑦2) − 𝑠2(𝑦42)]. 

Next, we define 𝑛𝑖𝑗′𝑠 , such that 

𝑙11 = (𝑥1 − 𝑥41)
2𝑛11(𝑥1, 𝑦2),          𝑛12 = 0, 𝑙13 + 𝑙31 = 2(𝑥1 − 𝑥41)(𝑦2 −

𝑦42)𝑛13(𝑥1), 

𝑙22 = (𝑥2 − 𝑥42)
2𝑛22(𝑥2, 𝑦2)  ,  𝑙23 + 𝑙32 = 2(𝑥2 − 𝑥42)(𝑦2 − 𝑦42)𝑛23(𝑥2), 

𝑙33 = (𝑦2 − 𝑦42)
2𝑛33(𝑦2), 

and 
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𝑛𝑖𝑗 = 𝑛𝑗𝑖 , 𝑖 > 𝑗. 

Thus  

𝑑𝑉

𝑑𝑡
= 𝑥𝑇𝑁𝑥, 

𝑁 = (𝑛𝑖𝑗 ), 𝑥 = (

𝑥1 − 𝑥41
𝑥2 − 𝑥42
𝑦2 − 𝑦42

) 

Also from Theorem 2 we have: 𝒜2 =

{(𝑥1, 𝑥2, 𝑦2)|0 ≤ 𝑥1 ≤ 𝐾1, 0 ≤ 𝑥2 ≤ 𝐾2, 𝑐2𝑥2 + 𝑐2̃𝑥2 + 𝑦2 ≤
𝑐2𝐿1+𝑐2̃𝐿2

𝑠2(0)
} is an 

attracting set for the subsystem in 𝑅𝑥1𝑥2𝑦2
+ . Proceeding as in Theorem 4, we get:  

Theorem 5:  Let the symmetric matrix N be negative definite in 𝒜2. Then 

𝐸8(𝑥41, 𝑥42, 0, 𝑦42) is globally asymptotically stable in 𝑅𝑥1𝑥2𝑦2
+ . 

Next we consider global stability of 𝐸9 for the submodel in 𝑅𝑥1𝑦1𝑦2
+ : we define a 

Lyapunov function 𝑉(𝑥1,  𝑦1,  𝑦2): 

𝑉(𝑥1,  𝑦1,  𝑦2) =  (𝑥1 − 𝑥51 − 𝑥51 log
𝑥1

𝑥51
) + ∑ (𝑦𝑖 − 𝑦5𝑖 − 𝑦5𝑖 log

𝑦𝑖

𝑦5𝑖
)2

𝑖=1 . 

𝑉 is positive definite about 𝐸9(𝑥51, 0, 𝑦51, 𝑦52). Also as 𝑥𝑖 and/or 𝑦𝑖 → 0 , 𝑉 → +∞ , 

𝑖 = 1,2. 

Computing the time derivative of V along the solutions of we get, 

𝑑𝑉

𝑑𝑡
= (𝑥1 − 𝑥51) {𝛼𝑔1(𝑥1) − 𝑦1

𝑝1(𝑥1, 𝑦2)

𝑥1
− 𝑦2

𝑞1(𝑥1, 𝑦1)

𝑥1
}

+ (𝑦1 − 𝑦52){−𝑠1(𝑦1) + 𝑐1𝑝1(𝑥1, 𝑦2)}

+ (𝑦2 − 𝑦52){−𝑠2(𝑦2) + 𝑐2𝑞1(𝑥1, 𝑦1)} 

=∑ 𝑙𝑖𝑗
3
𝑖,𝑗=1 , 

where,  

𝑙11 = (𝑥1 − 𝑥51) {𝛼[𝑔1(𝑥1) − 𝑔1(𝑥51)] + 𝑦1 (
𝑝1(𝑥51,𝑦52)

𝑥51
−
𝑝1(𝑥1,𝑦52)

𝑥1
) +

𝑦2 (
𝑞1(𝑥51,𝑦51)

𝑥51
−
𝑞1(𝑥51,𝑦51)

𝑥1
)}, 

𝑙12 = −
(𝑥1−𝑥51)

𝑥51
{(𝑦1 − 𝑦51)𝑝1(𝑥51, 𝑦52) +

𝑦2

𝑥1
[𝑞1(𝑥1, 𝑦1) − 𝑞1(𝑥1, 𝑦51)]}, 

𝑙13 = −(𝑥1 − 𝑥51) {
𝑦1
𝑥51

[𝑝1(𝑥1, 𝑦2) − 𝑝1(𝑥1, 𝑦52)] +
(𝑦2 − 𝑦52)

𝑥51
𝑞1(𝑥51, 𝑦51)}, 

𝑙21 = 𝑐1(𝑦1 − 𝑦51){𝑝1(𝑥1, 𝑦2) − 𝑝1(𝑥51, 𝑦2)}, 
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𝑙22 = −(𝑦1 − 𝑦51)[𝑠1(𝑦1) − 𝑠1(𝑦51)], 

𝑙23 = 𝑐1(𝑦1 − 𝑦51)[𝑝1(𝑥51, 𝑦2) − 𝑝1(𝑥51, 𝑦52)], 

𝑙31 = (𝑦2 − 𝑦52)𝑐2{𝑞1(𝑥1, 𝑦1) − 𝑞1(𝑥51, 𝑦1)}, 

𝑙32 = 𝑐2(𝑦2 − 𝑦52)[−𝑞1(𝑥51, 𝑦51) + 𝑞1(𝑥51, 𝑦1)],  

𝑙33 = −(𝑦2 − 𝑦52)[𝑠2(𝑦2) − 𝑠2(𝑦52)] . 

We set 

𝑙11 = (𝑥1 − 𝑥1
∗)2𝑟11(𝑥1, 𝑦1, 𝑦2), 𝑙12 + 𝑙21 = 2(𝑥1 − 𝑥51)(𝑦1 − 𝑦51)𝑟12(𝑥1, 𝑦1, 𝑦2) , 

𝑙13 + 𝑙31 = 2(𝑥1 − 𝑥51)(𝑦2 − 𝑦52)𝑟13(𝑥1, 𝑦1, 𝑦2), 𝑙22 = (𝑦1 − 𝑦51)
2𝑟22(𝑦1) , 

𝑙23 + 𝑙32 = 2(𝑦1 − 𝑦51)𝑟23(𝑦2)(𝑦2 − 𝑦52), 𝑙33 = (𝑦2 − 𝑦52)
2𝑟33(𝑦2). 

