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Abstract 

In this paper, we study the spectrum and  ℊ - spectrum of ℊ - idempotent 
matrices. Relations between ℊ - eigen values of a matrix M and eigen values 
of the matrix GM are obtained. Spectral characterisations of ℊ-idempotent 
matrices are investigated.   
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1. Introduction 

Let the space of 𝑛 × 𝑛 complex matrices be denoted by ℂ𝑛×𝑛.  Let ℂ𝑛 be the space of 
complex 𝑛-tuples.  Let 𝑢 = (𝑢0, 𝑢1, 𝑢2, … , 𝑢𝑛−1) ∈ ℂ𝑛.  Let G be the Minkowski 
metric tensor defined by 𝐺𝑢 = (𝑢0, −𝑢1, −𝑢2, … , −𝑢𝑛−1).  Then the Minkowski 

metric matrix 𝐺 is given by 𝐺 = (1 0
0 −𝐼𝑛−1

) and 𝐺2 = 𝐼𝑛.  Minkowski inner product 

on ℂ𝑛 is defined by   (𝑢, 𝑣) = 〈𝑢, 𝐺𝑣〉, where 〈. , . 〉 is the conventional Hilbert Space 
inner product.  A space with Minkowski inner product is called a Minkowski space, 
which has been studied by physicists in optics. With respect to the Minkowski inner 
product the adjoint of a matrix 𝑀 ∈ ℂ𝑛×𝑛 is given by 𝑀~ = 𝐺𝑀∗𝐺, where 𝑀∗ is the 
usual Hermitian adjoint.   
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A complex matrix 𝑀 ∈ ℂ𝑛×𝑛, that satisfies the relation 𝑀2 = 𝑀 is called idempotent 
matrix. Idempotent matrix plays an important role in functional analysis especially 
spectral theory of transformations and projections.  For the properties of idempotent 
matrices and its generalizations one may refer [1, 2, 4, 5, 7, 9]. In [8], B. Vasudevan 
and N. Anis Fathima introduced a new generalization of idempotent matrices, namely 
ℊ -idempotent matrix in the Minkowski Space. 

In this paper, we define ℊ- eigen values of a matrix. The ℊ - spectral resolution of a  
ℊ-idempotent matrix is determined.  Relations among the multiplicity of eigen values 
of a ℊ-idempotent matrix M and the matrix functions such as trM, det M and rank M 
are discussed. 

This paper is organized as follows. In Section 2, we define ℊ-eigen value of a matrix 
as a special case of generalized eigen value problem 𝑀𝑥 = 𝜆𝑁𝑥.  The ℊ -spectrum of 
a matrix is discussed.  Section 3 deals with the spectral characterisation of ℊ -
idempotent matrices.  The ℊ-spectral properties of ℊ-idempotent matrix is analysed in 
Section 4.   

 

2.  𝓰 – Eigen value and 𝓰 -Eigen vector  

The definition of ℊ-idempotent matrix has been introduced in [8]. In this section, 
using the generalized eigen value problem, we define ℊ-eigen value of a matrix and 
proved that every matrix 𝑀 satisfies the ℊ- characteristic equation of 𝐺𝑀.  Also ℊ − 
similarity of ℊ-idempotent matrix is discussed. 

 

Definition 2.1  

A complex matrix 𝑀 ∈ ℂ𝑛×𝑛 is said to be ℊ-idempotent, if 

𝑀 = 𝐺𝑀2𝐺 = 𝑀[2], 

where 𝐺 is the Minkowski metric matrix, 𝐺 = (1 0
0 −𝐼𝑛−1

). 

 

Definition 2.2 

A ℊ - eigen value of a matrix 𝑀 is defined as the root of the equation |𝜆𝐺 − 𝑀| = 0. 
i.e., det(𝜆𝐺 −𝑀) = 0.   

The polynomial det(𝜆𝐺 −𝑀) is called ℊ- characteristic polynomial of  𝑀. 

