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Abstract

In this work, sufficient conditions are established for positive periodic solutions of
first order nonlinear neutral delay differential equations of the form

[u(t)−p(t)f(u(t−α))−q(t)g(u(t−β))]′ = −r(t)u(t)+h(t, u(t−α), u(t−β))

by using Krasnoselskii’s fixed point theorem.

Mathematics subject classification (2010): 34K13, 34A34

Keywords: Periodic solution, neutral differential equation, delay, nonlinear.

1. INTRODUCTION

It is known that a growing population is likely to consume more or less food than a
matured one depending on individual species. If we consider human population, then
we let u(t) be the matured population at the age t > 0. Accordingly, if we categorise
the human tenure of living span into three phases, then we assume that u(t − α) and
u(t − β) are the other two of the ages t − α and t − β respectively. Therefore, the
total food consumption(which may be nonlinear in modality) of a complete tenure of
human population span comprising of three categories can be formulated by means of
a nonlinear neutral differential equations of the type

[u(t)−p(t)f(u(t−α))−q(t)g(u(t−β))]′ = −r(t)u(t)+h(t, u(t−α), u(t−β)), (1.1)

where p, q, r ∈ C(R,R), f, g ∈ C ′(R,R) satisfying the properties xf(x) > 0 and
xg(x) > 0 for x 6= 0, x ∈ R, h ∈ C(R3,R) such that p, q, r, f, g, h are T− periodic
functions, T > 0 and 0 < α, β < T .
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As long as the food consumption is concerned, a modality of a system may exhibit
periodic nature involving the solution of the neutral differential equation. Hence, the
objective of this work is to present the existence of T−periodic solutions of (1.1)
by using Krasnoselskii’s fixed point theorem. Indeed, our motivation came from the
ecological and population models (see for e.g. [2], [3], [8] ) which are dealing with
neutral functional differential equations of the type:

[u(t)− pu(t− α(t))]′ = −r(t)u(t) + b(t)e−τ(t)u(t−α(t), (1.2)

[u(t)− pu(t− α(t))]′ = −r(t)u(t) + b(t)u(t− α(t))e−τ(t)u(t−α(t) (1.3)

and

[u(t)− pu(t− α(t))]′ = −r(t)u(t) + b(t)
u(t− α(t))

1 + un(t− α(t))
, n > 0. (1.4)

The present work not only emphasises the study of periodic solutions of (1.2), (1.3) and
(1.4) in comparison with (1.1), but also it improves and generalizes the corresponding
results of [6] and [7], where the authors have discussed the special case p(t) ≡ 0 and
q(t) ≡ 0 of (1.1). Meanwhile, the work [5] came to notice in which the authors have
studied the special case q(t) ≡ 0 and p(t) = p(constant) of (1.1) such that either
p ∈ (−1, 0) or p ∈ (0, 1).

By a solution of (1.1) we understand a function u ∈ C([−ρ,∞),R) such that
(u(t) − p(t)f(u(t − α)) − q(t)g(u(t − β)) is continuously differentiable and (1.1)
is satisfied for t ≥ 0, where ρ = max{α, β}, and sup{|u(t)| : t ≥ t0} > 0 for every
t0 ≥ 0.

Lemma 1.1. [1](Krasnoselskii’s Fixed Point Theorem)
Let X be a Banach space and S be a bounded closed subset of X . Consider two map
T1 and T2 of S into X such that T1x + T2y ∈ S for every pair x, y ∈ S. If T1 is a
contraction and T2 is completely continuous, then the equation T1x + T2y has a fixed
point in S.

2. EXISTENCE OF PERIODIC SOLUTION

Let X = {u(t) : u ∈ C(R,R), u(t) = u(t+ T ), t ∈ R} be the space of real continuous
functions with the norm

‖u‖ = sup
t∈[0,T ]

|u(t)|.
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Then X is a Banach space with the ‖ · ‖. We put

H(t, uα, uβ) =
h(t, uα, uβ)

r(t)
− p(t)f(uα)− q(t)g(uβ),

where h(t, uα, uβ) = h(t, u(t− α), u(t− β)).

