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Abstract

In this work, sufficient conditions are established for positive periodic solutions of
first order nonlinear neutral delay differential equations of the form

[u(t) —p(t) f(u(t—a)) —q(®)g(u(t—B))]" = —r(t)u(t) +h(t, u(t —a), u(t - B))
by using Krasnoselskii’s fixed point theorem.
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1. INTRODUCTION

It is known that a growing population is likely to consume more or less food than a
matured one depending on individual species. If we consider human population, then
we let u(t) be the matured population at the age ¢t > 0. Accordingly, if we categorise
the human tenure of living span into three phases, then we assume that u(t — «) and
u(t — ) are the other two of the ages ¢t — « and ¢ — [ respectively. Therefore, the
total food consumption(which may be nonlinear in modality) of a complete tenure of
human population span comprising of three categories can be formulated by means of
a nonlinear neutral differential equations of the type

[w(t)—p(t)f (u(t—a)) —q(t)g(u(t—F))]" = —r(O)u(t)+h(t, u(t—a), u(t=p5)), (1.1)

where p,q,7 € C(R,R), f,g € C'(R,R) satisfying the properties xf(z) > 0 and
zg(x) > 0forz # 0,2 € R, h € C(R3 R) such that p,q,r, f, g, h are T— periodic
functions, 7" > 0and 0 < o, 8 < T
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As long as the food consumption is concerned, a modality of a system may exhibit
periodic nature involving the solution of the neutral differential equation. Hence, the
objective of this work is to present the existence of 7T'—periodic solutions of (1.1)
by using Krasnoselskii’s fixed point theorem. Indeed, our motivation came from the
ecological and population models (see for e.g. [2], [3], [8] ) which are dealing with
neutral functional differential equations of the type:

[u(t) = pu(t — a(t)) = —r(t)u(t) + b(t)e "0, (1.2)

fu(t) — pu(t — a())]' = —r(t)u(t) + bt)u(t — a())e 7O (13)
and

u(t = a(t))

1+ u(t—alt)

[u(t) — pu(t — a(t)] = —r(t)u(t) + b(t) n > 0. (1.4)

The present work not only emphasises the study of periodic solutions of (1.2), (1.3) and
(1.4) in comparison with (1.1), but also it improves and generalizes the corresponding
results of [6] and [7], where the authors have discussed the special case p(t) = 0 and
q(t) = 0 of (1.1). Meanwhile, the work [5] came to notice in which the authors have
studied the special case ¢(t) = 0 and p(t) = p(constant) of (1.1) such that either
p€(—=1,0)orpe (0,1).

By a solution of (1.1) we understand a function u € C([—p,00),R) such that
(u(t) — p(t) f(ult — @) — q(t)g(u(t — B)) is continuously differentiable and (1.1)
is satisfied for ¢ > 0, where p = max{«, #}, and sup{|u(t)| : ¢ > to} > 0 for every
to > 0.

Lemma 1.1. []](Krasnoselskii’s Fixed Point Theorem)

Let X be a Banach space and S be a bounded closed subset of X. Consider two map
Ty and T of S into X such that Tix + Tyy € S for every pair x,y € S. If T} is a
contraction and T5 is completely continuous, then the equation Tyx + 15y has a fixed
pointin S.

2. EXISTENCE OF PERIODIC SOLUTION

Let X = {u(t) :u € C(R,R),u(t) = u(t+T),t € R} be the space of real continuous
functions with the norm

Jull = sup |u(t)].
te[0,7
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Then X is a Banach space with the || - ||. We put

h(t, ua,ug)
r(t)

where h(t, uq, ug) = h(t,u(t — a),u(t — B)).

H(t, Uayug) = —p()f(ua) = q(t)g(us),

Lemma 2.1. x(t) is a T'—periodic solution of (1.1) if and only if x(t) is a T —periodic
solution of
t+T
u(t) = G(t,s)[h(s,u(s — @), u(s — B))

—7(8)p(s)f(uls — @) = r(s)q(s)g(uls — 5)))ds
+p(t)f(ut — ) +q)g(ult - B)), (2.5)

where

exp( [ r(v)dv) |
exp( [} r(v)dv) —1

Remark 2.2. It is easy to see that ftt+T G(t,s)r(s)ds = 1.