Define 

𝑟𝑖𝑗 = 𝑟𝑗𝑖 , 𝑖 > 𝑗, 𝑅 = (𝑟𝑖𝑗), 

So, 𝑉̇ = 𝑥𝑇𝑅 𝑥, 

Also from Theorem 2, 𝒜3 =

{(𝑥1, 𝑦1, 𝑦2)|0 ≤ 𝑥1 ≤ 𝐾1, 0 ≤ 𝑐1𝑥1 + 𝑦1 ≤
𝑐1𝐺1

𝑠1(0)
, 𝑐2𝑥1 + 𝑦2 ≤

𝑐2𝐿1

𝑠2(0)
} is an attracting 

set for the subsystem in 𝑅𝑥1𝑦1𝑦2
+ . 

where,   R = (𝑟𝑖𝑗) 𝑎𝑛𝑑 𝑥 = (

𝑥1 − 𝑥51
𝑦1 − 𝑦51
𝑦2 − 𝑦52

). 

We obtain the following result: 

Theorem 6: Whenever the symmetric matrix R is negative definite on 𝒜3, the 

equilibrium 𝐸9(𝑥51, 0, 𝑦51, 𝑦52) is globally asymptotically stable in 𝑅𝑥1𝑦1𝑦2
+ . 

In order to obtain global asymptotic criteria for the equilibrium 𝐸10(0, 𝑥62, 𝑦61, 𝑦62) in 

𝑅𝑥2𝑦1𝑦2
+ , We define a Lyapunov function 𝑉(𝑥2,  𝑦1,  𝑦2) , 

𝑉(𝑥2,  𝑦1,  𝑦2) =  (𝑥2 − 𝑥62 − 𝑥62 log
𝑥2

𝑥62
) + ∑ (𝑦𝑖 − 𝑦6𝑖 − 𝑦6𝑖 log

𝑦𝑖

𝑦6𝑖
)2

𝑖=1  . 

𝑉 is positive definite about 𝐸10(0, 𝑥62, 𝑦61, 𝑦62). Also 𝑉 → +∞ as 𝑥2 or 𝑦𝑖 tend to 

0 + , 𝑖 = 1,2 . 

Computing the time derivative of V along the solutions, we get 
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𝑑𝑉

𝑑𝑡
= (𝑥2 − 𝑥62) {𝑔2(𝑥2) − 𝑦1

𝑝2(𝑥2, 𝑦2)

𝑥2
− 𝑦2

𝑞2(𝑥2, 𝑦1)

𝑥2
}

+ (𝑦1 − 𝑦62){−𝑠1(𝑦1) + 𝑐1𝑝1(𝑥2, 𝑦2)}

+ (𝑦2 − 𝑦62){−𝑠2(𝑦2) + 𝑐2𝑞1(𝑥2, 𝑦1)} 

=∑ 𝑙𝑖𝑗
3
𝑖,𝑗=1 , 

where, 

𝑙11 = (𝑥2 − 𝑥62) {𝑔2(𝑥2) − 𝑔2(𝑥62) + 𝑦1 (
𝑝2(𝑥62,𝑦62)

𝑥62
−
𝑝2(𝑥2,𝑦62)

𝑥2
) + 𝑦2 (

𝑞2(𝑥62,𝑦61)

𝑥62
−

𝑞2(𝑥2,𝑦61)

𝑥2
)}, 

𝑙12 = −(𝑥2 − 𝑥62 ) {
1

𝑥62
(𝑦1 − 𝑦61)𝑝2(𝑥62, 𝑦62) +

𝑦2

𝑥2
[𝑞2(𝑥2, 𝑦1) − 𝑞2(𝑥2, 𝑦61)]}, 

𝑙13 = −(𝑥2 − 𝑥62) {
𝑦1

𝑥62
[𝑝2(𝑥2, 𝑦2) − 𝑝2(𝑥2, 𝑦62)] +

(𝑦2−𝑦62)

𝑥62
𝑞2(𝑥62, 𝑦61)}, 

𝑙21 = 𝑐1̃(𝑦1 − 𝑦61){𝑝2(𝑥2, 𝑦2) − 𝑝2(𝑥62, 𝑦2)}, 𝑙22 = (𝑦1 − 𝑦61)[𝑠1(𝑦1) − 𝑠1(𝑦61)], 

𝑙23 = (𝑦1 − 𝑦61)𝑐1̃[𝑝2(𝑥62, 𝑦2) − 𝑝2(𝑥62, 𝑦62)], 𝑙31 = (𝑦2 − 𝑦62)𝑐2̃{𝑞2(𝑥2, 𝑦1) −

𝑞2(𝑥62, 𝑦1)}, 

𝑙32 = 𝑐2̃(𝑦2 − 𝑦62)[−𝑞2(𝑥62, 𝑦61) + 𝑞2(𝑥62, 𝑦1)], 𝑙33 = (𝑦2 − 𝑦62)[𝑠2(𝑦2) −

𝑠2(𝑦62)] . 

We set 

𝑙11 = (𝑥2 − 𝑥62)
2𝑡11(𝑥2, 𝑦1, 𝑦2), 𝑙12 + 𝑙21 = 2(𝑥2 − 𝑥62)(𝑦1 − 𝑦61)𝑡12(𝑥2, 𝑦1, 𝑦2), 

𝑙13 + 𝑙31 = 2(𝑥2 − 𝑥62)(𝑦2 − 𝑦62)𝑡13(𝑥2, 𝑦1, 𝑦2), 𝑙22 = (𝑦1 − 𝑦61)
2𝑡22(𝑦1), 

𝑙23 + 𝑙32 = 2(𝑦1 − 𝑦61)𝑡23(𝑦2)(𝑦2 − 𝑦62), 𝑙33 = (𝑦2 − 𝑦62)
2𝑡33(𝑦2), 

Define 

𝑡𝑖𝑗 = 𝑡𝑗𝑖 , 𝑖 > 𝑗, 𝑇 = (𝑡𝑖𝑗). 