 

Definition 2.3 

A non-zero vector 𝑥 (≠ 0) in ℂ𝑛is said to be a ℊ - eigen vector of a complex matrix 
𝑀 associated with a ℊ - eigen value 𝜆, if it satisfies 𝑀𝑥 = 𝜆𝐺𝑥. 
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Example 2.4 

Let 𝐺 = (1   0
0 −1

)  and   𝑀 =
−1

4
(
2 −1
12  2

).  Then ℊ - eigen values of 𝑀 are the 
roots of the equation det(𝜆𝐺 −𝑀) = 0. 

|
𝜆 +

1

2
−
1

4

3 −𝜆 +
1

2

| = 0 ⟹ 𝜆 = ±1 

The ℊ - eigen vector of 𝑀 corresponding to the ℊ - eigen value 1 is (
1

2

3
) and the ℊ - 

eigen vector of 𝑀 corresponding to the ℊ - eigen value -1 is (   
1

2

−1
) 

 

Theorem 2.5 

 If 𝑀 ∈ ℂ𝑛×𝑛, then 

i. (𝜆, 𝑥) is a (ℊ - eigen value, ℊ - eigen vector) pair for 𝑀 if and only if it is an 
(eigen value, eigen vector) pair for 𝐺𝑀. 

ii. Every matrix 𝑀 satisfies the ℊ- characteristic equation of 𝐺𝑀. 

iii. Any set of ℊ - eigen vectors corresponding to distinct ℊ - eigen values of a 
matrix must be linearly independent. 

 

Proof 

(i)  (𝜆, 𝑥) is a (ℊ - eigen value, ℊ - eigen vector) pair for 𝑀 

                                                                 ⟺𝑀𝑥 = 𝜆𝐺𝑥 

                                                                 ⟺ 𝐺𝑀𝑥 = 𝜆𝑥 

                                                                 ⟺ (𝜆, 𝑥) is a (eigen value, eigen vector) pair      
        for 𝐺𝑀 
(ii)  Since every square matrix satisfies its characteristic equation (Cayley-Hamiton 

theorem), we have det(𝜆𝐼 − 𝑀) = 0.  Now 

 det(𝜆𝐺 − 𝐺𝑀) = det[𝐺(𝜆𝐼 − 𝑀)] = det(𝐺) det(𝜆𝐼 − 𝑀) = 0. 

 Therefore the matrix 𝑀 satisfies the ℊ- characteristic equation of 𝐺𝑀. 

(iii) By (i), any set of ℊ - eigen vectors corresponding to distinct ℊ - eigen values of a 
matrix 𝑀 is the set of eigen vectors correspond to distinct eigen values of 𝐺𝑀.  
Hence they are linearly independent. 
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Remark 2.6 

If 𝜎(𝑀) and 𝜎ℊ(𝑀) denote the spectrum and ℊ-spectrum of 𝑀 respectively then it is 
true that 𝜎ℊ(𝑀) = 𝜎(𝐺𝑀)  

 

Definition 2.7 

Two matrices 𝑀 and 𝑁 in ℂ𝑛×𝑛 are said to be ℊ - similar if there exists a non singular 
matrix 𝑃 ∈ ℂ𝑛×𝑛 such that 𝑁 = 𝐺𝑃−1𝐺𝑀𝑃.  Equivalently, 𝑀 is ℊ - similar to 𝑁 if and 
only if 𝐺𝑀 is similar to 𝐺𝑁. 

 

Example 2.8 

Let 𝐺 = (1   0
0 −1

)  and   𝑀 =
1

2
(
−1 1
3  1

).  Then 𝑁 = 1

2
(
−1 + 𝑖√3 0

0  1 + 𝑖√3
) is    

ℊ - similar to 𝑀. For a non singular matrix 𝑃 = ( 𝑖   𝑖

−√3 √3
), we have 𝑁 =

𝐺𝑃−1𝐺𝑀𝑃. 