Lemma 2.1. x(t) is a T−periodic solution of (1.1) if and only if x(t) is a T−periodic
solution of

u(t) =

∫ t+T

t
G(t, s)[h(s, u(s− α), u(s− β))

− r(s)p(s)f(u(s− α))− r(s)q(s)g(u(s− β))]ds
+ p(t)f(u(t− α)) + q(t)g(u(t− β)), (2.5)

where

G(t, s) =
exp(

∫ s
t
r(v)dv)

exp(
∫ T
0
r(v)dv)− 1

.

Remark 2.2. It is easy to see that
∫ t+T
t

G(t, s)r(s)ds = 1.

Proof of Lemma Let x(t) be a T−periodic solution of (1.1). Then

[x(t)− p(t)f(x(t− α))− q(t)g(x(t− β))]′ = −r(t)x(t) + h(t, x(t− α), x(t− β)). (2.6)

Setting
z(t) = x(t)− p(t)f(x(t− α))− q(t)g(x(t− β))

in (2.6), it follows that

z′(t) = −r(t)z(t) + h(t, x(t− α), x(t− β))− r(t)p(t)f(x(t− α))− r(t)q(t)g(x(t− β)),

that is,

[z′(t) + r(t)z(t)]exp

(∫ s

t
r(v)dv

)
= [h(t, x(t− α), x(t− β))− r(t)p(t)f(x(t− α))− r(t)q(t)g(x(t− β))exp

(∫ s

t
r(v)dv

)
.

(2.7)

Integrating (2.7) from t to t+ T and then simplifying, we get

z(t) =

∫ t+T

t
G(t, s)[h(s, x(s−α), x(s−β))−r(s)p(s)f(x(s−α))−r(s)q(s)g(x(s−β))]ds,

that is, x(t) is a T−periodic solution of (2.5).
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Conversely, let x(t) be a T−periodic solution of (2.5). Then

x(t)− p(t)f(x(t− α))− q(t)g(x(t− β))

=

∫ t+T

t
G(t, s)[h(s, x(s− α), x(s− β))− r(s)p(s)f(x(s− α))− r(s)q(s)g(x(s− β))]ds

implies that

d

dt
[x(t)− p(t)f(x(t− α))− q(t)g(x(t− β))]

=
d

dt

∫ t+T

t
G(t, s)[h(s, x(s− α), x(s− β))− r(s)p(s)f(x(s− α))− r(s)q(s)g(x(s− β))]ds

=

∫ t+T

t

∂

∂t
G(t, s)[h(s, x(s− α), x(s− β))− r(s)p(s)f(x(s− α))− r(s)q(s)g(x(s− β))]ds

+ h(t, x(t− α), x(t− β))− r(t)p(t)f(x(t− α))− r(t)q(t)g(x(t− β))

= −
∫ t+T

t
r(t)G(t, s)[h(s, x(s− α), x(s− β))− r(s)p(s)f(x(s− α))− r(s)q(s)g(x(s− β))]ds

+ h(t, x(t− α), x(t− β))− r(t)p(t)f(x(t− α))− r(t)q(t)g(x(t− β))
= −r(t)x(t) + h(t, x(t− α), x(t− β))

and thus, x(t) is a T−periodic solution of (1.1).

Theorem 2.3. Let 0 ≤ a1 ≤ p(t) ≤ a <∞ and 0 ≤ b1 ≤ q(t) ≤ b <∞. Assume that
H(t, uα, uβ) ≥ 0 and there exist positive constants m and M with m < M such that

m− a1f(m)− b1g(m) ≤ H(t, uα, uβ) ≤M − af(M)− bg(M) (2.8)

for all t ∈ [0, T ], u ∈ [m,M ]. For constants c, d ∈ (m,M) if a|f ′(c)| + b|g′(d)| < 1,
then (1.1) has at least one positive T−periodic solution u(t) in [m,M ].

Remark 2.4. The assumption in (2.8) would be feasible if and only if m − a1f(m) −
b1g(m) ≤ M − af(M) − bg(M), that is, if and only if 0 ≤ (M − m) − a(f(M) −
f(m)) − b(g(M) − g(m)), that is, if and only if (M − m)(1 − af ′(c) − bg′(d)) ≥ 0

which is true as soon as a|f ′(c)|+ b|g′(d)| ≤ 1 for c, d ∈ (m,M).