So 

𝑉̇ = 𝑥𝑇𝑇𝑥, 

Where, = (

𝑥2 − 𝑥62
𝑦1 − 𝑦61
𝑦2 − 𝑦62

) . 

Also from Theorem 2, 𝒜4 =

{(𝑥2, 𝑦1, 𝑦2)|0 ≤ 𝑥2 ≤ 𝐾2, 0 ≤ 𝑐1̃𝑥2 + 𝑦1 ≤
𝑐1̃𝐺2

𝑠1(0)
, 0 ≤ 𝑐2̃𝑥2 + 𝑦2 ≤

𝑐2̃𝐿2

𝑠2(0)
} is an 

attracting set for the subsystem in 𝑅𝑥2𝑦1𝑦2
+ . Thus we have: 
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Theorem 7: Whenever the symmetric matrix T is negative definite in the region 𝒜4 , 

the equilibrium 𝐸10(0, 𝑥62, 𝑦51, 𝑦52) is globally asymptotically stable in 𝑅𝑥2𝑦1𝑦2
+ . 

Lastly we derive conditions for global stability of interior equilibrium 𝐸∗ 

Define a Lyapunov function 𝑉(𝑥1, 𝑥2, 𝑦1, 𝑦2). 

𝑉(𝑥1,  𝑥2,  𝑦1,  𝑦2) =  ∑(𝑥𝑖 − 𝑥𝑖
∗ − 𝑥𝑖

∗ log
𝑥𝑖
𝑥𝑖
∗) +∑(𝑦𝑖 − 𝑦𝑖

∗ − 𝑦𝑖
∗ log

𝑦𝑖
𝑦𝑖
∗)

2

𝑖=1

2

𝑖=1

 

𝑉 is positive definite about 𝐸∗(𝑥1
∗, 𝑥2

∗, 𝑦1
∗, 𝑦2

∗).Also as 𝑥𝑖 and/or 𝑦𝑖 → 0 , 𝑉 → +∞ , 𝑖 =

1,2. 

Computing the time derivate of V along the solutions of (1) we get, 

𝑑𝑉

𝑑𝑡
= (𝑥1 − 𝑥1

∗) {𝛼𝑔1(𝑥1) − 𝑦1
𝑝1(𝑥1, 𝑦2)

𝑥1
− 𝑦2

𝑞1(𝑥1, 𝑦1)

𝑥1
}

+ (𝑥2 − 𝑥2
∗) {𝑔2(𝑥2) − 𝑦1

𝑝2(𝑥2, 𝑦2)

𝑥2
− 𝑦2

𝑞2(𝑥2, 𝑦1)

𝑥2
}

+ (𝑦1 − 𝑦1
∗){−𝑠1(𝑦1) + 𝑐1𝑝1(𝑥1, 𝑦2) + 𝑐1̃𝑝2(𝑥2, 𝑦2)}

+ (𝑦2 − 𝑦2
∗){−𝑠2(𝑦2) + 𝑐2𝑞1(𝑥1, 𝑦1) + 𝑐2̃𝑞2(𝑥2, 𝑦1)} 

=∑ 𝑙𝑖𝑗
4
𝑖,𝑗=1  , 

where, 

𝑙11 = (𝑥1 − 𝑥1
∗) {𝛼[𝑔1(𝑥1) − 𝑔1(𝑥1

∗)] + 𝑦1 (
𝑝1(𝑥1

∗ ,𝑦2
∗)

𝑥1
∗ −

𝑝1(𝑥1,𝑦2
∗)

𝑥1
) + 𝑦2 (

𝑞1(𝑥1
∗ ,𝑦1

∗)

𝑥1
∗ −

𝑞1(𝑥1,𝑦1
∗)

𝑥1
)}, 

𝑙12 = 0, 

𝑙13 = − (𝑥1 − 𝑥1
∗) {(𝑦1 − 𝑦1

∗)
𝑝1(𝑥1

∗ ,𝑦2
∗)

𝑥1
∗  +

𝑦2

𝑥1
[𝑞1(𝑥1, 𝑦1) − 𝑞1(𝑥1, 𝑦1

∗)]} , 

𝑙14 = −(𝑥1 − 𝑥1
∗) {

𝑦1
𝑥1
[𝑝1(𝑥1, 𝑦2) − 𝑝1(𝑥1, 𝑦2

∗)] +
(𝑦2 − 𝑦2

∗)

𝑥1
∗ 𝑞1(𝑥1

∗, 𝑦1
∗)}, 

𝑙21 = 0, 

𝑙22 = (𝑥2 − 𝑥2
∗) {𝑔2(𝑥2) − 𝑔2(𝑥2

∗) + 𝑦1 [
𝑝2(𝑥2

∗ ,𝑦2
∗)

𝑥2
∗ −

𝑝2(𝑥2,𝑦2
∗)

𝑥2
] + 𝑦2 [

𝑞2(𝑥2
∗ ,𝑦1

∗)

𝑥2
∗ −

𝑞2(𝑥2,𝑦1
∗)

𝑥2
]} , 

𝑙23 = −(𝑥2 − 𝑥2
∗){

𝑦2

𝑥2
[𝑞2(𝑥2, 𝑦1) − 𝑞2(𝑥2, 𝑦1

∗)] +
1

𝑥2
∗ [(𝑦1 − 𝑦1

∗)𝑝2(𝑥2
∗, 𝑦2

∗)]} , 

𝑙24 = −(𝑥2 − 𝑥2
∗) {

𝑦1

𝑥2
[𝑝2(𝑥2, 𝑦2) − 𝑝2(𝑥2, 𝑦2

∗)] +
𝑞2(𝑥2

∗ ,𝑦1
∗)