G(t,s) =

Proof of Lemma Let z(t) be a T—periodic solution of (1.1). Then
[2(t) = p(t) f(z(t — @) — q(O)g(a(t = B))] = —r(D)a(t) + h(t, 2(t — o), z(t - B)). (2.6)
Setting
2(t) = x(t) = p(t) f(z(t — a)) = q(t)g(x(t = §))
in (2.6), it follows that
J(t) = —r(t)z(t) + h(t, x(t — o), 2(t — B)) — r(t)p(t) f (2(t — @) = r(t)q(t)g(z(t — B)),

that is,
() + r(t)=()]exp < /t ) r(v)dv)

= [A(t,2(t — @), 2(t = B)) = r(O)p() f(x(t — ) = r(t)q(t)g(x(t — B))exp (/j T(v)dv) :
2.7

Integrating (2.7) from ¢ to ¢t 4+ 1" and then simplifying, we get
t+T
2(t) = G(t,s)[h(s,x(s—a),z(s=B)) —r(s)p(s) f(x(s—a)) —r(s)q(s)g(x(s— B))]ds,

t

that is, (t) is a T'—periodic solution of (2.5).
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Conversely, let z(t) be a T—periodic solution of (2.5). Then
w(t) = p) f(z(t — @) — q(t)g(z(t = 5))

t+T

= G(t,s)[h(s, 2(s — o), 2(s = B)) = r(s)p(s) f(2(s — a)) = r(s)a(s)g(x(s — B))]ds

t

implies that

%[x(t) — p(t) f(a(t — @) — q(t)g(z(t — B))]
d t+T

=i, G(t, s)[h(s, z(s — @), x(s = B)) = r(s)p(s) f (x(s — @) — r(s)a(s)g(z(s — B))]ds

t+T a
= /t 50 8)[(s, 2(s — @), a(s = B)) — r(s)p(s) f(2(s — @) —r(s)als)g(z(s — B))lds
+ h(t,x(t — a), 2t = B)) — r()p(t) f (2t — @) — r(t)q(t)g(x(t — B))
t+T
= —/t r(t)G(t, s)[h(s, (s — a),x(s = B)) — r(s)p(s) f(2(s — @) = r(s)a(s)g(x(s — B))lds

+ h(t,z(t — ), z(t = B8)) —r(t)p(t) f(z(t — @) — r(t)g()g(z(t — B))
= —r(t)z(t) + h(t,z(t — ), z(t — B))

and thus, z(t) is a T—periodic solution of (1.1).

Theorem 2.3. Let 0 < a1 < p(t) < a<oocand0 < b < q(t) <b < oco. Assume that
H(t, uqs,ug) > 0 and there exist positive constants m and M with m < M such that

m —ayf(m) —big(m) < H(t,ua,ug) < M —af(M) —bg(M) (2.8)

forallt € [0,T],u € [m, M]. For constants c¢,d € (m, M) if a|f'(c)| + bl¢'(d)| < 1,
then (1.1) has at least one positive T —periodic solution u(t) in [m, M].

Remark 2.4. The assumption in (2.8) would be feasible if and only if m — a, f(m) —
big(m) < M — af(M) — bg(M), that is, if and only if 0 < (M —m) — a(f(M )

f(m)) = b(g(M) — g(m)), that is, if and only if (M —m)(1 — af'(c) — bg'(d)) =
which is true as soon as a|f'(c)| + blg'(d)| < 1 forc,d € (m, M).

Proof of Theorem Let @ = {u € X : m < wu(t) < M,0 < m < M}. Then Qis a
closed bounded and convex set. Define operators K and S on (2 by

/ G(t,s)[h(s,u(s — a),u(s — 5))
u(s —a)) —r(s)q(s)g(u(s — p))]ds, (2.9)

(Su)(t) = p(t) f(u(t = @) + q(t)g(u(t = B)). (2.10)



On Positive Periodic Solutions of a Class of First Order Neutral Differential Equations 815

For any u € €2, we notice that

(Ku)(t+T) = /HT Gt + T, 5)[h(s, uls — ), uls — 3))
—r(s){p(s)f(u(s — a)) + q(s)g(u(s — 3))}]ds

- G(t+T,y+T)[hy,uly —a),uly — 3))
—r(W{pW) f(uly — a)) + q(y)g(u(y — B))}dy
— /t G(t,y)[h(y, u(y — a),uly — B))

—r(y{p) f(uly — ) +q(y)g(uly — B5))}dy
= (Ku)(t)

and

(Su)(t +T) = plt + T)f(ult + T — @) + glt + Tg(ult + T — B))
— p(0)F(ult — o) + a(P)glult — 5)) = (Su)(t),
which then implies that K () C X and S(€2) C X. Letu, v € Q. Therefore,
(Ku)(t) + (50)(0)
= [ at s, — ).t - 9)
(s

—r(s)p(s)f(u(s — a)) = r(s)q(s)g(uls — B)))ds + p(t) f (v(t — ) + q(t)g(v(t — B))
G(t,s)r(s)H (s, ua, ug)ds + p(t) f(v(t — @) + q()g(v(t = 5))
(¢, s)r(s)]

IN

G(t,s)r(s)[M —af(M) —bg(M)]|ds +af(M)+bg(M) =M

t+T
/

t+T
/
and

(Ku)(t) + (Sv)(t)

t+T

G(t,5)r(s)H (s, ua, ug)ds + p(t) f(v(t = @) + q(t)g(v(t = 5))

t+T
2 / G(t,s)r(s)m — a1 f(m) — big(m)lds + a1 f(m) + big(m) =m
t
shows that Ku + Sv € € for all u,v € Q.