Proof of Theorem Let Ω = {u ∈ X : m ≤ u(t) ≤ M, 0 < m < M}. Then Ω is a
closed bounded and convex set. Define operators K and S on Ω by

(Ku)(t) =

∫ t+T

t

G(t, s)[h(s, u(s− α), u(s− β))

− r(s)p(s)f(u(s− α))− r(s)q(s)g(u(s− β))]ds, (2.9)

(Su)(t) = p(t)f(u(t− α)) + q(t)g(u(t− β)). (2.10)
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For any u ∈ Ω, we notice that

(Ku)(t+ T ) =

∫ t+2T

t+T

G(t+ T, s)[h(s, u(s− α), u(s− β))

− r(s){p(s)f(u(s− α)) + q(s)g(u(s− β))}]ds

=

∫ t+T

t

G(t+ T, y + T )[h(y, u(y − α), u(y − β))

− r(y){p(y)f(u(y − α)) + q(y)g(u(y − β))}]dy

=

∫ t+T

t

G(t, y)[h(y, u(y − α), u(y − β))

− r(y){p(y)f(u(y − α)) + q(y)g(u(y − β))}]dy
= (Ku)(t)

and

(Su)(t+ T ) = p(t+ T )f(u(t+ T − α)) + q(t+ T )g(u(t+ T − β))

= p(t)f(u(t− α)) + q(t)g(u(t− β)) = (Su)(t),

which then implies that K(Ω) ⊂ X and S(Ω) ⊂ X . Let u, v ∈ Ω. Therefore,

(Ku)(t) + (Sv)(t)

=

∫ t+T

t

G(t, s)[h(s, u(s− α), u(s− β))

− r(s)p(s)f(u(s− α))− r(s)q(s)g(u(s− β))]ds+ p(t)f(v(t− α)) + q(t)g(v(t− β))

=

∫ t+T

t

G(t, s)r(s)H(s, uα, uβ)ds+ p(t)f(v(t− α)) + q(t)g(v(t− β))

≤
∫ t+T

t

G(t, s)r(s)[M − af(M)− bg(M)]ds+ af(M) + bg(M) = M

and

(Ku)(t) + (Sv)(t)

=

∫ t+T

t

G(t, s)r(s)H(s, uα, uβ)ds+ p(t)f(v(t− α)) + q(t)g(v(t− β))

≥
∫ t+T

t

G(t, s)r(s)[m− a1f(m)− b1g(m)]ds+ a1f(m) + b1g(m) = m

shows that Ku+ Sv ∈ Ω for all u, v ∈ Ω.

In order to apply the Krasnoselskii’s Fixed Point Theorem, we need to show that K ia
a completely continuous operator on Ω and S is a contraction mapping on X . Clearly,
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K is continuous. Further,

|(Ku)(t)| ≤
∫ t+T

t

G(t, s)r(s)|H(s, uα, uβ)|ds

≤
∫ t+T

t

G(t, s)r(s)[M − af(M)− bg(M)]ds = M − af(M)− bg(M)

and

|(Ku)′(t)| = | d
dt

∫ t+T

t

G(t, s)r(s)H(s, uα, uβ)ds|

= | − r(t)u(t) + h(t, u(t− α), u(t− β)|
≤ ‖r‖M + ‖r‖M = 2‖r‖M

implies that K(Ω) is uniformly bounded and equi-continuous. So, K is completely
continuous due to Ascoli-Arzela theorem. For u1, u2 ∈ X , we have

|(Su1)(t)− (Su2)(t)| ≤ p(t)|f(u1(t− α))− f(u2(t− α))|+ q(t)|g(u1(t− β))− g(u2(t− β))|
≤ a|f ′(c)||u1(t− α)− u2(t− α)|+ b|g′(d)||u1(t− β)− u2(t− β)|
≤ [a|f ′(c)|+ b|g′(d)|]‖u1 − u2‖,

that is, S is a contraction mapping on X . Hence, K + S has a fixed point by Lemma
1.1. Ultimately, (1.1) has a positive periodic solution u(t) in [m,M ] due to Lemma 2.1.
This completes the proof of the theorem.