𝑥2
∗ (𝑦2 − 𝑦2

∗)} , 

𝑙31 = 𝑐1(𝑦1 − 𝑦1
∗){𝑝1(𝑥1, 𝑦2) − 𝑝1(𝑥1

∗, 𝑦2)} , 

𝑙32 = 𝑐1̃(𝑦1 − 𝑦1
∗){𝑝2(𝑥2, 𝑦2) − 𝑝2(𝑥2

∗, 𝑦2)} , 
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𝑙33 = −(𝑦1 − 𝑦1
∗)[𝑠1(𝑦1) − 𝑠1(𝑦1

∗)] , 

𝑙34 = (𝑦1 − 𝑦1
∗){[𝑝1(𝑥1

∗, 𝑦2) − 𝑝1(𝑥1
∗, 𝑦2

∗)]𝑐1 + [𝑝2(𝑥2
∗, 𝑦2) − 𝑝2(𝑥2

∗, 𝑦2
∗)]𝑐1̃} , 

𝑙41 = (𝑦2 − 𝑦2
∗)𝑐2{𝑞1(𝑥1, 𝑦1) − 𝑞1(𝑥1

∗, 𝑦1)} , 

𝑙42 = (𝑦2 − 𝑦2
∗)𝑐2̃{𝑞2(𝑥2, 𝑦1) − 𝑞2(𝑥2

∗, 𝑦1)} , 

𝑙43 = (𝑦2 − 𝑦2
∗){𝑐2[−𝑞1(𝑥1

∗, 𝑦1
∗) + 𝑞1(𝑥1

∗, 𝑦1)] + 𝑐2̃[𝑞2(𝑥2
∗, 𝑦1) − 𝑞2(𝑥2

∗, 𝑦1
∗)]} , 

𝑙44 = −(𝑦2 − 𝑦2
∗)[𝑠2(𝑦2) − 𝑠2(𝑦2

∗)] . 

 

We set 

𝑙11 = (𝑥1 − 𝑥1
∗)2𝑢11(𝑥1, 𝑦1, 𝑦2), 

𝑙12 = 0, 𝑙13 + 𝑙31 = 2(𝑥1 − 𝑥1
∗)(𝑦1 − 𝑦1

∗)𝑢13(𝑥1, 𝑦1, 𝑦2), 

𝑙14 + 𝑙41 = 2(𝑥1 − 𝑥1
∗)(𝑦2 − 𝑦2

∗)𝑢14(𝑥1, 𝑦1, 𝑦2), 𝑙21 = 0, 

𝑙22 = (𝑥2 − 𝑥2
∗)2𝑢22(𝑥2, 𝑦1, 𝑦2), 𝑙23 + 𝑙32 = 2(𝑥2 − 𝑥2

∗)(𝑦1 − 𝑦1
∗)𝑢23(𝑥2, 𝑦1, 𝑦2), 

𝑙24 + 𝑙42 = 2(𝑥2 − 𝑥2
∗)(𝑦2 − 𝑦2

∗)𝑢24(𝑥2, 𝑦1, 𝑦2), 𝑙33 = (𝑦1 − 𝑦1
∗)2𝑢33(𝑦1), 

𝑙34 + 𝑙43 = 2(𝑦1 − 𝑦1
∗)𝑢34(𝑦2)(𝑦2 − 𝑦2

∗), 𝑙44 = (𝑦2 − 𝑦2
∗)2𝑢44(𝑦2), 

Define 

𝑢𝑖𝑗 = 𝑢𝑗𝑖, 𝑖 > 𝑗. 

So,       𝑉̇ = 𝑥𝑇𝑈𝑥, 

where, 𝑈 = (𝑢𝑖𝑗) 𝑎𝑛𝑑 𝑥 = (

𝑥1 − 𝑥1
∗

𝑥2 − 𝑥2
∗

𝑦1 − 𝑦1
∗

𝑦2 − 𝑦2
∗

). 

Theorem 8: When matrix U is negative definite on 𝒜, the equilibrium 

𝐸∗(𝑥1
∗, 𝑥2

∗, 𝑦1
∗, 𝑦2

∗) is globally asymptotically stable in  𝑅𝑥1𝑥2𝑦1𝑦2
+ . 

Proof : The solutions are bounded and the largest invariant set of 

{𝑥 є  𝑅𝑥1𝑥2𝑦1𝑦2
+ |𝑉̇ = 0} = {𝐸∗} . Hence the result follows from [11]. 

5. Uniform Persistence 

We study the question of uniform persistence [2] of system (1) in this section. 

Define 

𝑃(𝑥) = 𝑥1
𝛾1𝑥2

𝛾2𝑦1
𝛿𝑦2

𝜇(𝑥1 + 𝑥2)
∈ 

ln 𝑃 = 𝛾1 ln 𝑥1 + 𝛾2 ln 𝑥2 + 𝛿 ln𝑦1 + 𝜇 ln 𝑦2 + 𝜖 ln(𝑥1 + 𝑥2) 
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𝜓 =
𝑑 ln𝑃

𝑑𝑡
=
1

𝑃
𝑃̇ 

= 𝛾1 (𝑔1(𝑥1) − 𝑦1
𝑝1(𝑥1, 𝑦2)

𝑥1
− 𝑦2

𝑞1(𝑥1, 𝑦1)

𝑥1
)

+ 𝛾2 (𝑔2(𝑥2) − 𝑦1
𝑝2(𝑥2, 𝑦2)

𝑥2
− 𝑦2

𝑞2(𝑥2, 𝑦1)

𝑥2
)

+ 𝛿(−𝑠1(𝑦1) + 𝑐1𝑝1(𝑥1, 𝑦2) + 𝑐1̃𝑝2(𝑥2, 𝑦2))

+ 𝜇(−𝑠2(𝑦2) + 𝑐2𝑞1(𝑥1, 𝑦1) + 𝑐2̃𝑞2(𝑥2, 𝑦1))

+
𝜖

𝑥1 + 𝑥2
[(𝑥1𝑔1 − 𝑦1𝑝1 − 𝑦2𝑞1) + 𝑥2𝑔2 − 𝑦1𝑝2 − 𝑦2𝑞2] 