 

Theorem 2.9 

Let 𝑀 be a ℊ-idempotent matrix. 

i. Let 𝑁 be a matrix similar to 𝑀and 𝑁 = 𝑃−1𝑀𝑃 then 𝑁 is ℊ-idempotent if 𝐺 
commutes with 𝑃 i.e.,  𝐺𝑃 = 𝑃𝐺. 

ii. Let 𝑆 be a matrix ℊ - similar to 𝑀 and 𝑆 = 𝐺𝑄−1𝐺𝑀𝑄 then 𝑆 is ℊ-idempotent if 
𝐺 commutes with 𝑄 i.e., 𝐺𝑄 = 𝑄𝐺 

 

Proof 

Since 𝑀 is a ℊ-idempotent matrix, we have 𝐺𝑀2𝐺 = 𝑀. 

(i) 𝐺𝑁2𝐺 = 𝐺𝑃−1𝑀𝑃𝑃−1𝑀𝑃𝐺 = 𝐺𝑃−1𝑀2𝑃𝐺 = 𝑃−1𝐺𝑀2𝐺𝑃 = 𝑃−1𝑀𝑃 = 𝑁  . 
Hence 𝑁 is ℊ-idempotent. 

(ii)  𝑆 = 𝐺𝑄−1𝐺𝑀𝑄 = 𝑄−1𝐺𝐺𝑀𝑄 = 𝑄−1𝑀𝑄.  Therefore 𝑆 is similar to 𝑀.  

 Hence by (i), 𝑆 is ℊ-idempotent. 

 

Theorem 2.10 

Let 𝑀 and 𝑁 be two ℊ-idempotent matrices.  If 𝑁 is ℊ - similar to 𝑀, then 𝑁3 is 
similar to 𝑀3. 
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Proof 

Since 𝑁 is ℊ - similar to 𝑀, we have 𝑁 = 𝐺𝑃−1𝐺𝑀𝑃, for some non singular matrix 𝑃. 
So, 

𝐺𝑁 = 𝑃−1𝐺𝑀𝑃 

(𝐺𝑁)2 = 𝑃−1𝐺𝑀𝑃𝑃−1𝐺𝑀𝑃 

(𝐺𝑁)2 = 𝑃−1(𝐺𝑀)2𝑃 

                                          𝑁3 = 𝑃−1𝑀3𝑃      (by Remark 2.5 of [8]) 

Hence 𝑁3 is similar to 𝑀3. 

3. Spectral Characterizations of 𝓰 -Idempotent Matrices 

This section deals with the spectral resolution of ℊ-idempotent matrices. 

 

Theorem 3.1 

Let 𝑀 be a ℊ-idempotent matrix.  Then the eigen values of 𝑀 are zero or cube roots 
of unity. 

 

Proof 

Let 𝜆 be an eigen value of a ℊ-idempotent matrix 𝑀.  Then 

𝑀𝑥 = 𝜆𝑥 ⟹ 𝑀2𝑥 = 𝜆𝑀𝑥 ⟹ 𝑀2𝑥 = 𝜆2𝑥 ⟹ 𝑀4𝑥 = 𝜆2𝑀2𝑥 

⟹𝑀𝑥 = 𝜆4𝑥 ⟹ 𝜆𝑥 = 𝜆4𝑥 

                                                                    ⟹ (𝜆4 − 𝜆)𝑥 = 0 

                                                                    ⟹ 𝜆(𝜆3 − 1)𝑥 = 0. 

Since 𝑥 ≠ 0, we have 𝜆(𝜆3 − 1) = 0 ⟹ 𝜆 = 0 or 𝜆3 = 1 

                ⟹ 𝜆 = 0 or 1, 𝜔, 𝜔2 where 𝜔 = −1+𝑖√3

2
 

 

Example 3.2 

Let 𝐺 = (1   0
0 −1

)  and   𝑀 =
1

2
(
−1   1
−3 −1

).  Then 𝑀 is ℊ-idempotent matrix.  The 
eigen values of 𝑀 are 𝜔 and 𝜔2. 
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Theorem 3.3 