Example 2.5. Consider

[u(t)− p(t)u
1
5 (t− π)− q(t)u

1
3 (t− π)]′ = −(2 + sin t)u(t) + h(t, u(t− π), u(t− π)),

(2.11)
where 1

3
≤ p(t) = 3+sin t

6
≤ 2

3
, 1
2
≤ q(t) = 5+sin t

8
≤ 3

4
, T = 2π and

h(t, u(t− π), u(t− π)) = (2 + sin t)[
1

2
u(t− π) +

1

2
u(t− π)].

We notice that (2.8) holds true if and only if

p(t)f(uα) + q(t)g(uβ) +m− a1f(m)− b1g(m)

≤ h(t, uα, uβ)

r(t)
≤M − af(M)− bg(M) + p(t)f(uα) + q(t)g(uβ)

which is equivalent to say that

m ≤ h(t, uα, uβ)

r(t)
≤M for u ∈ [m,M ].
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If we choose m = 5 and M = 20, then it is easy to verify that

3.6851 = m− a1f(m)− b1g(m) ≤ H(t, uα, uβ) ≤M − af(M)− bg(M) = 16.7504

and when f(u) = u
1
5 , g(u) = u

1
3

a|f ′(c)|+ b|g′(d)| = 2

15
c

−4
5 +

1

4
d

−2
3 < 1 for c, d ∈ [5, 20].

Therefore, (2.11) satisfies all conditions of Theorem 2.3 and hence (2.11) has at least
one periodic solution in [5, 20].

Similar to the proof of Theorem 2.3, we can prove the following results:

Theorem 2.6. Let −∞ < a2 ≤ p(t) ≤ a3 ≤ 0 and −∞ < b2 ≤ q(t) ≤ b3 ≤ 0.
Assume that H(t, uα, uβ) ≥ 0 and there exist positive constants m and M with m < M

such that

m− a2f(M)− b2g(M) ≤ H(t, uα, uβ) ≤M − a3f(m)− b3g(m)

for all t ∈ [0, T ], u ∈ [m,M ]. For constants c, d ∈ (m,M) if |a2||f ′(c)|+ |b2||g′(d)| <
1, then (1.1) has at least one positive T−periodic solution u(t) in [m,M ].

Theorem 2.7. Let 0 ≤ a1 ≤ p(t) ≤ a < ∞ and −∞ < b2 ≤ q(t) ≤ b3 ≤ 0. Assume
that H(t, uα, uβ) ≥ 0 and there exist positive constants m and M with m < M such
that

m− a1f(m)− b2g(M) ≤ H(t, uα, uβ) ≤M − af(M)− b3g(m)

for all t ∈ [0, T ], u ∈ [m,M ]. For constants c, d ∈ (m,M) if a|f ′(c)|+ |b2||g′(d)| < 1,
then (1.1) has at least one positive T−periodic solution u(t) in [m,M ].

Theorem 2.8. Let −∞ < a2 ≤ p(t) ≤ a3 ≤ 0 and 0 ≤ b1 ≤ q(t) ≤ b < ∞. Assume
that H(t, uα, uβ) ≥ 0 and there exist positive constants m and M with m < M such
that

m− a2f(M)− b1g(m) ≤ H(t, uα, uβ) ≤M − a3f(m)− bg(M)

for all t ∈ [0, T ], u ∈ [m,M ]. For constants c, d ∈ (m,M) if |a2||f ′(c)|+ b|g′(d)| < 1,
then (1.1) has at least one positive T−periodic solution u(t) in [m,M ].

Remark 2.9. If we consider the total food consumption(sometimes linear or sometimes
nonlinear or may be both in modality) of a complete tenure of human population span
comprising of n(finite) categories, then a mathematical formulation of the problem can
be seen by means of

[u(t)−
n∑
i=1

pi(t)fi(u(t− αi))]′ + r(t)u(t) = h(t, u(t− α1), u(t− α2), ..., u(t− αn)),

(2.12)
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where h ∈ C(Rn+1,R). And it would be interesting to study the existence of positive
periodic solutions of (2.12) by taking the ongoing work into account.
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