It is sufficient to show ([ 6 ]), that there exist positive constants 𝛾1, 𝛾2, 𝛿, 𝜇 𝑎𝑛𝑑 𝜖 such 

that 𝜓 > 0 at all boundary equilibria. That is we require, 

𝛾1𝑔1(0) + 𝛾2𝑔2(0) − 𝑠1(0)𝛿 − 𝑠2(0)𝜇 + 𝜖 𝑚𝑖𝑛(𝑔1(0), 𝑔2(0)) > 0                                         (6.1)

𝛾2𝑔2(0) + 𝛿(−𝑠1(0) + 𝑐1𝑝1(𝐾1, 0)) + 𝜇(−𝑠2(0) + 𝑐2𝑞1(𝐾1, 0)) > 0                                      (6.2)

𝑔1(0)𝛾1 + 𝛿(−𝑠1(0) + 𝑐1̃𝑝2(𝐾2, 0)) + 𝜇(−𝑠2(0) + 𝑐2̃𝑞2(𝐾2, 0)) > 0                                      (6.3)

𝛾2 (𝑔2(0) − 𝑦1̅̅ ̅𝑝2𝑥2
(0,0)) + 𝜇(−𝑠2(0) + 𝑐2𝑞1(𝑥1̅̅̅, 𝑦1̅̅ ̅)) > 0                                                        (6.4)

𝛾1 (𝑔1(0) − 𝑦11̅̅ ̅̅ 𝑝1𝑥1
(0,0)) + 𝜇(−𝑠2(0) + 𝑐2̃𝑞2(𝑥2̅̅ ̅, 𝑦11̅̅ ̅̅ )) > 0                                                      (6.5)

𝛾2 (𝑔2(0) − 𝑦2̃𝑞2𝑥2
(0,0)) + 𝛿(−𝑠1(0) + 𝑐1𝑝1(𝑥1̃, 𝑦2̃)) > 0                                                        (6.6)

𝛾1 (𝑔1(0) − 𝑦22̃𝑞1𝑥1
(0,0)) + 𝛿(−𝑠1(0) + 𝑐1̃𝑝2(𝑥2̃, 𝑦22̃)) > 0                                                     (6.7)

𝜇(−𝑠2(0) + 𝑐2𝑞1(𝑥31, 𝑦31) + 𝑐2̃𝑞2(𝑥32, 𝑦31)) > 0                                                                          (6.8)

𝛿(−𝑠1(0) + 𝑐1𝑝1(𝑥41, 𝑦42) + 𝑐1̃𝑝2(𝑥42, 𝑦42)) > 0                                                                           (6.9)

𝛾2 (𝑔2(0) − 𝑦51𝑝2𝑥2
(0, 𝑦52) − 𝑦52𝑞2𝑥2

(0, 𝑦51)) > 0                                                                   (6.10)

𝛾1 (𝑔1(0) − 𝑦61𝑝1𝑥1
(0, 𝑦62) − 𝑦62𝑞1𝑥1

(0, 𝑦61)) > 0                                                                   (6.11)}
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

(6)   

Let boundary equilibria 𝐸𝑖, 3 ≤ 𝑖 ≤ 10 be globally asymptotically stable in their 

respective subsystems. Then 

𝑔1(0) − 𝑦11̅̅ ̅̅ 𝑝1𝑥1
(0,0) > 0, 𝑔1(0) − 𝑦22̃𝑞1𝑥1

(0,0) > 0,

𝑔2(0) − 𝑦2̃𝑞2𝑥2
(0,0) > 0, 𝑔2(0) − 𝑦1̅̅ ̅𝑝2𝑥2

(0,0) > 0,

−𝑠2(0) + 𝑐2𝑞1(𝑥1̅̅̅, 𝑦1̅̅ ̅) > 0, −𝑠2(0) + 𝑐2̃𝑞2(𝑥2̅̅ ̅, 𝑦11̅̅ ̅̅ ) > 0,

−𝑠1(0) + 𝑐1𝑝1(𝑥1̃, 𝑦2̃) > 0, −𝑠1(0) + 𝑐1̃𝑝2(𝑥2̃, 𝑦22̃) > 0,

                                                                   

}
 
 

 
 

(7) 

Recall from section 3.2 

𝜉1 = −𝑠2(0) + 𝑐2𝑞1(𝑥31, 𝑦31) + 𝑐2̃𝑞2(𝑥32, 𝑦31),

𝜉2 = −𝑠1(0) + 𝑐1𝑝1(𝑥41, 𝑦42) + 𝑐1̃𝑝2(𝑥42, 𝑦42),

𝜉3 = 𝑔2(0) − 𝑦51𝑝2𝑥2
(0, 𝑦52) − 𝑦52𝑞2𝑥2

(0, 𝑦51),

𝑎𝑛𝑑                                                                                   
𝜉4 = 𝑔1(0) − 𝑦61𝑝1𝑥1

(0, 𝑦62) − 𝑦62𝑞1𝑥1
(0, 𝑦61).

                                                                                         

}
 
 

 
 

(8) 
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For positive small 𝛿 and 𝜇 (6.1) holds. 

From conditions (3) and (4) equalities (6.2) and (6.3) above hold. 

When 𝜉𝑖 > 0, 1 ≤ 𝑖 ≤ 4, using (7), inequalities (6.4) − (6.11) hold. 

We thus have the following results: 

Theorem 9: Let hypotheses (𝐻1) − (𝐻5) hold and condition of facultative mutualism 

hold. Further 𝐸𝑖 , 3 ≤ 𝑖 ≤ 10 exist and be globally stable in their respective octants. 

When 𝜉𝑖 > 0, 1 ≤ 𝑖 ≤ 4, system (1) will be uniformly persistent. 

Theorem 10: Let hypotheses (𝐻1) − (𝐻5) hold and mutualism be obligate for 𝑦1 (i.e. 

condition (5.1) holds). Furthermore let 𝐸5, 𝐸6, 𝐸𝑖, 8 ≤ 𝑖 ≤ 10 be globally stable in 

their respective octants. When 𝜉𝑖 > 0, 2 ≤ 𝑖 ≤ 4, system (1) will be uniformly 

persistent.  