If 𝑀 ∈ ℂ𝑛×𝑛, is a ℊ-idempotent matrix then it is diagonalizable and 𝜎(𝑀) ⊆
{0, 1, 𝜔, 𝜔2}, where 𝜔 = −1+𝑖√3

2
.  Moreover, there exist unique disjoint oblique 

projectors 𝑃𝑖 for 𝑖 ∈ {0, 1, 2, 3} such that 

 

                                           𝑀 = ∑ 𝜔𝑗𝑃𝑗
3
𝑗=1                                                             (3.1) 

and                                         𝐼 = ∑ 𝑃𝑖
3
𝑖=0                                                                  (3.2) 

 

Proof 

Since 𝑀 is ℊ-idempotent matrix, 𝑀4 = 𝑀 (by theorem 2.11 of [8]) and so the 
polynomial 𝑞(𝑡) = 𝑡4 − 𝑡 is a multiple of 𝑞𝑀(𝑡) of 𝑀 and every root of 𝑞𝑀(𝑡) has 
multiplicity 1 (cf.[3], pp11).  Hence the matrix 𝑀 is diagonalizable.   

 Moreover, 𝜎(𝑀) ⊆ {0, 1, 𝜔, 𝜔2} (by theorem 3.1 above) 

 Let us define 𝑃𝑖’s by the formula, 

𝑃0 =
𝑓0(𝑀)

𝑓0(0)
, where 𝑓0(𝜆) =∏(𝜆 − 𝜔𝑖

3

𝑖=1

)  and 

𝑃𝑗 =
𝑓𝑗(𝑀)

𝑓𝑗(𝜔𝑗)
, where 𝑓𝑗(𝜆) =∏𝜆(𝜆 − 𝜔𝑖

3

𝑖=1,
𝑖≠𝑗

)  for 𝑗 = 1, 2, 3 

 Since 1 + 𝜔 + 𝜔2 = 0, we have 

𝑃0 = 𝐼 −𝑀
3, 

𝑃1 =
1

3
(𝑀3 + 𝜔𝑀2 + 𝜔2𝑀) 

𝑃2 =
1

3
(𝑀3 + 𝜔2𝑀2 + 𝜔𝑀) 

𝑃3 =
1

3
(𝑀3 +𝑀2 +𝑀) 

When 𝜔𝑗 ∉  𝜎(𝑀) 𝑓𝑜𝑟 𝑗 ∈ {1, 2, 3}, we see that 𝑃𝑗 = 0.  Similarly when 0 ∉  𝜎(𝑀), 
we see that 𝑃0 = 0. 

By spectral theorem, we see that the non-zero 𝑃𝑖’s so obtained are disjoint oblique 

projectors to satisfy (3.1) and (3.2). 
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Proof for Uniqueness 

Let us assume that, if possible, let 𝑄𝑖’s be non-zero disjoint oblique projectors such 
that  

                                                     𝑀 = ∑ 𝛼𝑖𝑄𝑖
𝑚
𝑖=1 ,                                                  (3.3) 

for complex numbers 𝛼𝑖 and 

                                                     𝐼 = ∑ 𝑄𝑖
𝑚
𝑖=1                                                        (3.4) 

Claim: (3.3) and (3.4) are identical with (3.1) and (3.2) 

First we prove that 𝛼𝑖′s are eigen values of 𝑀. 

Since 𝑄𝑖 ≠ 0, there exists a non-zero vector 𝑥 in the range of 𝑄𝑖 such that 𝑄𝑖𝑥 = 𝑥 
and 𝑄𝑗𝑥 = 0 for 𝑗 ≠ 𝑖. 

𝑀𝑥 = (∑𝛼𝑖𝑄𝑖

𝑚

𝑖=1

)𝑥 

𝑀𝑥 = 𝛼𝑖𝑥. 

Thus 𝛼𝑖 is an eigen value of 𝑀. 