In order to apply the Krasnoselskii’s Fixed Point Theorem, we need to show that K ia
a completely continuous operator on {2 and S is a contraction mapping on X. Clearly,
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K is continuous. Further,
t+T
[(Ku)(t)] < / G(t,s)r(s)[H(s, ua,ug)|ds
t

< / G(t, s)r(s)IM — af (M) — bg(M)]ds = M — af(M) — bg(M)

and

0 =1y [ G H s

= [ = r(®)u(®) + bt u(t — a), ut - B)|
< || M - [lrf| M= 2f|r{| M

implies that K () is uniformly bounded and equi-continuous. So, K is completely
continuous due to Ascoli-Arzela theorem. For uq, us, € X, we have

[(Sur)(t) — (Su) ()] < p()[f (ur(t — @) — flua(t — )| + q(t)|g(ua(t — B)) — g(ua(t — B))|
< alf'(e)lJur(t — @) —uz(t — )| + blg' (D) [Jur (t — B) — ua(t — B)]
< lalf' ()] + blg (d)]|lur — uall,

that is, S is a contraction mapping on X. Hence, K + S has a fixed point by Lemma

1.1. Ultimately, (1.1) has a positive periodic solution u(t) in [m, M] due to Lemma 2.1.
This completes the proof of the theorem.

Example 2.5. Consider

[u(t) = p(t)us (t = 7) = q(tyus (¢ = 7)) = —(2+ sin t)u(t) + h(t, u(t — 7), u(t — 7)),
(2.11)
where 3 < p(t) = 30t < 22 < g(t) = 220L <3 T = 27 and

Bt u(t — ), u(t — 7)) = (2 + sint)[%u(t —o %u(t — ).

We notice that (2.8) holds true if and only if

p)f (ua) + q(t)g(ug) +m — arf(m) — big(m)

h(t, uq,,u
HEL) < 0 — () = bg(M) + (0 (0) + )
which is equivalent to say that
h(t, ua,
m < h(t, ta up) <M forue [m,M].

@)
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If we choose m = 5 and M = 20, then it is easy to verify that

3.6851 =m —ay f(m) —big(m) < H(t,up,ug) < M —af(M) —bg(M) = 16.7504

1

and when f(u) = us, g(u) = u

W=

2 - 1 -
alf'(c)| +blg'(d)| = 1—50?4 + ZdTQ <1 fore, d € [5,20].

Therefore, (2.11) satisfies all conditions of Theorem 2.3 and hence (2.11) has at least

one periodic solution in [5, 20).

Similar to the proof of Theorem 2.3, we can prove the following results:

Theorem 2.6. Let —o0 < as < p(t) < ag < 0and —o0o < by < ¢q(t) < b3 < 0.
Assume that H(t, u,,ug) > 0 and there exist positive constants m and M with m < M
such that

m —az f(M) = byg(M) < H(l, ua, ug) < M — azf(m) — bsg(m)

forallt € [0,T],u € [m, M. For constants c,d € (m, M) if |az||f'(c)| + |b2||g' (d)| <
1, then (1.1) has at least one positive T—periodic solution u(t) in [m, M].

Theorem 2.7. Let 0 < a; < p(t) < a < oo and —oo < by < q(t) < by < 0. Assume
that H(t,u,,ug) > 0 and there exist positive constants m and M with m < M such
that

m —arf(m) —=bag(M) < H(t, ua, ug) < M —af(M) —bsg(m)
forallt € [0,T],u € [m, M. For constants c,d € (m, M) ifa|f'(c)| + |b2||¢'(d)| < 1,
then (1.1) has at least one positive T —periodic solution u(t) in [m, M].
Theorem 2.8. Let —00 < as < p(t) < a3 < 0and 0 < by < q(t) < b < oo. Assume
that H(t,uq,ug) > 0 and there exist positive constants m and M with m < M such
that

m —asf(M) —big(m) < H(t,un,ug) < M —asf(m) — bg(M)
forallt € [0,T],u € [m, M. For constants c,d € (m, M) if |as||f'(c)| +b|g'(d)| < 1,

then (1.1) has at least one positive T —periodic solution u(t) in [m, M].

Remark 2.9. Ifwe consider the total food consumption(sometimes linear or sometimes
nonlinear or may be both in modality) of a complete tenure of human population span
comprising of n(finite) categories, then a mathematical formulation of the problem can

be seen by means of

[u(t) — Zpi(t)fi(u(t — )] +rt)u(t) = h(t,ult — ar),ut — az), ..., u(t — ay)),
- 2.12)
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where h € C(R™ R). And it would be interesting to study the existence of positive
periodic solutions of (2.12) by taking the ongoing work into account.
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