In next result we give conditions for uniform persistence when mutualism is obligate 

for 𝑦2. 

Theorem 11: Let hypotheses (𝐻1) − (𝐻5) hold and mutualism be obligate for 𝑦2 (i.e. 

condition (5.2) holds). Further let 𝐸3,  𝐸4,  𝐸7,  𝐸9 and 𝐸10 be globally stable in their 

respective positive octants. When 𝜉1 > 0, 𝜉3 > 0 and 𝜉4 > 0, system (1) is uniformly 

persistent. 

When mutualism is obligate for both 𝑦1 and 𝑦2, equilibria 𝐸𝑖, 3 ≤ 𝑖 ≤ 8 do not exist, 

and we have: 

Theorem 12: Let hypotheses (𝐻1) − (𝐻5) hold. Further let mutualism is obligate for 

both 𝑦1 and 𝑦2 (i.e. (5.1) and (5.2) hold). Let  𝐸9 and 𝐸10 be globally stable in 𝑅𝑥1𝑦1𝑦2
+  

and 𝑅𝑥2𝑦1𝑦2
+ , respectively. If 𝜉3 > 0 and 𝜉4 > 0 then system is uniformly persistent. 

6. Special case 

Finally we present a special case of model (1): 

We consider the system 

𝑑𝑥1
𝑑𝑡

= 𝑎1 (1 −
𝑥1
𝐾1
) 𝑥1 − 𝑝1(𝑥1, 𝑦2)𝑦1 − 𝑞1(𝑥1, 𝑦1)𝑦2

𝑑𝑥2
𝑑𝑡

= 𝑎2 (1 −
𝑥2
𝐾2
) 𝑥2 − 𝑝2(𝑥2, 𝑦2)𝑦1 − 𝑞2(𝑥2, 𝑦1)𝑦2

𝑑𝑦1
𝑑𝑡

= 𝑦1{−𝑠11 − 𝑠12𝑦1 + 𝑐1𝑝1(𝑥1, 𝑦2) + 𝑐1̃𝑝2(𝑥2, 𝑦2)}

𝑑𝑦2
𝑑𝑡

= 𝑦2{−𝑠21 − 𝑠22𝑦2 + 𝑐2𝑞1(𝑥1, 𝑦1) + 𝑐2̃𝑞2(𝑥2, 𝑦1)}

                                                               

}
 
 
 
 

 
 
 
 

(9) 

For global stability of all equilibria, below(except 𝐸8(𝑥41, 𝑥42, 0, 𝑦42)) we take 

𝑝𝑖(𝑥𝑖, 𝑦2) = 𝑝𝑖1𝑥𝑖 ,   𝑞𝑖(𝑥𝑖 , 𝑦1) = 𝑞𝑖1𝑥𝑖𝑦1, 𝑖 = 1,2.                                                                   (10)     
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For 𝐸8, we set: 

𝑝𝑖(𝑥𝑖, 𝑦2) = 𝑝𝑖1𝑥𝑖𝑦2, 𝑞𝑖(𝑥𝑖, 𝑦1) = 𝑞𝑖1𝑥𝑖 , 𝑖 = 1,2.                                                             (11)    

The model considered exhibits commensalism between 𝑦1 and 𝑦2. 

A set of sufficient conditions for existence of 𝐸𝑖 , 7 ≤ 𝑖 ≤ 10 is that the 

corresponding submodel be uniformly persistent [ 2 ]. The constants 𝐿𝑖, 𝐺𝑖 , 𝑖 = 1,2,  

are as in Theorem 2. Computing matrix M as in Theorem 4, we get 

𝑀 =

[
 
 
 
 
 
 −

𝑎1
𝐾1

0
(𝑐1 − 1)𝑝11

2

0 −
𝑎2
𝐾2

(𝑐1̃ − 1)𝑝21
2

(𝑐1 − 1)𝑝11
2

(𝑐1̃ − 1)𝑝21
2

−𝑠12 ]
 
 
 
 
 
 

 

Corollary 1: 𝐸7 will be globally stable in 𝑅𝑥1𝑥2𝑦1
+  , whenever 𝑀 is negative definite. 

For 𝐸8 , we get 

𝑁 =

[
 
 
 
 
 
 −

𝑎1
𝐾1

0
𝑞11(𝑐2 − 1)

2

0 −
𝑎2
𝐾2

𝑞21(𝑐2̃ − 1)

2
𝑞11(𝑐2 − 1)

2

𝑞21(𝑐2̃ − 1)

2
−𝑠22 ]

 
 
 
 
 
 

 

By Theorem 5, we have:  

Corollary 2: When 𝑁 is negative definite, 𝐸8 is globally stable in 𝑅𝑥1𝑥2𝑦2
+ . 

Next let 𝐸9(𝑥51, 0, 𝑦51, 𝑦52) exist. 

Computing symmetric matrix 𝑅 as in Theorem 6,  

𝑅 = (𝑟𝑖𝑗), is given by 

𝑟11 = −
𝑎1

𝐾1
 , 𝑟12(𝑦2) =

1

2
{(𝑐1 − 1)𝑝11 − 𝑞11𝑦2}, 

𝑟13(𝑦1) =
1

2
𝑞11(𝑦1 − 𝑦51), 𝑟22 = −𝑠12, 𝑟23 =

1

2
𝑞11𝑐2𝑥51 , 

 𝑟33 = −𝑠22, |𝑟12(0)| =
𝑝11

2
|𝑐1 − 1|, 

Now, proceeding as in Theorem 2 of section 2, 

𝑦1 ≤ 𝛿19 =
𝑐1𝐺1

𝑠1(0)
+ 𝜖 , for large 𝑡, 𝑦2 ≤ 𝛿29 =

𝑐2𝐿1

𝑠2(0)
+ 𝜖 , for large 𝑡. 
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Thus, 

|𝑟12(𝛿29)| =
1

2
|𝑝11(𝑐1 − 1) − 𝑞11𝛿29|, 𝑟12𝑚𝑎𝑥 = 𝑚𝑎𝑥{|𝑟12(0)|, |𝑟12(𝛿29)|} 

|𝑟13(𝑦1)| ≤
𝑞11
2
𝑚𝑎𝑥{𝑦51, |𝛿19 − 𝑦51|} = 𝑟13𝑚𝑎𝑥 

Corollary 3: Let 𝐸9(𝑥51, 0, 𝑦51, 𝑦52) exists and  

𝑎1
𝐾1
> 𝑟12𝑚𝑎𝑥 + 𝑟13max ,  𝑠12 > 𝑟12𝑚𝑎𝑥 + 𝑟23, 𝑠22 > 𝑟13𝑚𝑎𝑥 + 𝑟23.                (12) 

Then 𝐸9 is globally stable in 𝑅𝑥1𝑦1𝑦2
+ . 