Conversely, if 𝜆 is an eigen value of 𝑀, then 𝑀𝑥 = 𝜆𝑥 

  

(∑𝛼𝑖𝑄𝑖

𝑚

𝑖=1

)𝑥 = 𝜆𝐼𝑥 = 𝜆 (∑𝑄𝑖

𝑚

𝑖=1

)𝑥 

 

                                        ∑ (𝜆 − 𝛼𝑖)𝑄𝑖𝑥
𝑚
𝑖=1 = 0                                                   (3.5) 

 

Since 𝑄𝑖′s are disjoint, we can find at least one 𝑥 ≠ 0 among the non-zero vectors for 
which (3.5) is linearly independent.  Hence 𝜆 = 𝛼𝑖 for some 𝑖 and the set of 𝛼𝑖’s 

equals the set of eigen values of 𝑀. Also by changing the order of terms suitably, we 
can have 

𝑀 = ∑ 𝜔𝑖𝑄𝑖
3
𝑖=1 . 

 

Since the expression for 𝑃𝑖 is unique in terms of 𝑀, we have 𝑄𝑖 = 𝑃𝑖  for 𝑖 = {0, 1, 2, 3}. 
 

Hence the decompositions (3.1) and (3.2) are unique. 
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Example 3.4 

Consider the matrices 𝑀 and 𝐺given in example 3.2.  The eigen values of 𝑀 are 
𝜔 and 𝜔2. The oblique projectors of 𝑀 are found to be  

𝑃0 = 0, 

𝑃1 =

(

 
 
1

2
−
𝑖√3

6

𝑖√3

2

1

2 )

 
 
  

 

                                                  𝑃2 = (
1

2

𝑖√3

6

−
𝑖√3

2

1

2

)  and 

 

                                                  𝑃3 = 0. 

We can easily verify that the above projectors are disjoint, that is 𝑃𝑖𝑃𝑗 = 0 for 𝑖 ≠ 𝑗, 
and the equations (3.1) and (3.2) are satisfied by the projectors 𝑃𝑗’s. 
 

Remark 3.5 

Theorem 3.3 tells that every ℊ-idempotent matrices are diagonalizable.  
Let 𝑚𝑖(𝑖 = 0, 1, 2) denote the multiplicity of eigen values 0, 1 and (𝜔,𝜔2) 
respectively of a ℊ-idempotent matrix 𝑀.  Since conjugate roots occur in pairs, 𝑚2 
denotes the multiplicity of 𝜔 as well as 𝜔2.  By spectral theorem, a ℊ-idempotent 
matrix 𝑀 can be reduced to the following form (diagonal). 
 

(

 
 
 
 
 
 
 
 
 

0
⋱

0
1

⋱
1

𝜔
⋱

𝜔
𝜔2

⋱
𝜔2)

 
 
 
 
 
 
 
 
 

 

That is, we can find a matrix 𝑋  such that  

𝑋−1𝑀𝑋 = 𝑑𝑖𝑎𝑔(0 − 𝑚0times, 1 − 𝑚1times,𝜔 − 𝑚2times, 𝜔
2 −𝑚2times) 
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Example 3.6 

Let 𝐺 = (1   0
0 −1

)  and   𝑀 =
1

2
(
−1   1
−3 −1

).  The eigen values of 𝑀 are 𝜔 and 𝜔2.  

We can find an 𝑋 such 𝑋−1𝑀𝑋 = (𝜔   0
0 𝜔2

).   

Here 𝑋 = (𝑖√3   𝑖√3
−3 3

), 𝑋−1 = −1

6
(
𝑖√3  1

𝑖√3 −1
). 

 

Theorem 3.7 

Let 𝑚𝑖(𝑖 = 0, 1, 2) denote the multiplicity of eigen values 0, 1 𝑎𝑛𝑑 (𝜔,𝜔2) 
respectively of a ℊ-idempotent matrix 𝑀 of order 𝑛.  Then  

i. tr 𝑀 = 𝑚1 −𝑚2 

ii. det𝑀 = 0 or 1 

iii. rank 𝑀 = 3𝑚1 − 2 tr𝑀 
 

Proof 

By Theorem 3.3, the ℊ-idempotent matrix 𝑀 is diagonalizable.  So we can find a 
matrix 𝑋  such that  