Proof:  

Under condition(12), 𝑅 is a symmetric diagonally dominant matrix in 𝒜3 . By 

Gersgorin theorem if 𝜆 is an eigenvalue then there exists 1 ≤ 𝑖 ≤ 3 such that  

𝜆 ≤ 𝑟𝑖𝑖 +∑|𝑟𝑖𝑗|

𝑗≠𝑖

 

Also   |𝑟𝑖𝑖| > ∑ |𝑟𝑖𝑘|𝑘≠𝑖  and 𝑟𝑖𝑖 < 0,   𝑗 = 1,2,3. Thus, 𝑟𝑖𝑖 + ∑ |𝑟𝑖𝑗| < 0𝑗≠𝑖  

i.e. eigenvalues of 𝑅 in 𝒜3 are negative and by Theorem 6 𝐸9 is globally stable in 

𝑅𝑥1𝑦1𝑦2
+ . 

 

Next, let 𝐸10(0, 𝑥62, 𝑦61, 𝑦62) exists. From Theorem 2,  𝑦𝑖(𝑡) ≤ 𝛿𝑖10 for large t, = 1,2.  

where, 

𝛿110 =
𝑐1̃𝐺2

𝑠11
+ 𝜖 ,  𝛿210 =

𝑐2̃𝐿2

𝑠21
+ 𝜖 , 

Computing symmetric matrix 𝑇, as in Theorem 7, then 

𝑇 = (𝑡𝑖𝑗)3𝑥3 

where, 

𝑡11 = −
𝑎2

𝐾2
 , 𝑡12(𝑦2) =

1

2
{𝑝21(𝑐1̃ − 1) − 𝑞21𝑦2} , 𝑡13 =

1

2
𝑞21(𝑦1 − 𝑦61) , 𝑡22 = −𝑠12 , 

𝑡23 =
1

2
[𝑞21𝑐2̃𝑥62] , 𝑡33 = −𝑠22 , 

and  

𝑡𝑖𝑗 = 𝑡𝑗𝑖  , 𝑖 > 𝑗 . 
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Define, 

𝑡12𝑚𝑎𝑥 =
1

2
𝑚𝑎𝑥{|𝑡12(0)|, 𝑡12(𝛿210)} ,  𝑡13𝑚𝑎𝑥 =

1

2
𝑚𝑎𝑥{𝑞21𝑦61, 𝑞21(𝛿10 − 𝑦61)} 

We require 

𝑎2

𝐾2
> 𝑡12𝑚𝑎𝑥 + 𝑡13max ,  𝑠12 > 𝑡12𝑚𝑎𝑥 + 𝑡23, 𝑠22 > 𝑡13𝑚𝑎𝑥 +

𝑡23.                                               (13) 

Then we have the following result: 

Corollary 4: Let 𝐸10(0, 𝑥62, 𝑦61, 𝑦62) exists and inequalities (13) hold. 

Then 𝐸10 is globally asymptotically stable in 𝑅𝑥2𝑦1𝑦2
+ . 

For global stability of 𝐸∗, we computing𝐿, as in Theorem 8, 

 𝑢11 = −
𝑎1

𝐾1
, 𝑢12 = 0, 𝑢13 =

1

2
{(𝑐1 − 1)𝑝11 − 𝑞11𝑦2},  𝑢14 =

1

2
𝑞11(𝑦1 − 𝑦1

∗) , 

𝑢22 = −
𝑎2

𝐾2
 , 𝑢23 =

1

2
{(𝑐1̃ − 1)𝑝21 − 𝑞21𝑦2},  𝑢24 =

1

2
𝑞21(𝑐2̃𝑦1 − 𝑦1

∗) , 𝑢33 = −𝑠12 , 

𝑢34 =
1

2
(𝑐2𝑥1

∗𝑞11 + 𝑐2̃𝑥2
∗𝑞21), 𝑢44 = −𝑠22 . 

𝑢𝑖𝑗 = 𝑢𝑗𝑖  ,   𝑖 > 𝑗, 1≤ 𝑖, 𝑗 ≤ 4. 

Set U= (𝑢𝑖𝑗) . 

Next, if 𝐸∗(𝑥1
∗, 𝑥2

∗, 𝑦1
∗, 𝑦2

∗) exists in interior of 𝑅𝑥1𝑥2𝑦1𝑦2
+ , Define 

𝑙13𝑚𝑎𝑥 =
1

2
𝑚𝑎𝑥{|(𝑐1 − 1)𝑝11|, |(𝑐1 − 1)𝑝11 − 𝑞11𝛿2|}, 𝑙14𝑚𝑎𝑥 =

1

2
𝑞11𝑚𝑎𝑥{(𝛿1 −

𝑦1
∗), 𝑦1

∗} , 

𝑙23𝑚𝑎𝑥 =
1

2
𝑚𝑎𝑥{|𝑐1̃ − 1|𝑝21, |(𝑐1̃ − 1)𝑝21 − 𝑞21𝛿2|} , 𝑙24𝑚𝑎𝑥 =

1

2
𝑞21(𝑐2̃𝛿1 − 𝑦1

∗) , 

where, 𝛿1 =
𝑐1𝐺1+𝑐1̃𝐺2

𝑠11
, and 𝛿2 =

𝑐2𝐿1+𝑐1̃𝐿2

𝑠21
 . 

The next result is clear from Theorem 8. 

Corollary 5: Let 𝐸∗(𝑥1
∗, 𝑥2

∗, 𝑦1
∗, 𝑦2

∗) exists and  

𝑎1

𝐾1
> 𝑙13𝑚𝑎𝑥 + 𝑙14𝑚𝑎𝑥,  

𝑎2

𝐾2
> 𝑙23𝑚𝑎𝑥 + 𝑙24𝑚𝑎𝑥,  

𝑠12 > 𝑙13𝑚𝑎𝑥 + 𝑙23𝑚𝑎𝑥 + 𝑙24𝑚𝑎𝑥, and 𝑠22 > 𝑙14𝑚𝑎𝑥 + 𝑙24𝑚𝑎𝑥 + 𝑙34 . 

Then 𝐸∗ is globally stable. 

Below we present specific examples: 

With 𝑎1 = 𝑎2 = 1, 𝐾1 = 0.8, 𝐾2 = 1, 𝑝11 = .4,  𝑝21 = .3, 𝑐1 = 2.5, 𝑐1̃ = 3.5,
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  𝑠11 = .5, 𝑠12 = 1.5, 𝐸7(𝑥31, 𝑥32, 𝑦31, 0) = (0.5977, 0.8103, 0.6323, 0) exists and the 

symmetric matrix 

𝑀 = [
−1.25 0 . 3
0 −1 . 375
0.3 . 375 −1.5

] 

is negative definite as its eigenvalues are −1.8263,−1.1716,−.7521. Hence  by 

Theorem 4 𝐸7 is globally stable in 𝑅𝑥1𝑥2𝑦1
+ . 

With 𝑎1 = 𝑎2 = 1,𝐾1 = 𝐾2 = 1, 𝑞11 = 0.4, 𝑐2 = 2.5, 𝑐2̃ = 3.5, 𝑞21 = 0.3, 𝑠21 =

0.5 𝑎𝑛𝑑 𝑠22 = 1.50. 

Equilibrium 𝐸8(𝑥41, 𝑥42, 0, 𝑦41) = (0.7201, 0.7901, 0, 0.6998) exists and symmetric 

matrix 𝑁 in Theorem 5 is  

𝑁 = [
−1 0 . 3
0 −1 . 3750
0.3 . 375 −1.5

] 

and has eigenvalues −1.7914,−1 𝑎𝑛𝑑 − 0.7086. Thus 𝐸8 is globally stable in 

𝑅𝑥1𝑥2𝑦2
+ .  

With 𝑎1 = 2.2, 𝐾1 = 0.85, 𝑝11 = 0.45,  𝑞11 = .21, 𝑠11 = 0.5, 𝑠12 = 2.52,

      𝑠21 = 0.065, 𝑠22 = 1.75, 𝑐1 = 2.4 𝑎𝑛𝑑  𝑐2 = 3.47, 𝐸9(𝑥51, 0, 𝑦51, 𝑦52) =

(0.823, 0, 0.1543, 0.0157) exists and conditions (12) of Corollary 3 are satisfied. 

Thus 𝐸9 is globally stable in 𝑅𝑥1𝑦1𝑦2
+ . 

With 𝑎2 = 1.8, 𝐾2 = 0.80, 𝑝11 = 0.4,  𝑝21 = .42,  𝑞21 = .25, 𝑠11 = 0.50,

       𝑠12 = 1.9, 𝑠21 = 0.1,  𝑠22 = 1, 𝑐1̃ = 2.55 𝑎𝑛𝑑  𝑐2̃ = 3.5, 𝐸10(0, 𝑥62, 𝑦61, 𝑦62) =

(0, 0.768, 0.1698, 0.0141) exists. Also conditions of Corollary 4 are satisfied and 𝐸10 

is globally stable in 𝑅𝑥2𝑦1𝑦2
+ . 

With 𝑎2 = 1, 𝐾1 = 2, 𝑎2 = 1.05, 𝐾2 = 1, 𝑝11 = 0.365,   𝑞11 = 0.25,  𝑝21 = .30,

𝑞21 = 0.5, 𝑠11 = 0.4, 𝑠12 = 0.37, 𝑠21 = 0.4,  𝑠22 = 0.90,  𝑐1 = 1, 𝑐1̃ = 1.5,  𝑐2 =

1.2, 𝑎𝑛𝑑 𝑐2̃ = 2.5, interior equilibrium 𝐸∗(𝑥1
∗, 𝑥2

∗, 𝑦1
∗, 𝑦2

∗) =

(1.2352, 0.7106, 1.0017, 0.0669) exists. The conditions of Corollary 5 are also 

satisfied and 𝐸∗ is globally stable. 

Next we illustrate Theorem 11. 

With 𝑎1 = 1.8, 𝑎2 = 1.8, 𝐾1 = 0.8,  𝐾2 = 0.8, 𝑝11 = 0.4,  𝑝21 = .42, 𝑠11 = 0.5, 

𝑠12 = 1.9, 𝑠21 = 0.1,  𝑠22 = 1, 𝑐1̃ = 2.55,  𝑐2 = 3.5, 𝑐2̃ = 3.5, 𝑐2 = 3.5, 𝑐2̃ =

3.5, 𝑞11 = 0.25 𝑎𝑛𝑑 𝑞21 =  0.25, equilibria 𝐸0(0,0,0,0), 𝐸1(0.8,0,0,0), 

 𝐸2(0,0.8,0,0), 𝐸3(0.4902,0,3.3971,0), 𝐸4(0,0.3401,1.7847,0),  

 𝐸7(0.7086,0.7040,0.5140,0), 𝐸9(0.7730,0,0.1518,0.0027) and 
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𝐸10(0,0.7680,0.1698,0.0141) exist. Further 𝐸3, 𝐸4, 𝐸7, 𝐸9 and 𝐸10 are globally stable 

in their respective octants. Finally, 𝜉1 = 0.5355, 𝜉3 = 1.7361, 𝜉4 = 1.7315. are 

positive and by Theorem 11 system (9) with 𝑝𝑖, 𝑞𝑖 as given by (10) is uniformly 

persistent.   
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