𝑋−1𝑀𝑋 = 𝑑𝑖𝑎𝑔(0 − 𝑚0times, 1 − 𝑚1times,𝜔 − 𝑚2times, 𝜔
2 −𝑚2times) 

It is obvious that  

𝑛 = 𝑚0 +𝑚1 + 2𝑚2 
 

i. tr 𝑀 = 0 × 𝑚0 + 1 × 𝑚1 + (𝜔 + 𝜔
2)𝑚2 = 𝑚1 + (−1)𝑚2 = 𝑚1 − 𝑚2  

ii. If 𝑚0 > 0 then we have det𝑀 = 0.  Otherwise,  

 det𝑀 = 1𝑚1𝜔𝑚2𝜔2
𝑚2 = 1(𝜔3)𝑚2 = 1. 

iii. rank𝑀 = 𝑛 − 𝑚0 = 𝑚0 + 𝑚1 + 2𝑚2 − 𝑚0 = 𝑚1 + 2(𝑚1 − tr𝑀) = 3𝑚1 − 2tr𝑀 

 

Example 3.8 

Let 𝑀 = (
−1/2 3𝑖/2
𝑖/2 −1/ 2

) and 𝐺 = (1   0
0 −1

).  Then 𝑀 is ℊ − idempotent.  The eigen 

values of 𝑀 are 𝜔 and 𝜔2.  That is 𝑚0 = 0; 𝑚1 = 0; 𝑚2 = 1. 

tr 𝑀 = 𝑚1 −𝑚2 = 0 − 1 = −1 

det𝑀 = 1 

rank 𝑀 = 3𝑚1 − 2 tr𝑀 = 3(0) − 2(−1) = 2 
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4. 𝓰 − Spectral Characterizations of 𝓰 -Idempotent Matrices 

In this section, ℊ −spectral resolution of a ℊ − idempotent matrix is studied. 

Theorem 4.1 

The ℊ −eigen values of a ℊ −idempotent matrix 𝑀 are 0, 1 and -1. 

Proof 

The ℊ −eigen values of 𝑀 are given by det(𝜆𝐺 −  𝑀) = 0 and the ℊ −eigen vector of 
𝑀 associated with a ℊ −eigen value 𝜆 is given by  

                                              𝑀𝑥 = 𝜆𝐺𝑥                                                                (4.1) 

⟹ 𝐺𝑀𝑥 = 𝜆𝑥 

⟹ (𝐺𝑀)2𝑥 = 𝜆𝐺𝑀𝑥 

⟹𝑀3𝑥 = 𝜆2𝑥 

⟹𝑀4𝑥 = 𝜆2𝑀𝑥 

⟹𝑀𝑥 = 𝜆2𝑀𝑥 

⟹ 𝜆𝐺𝑥 = 𝜆3𝐺𝑥 

⟹ (𝜆 − 𝜆3)𝐺𝑥 = 0 

Since 𝐺𝑥 ≠ 0, we have 𝜆 = 0, 1, −1. 
 

Example: 4.2 

Consider the ℊ −idempotent matrix 𝑀 given in example 3.8.  The ℊ −eigen values of 
𝑀 are 1 and -1. 
 

Theorem: 4.3 

If 𝑀 ∈ ℂ𝑛×𝑛, is a ℊ-idempotent matrix then 𝜎ℊ(𝑀) ⊆ {0, 1, −1}.  Moreover, there 
exist unique disjoint oblique projectors 𝑄𝑗 for 𝑗 ∈ {0, 1, −1} such that  

                                         𝐺𝑀 = 𝑄1 − 𝑄−1                                                               (4.2) 

                                        𝐼 = 𝑄0 + 𝑄1 + 𝑄−1                                                           (4.3) 

Proof 

Since 𝜎ℊ(𝑀) = 𝜎(𝐺𝑀) and by theorem 4.1, we have 𝜎ℊ(𝑀) ⊆ {0, 1, −1}. 

Let us define 𝑄𝑗’s by the formula, 

𝑄𝑗 = ∏
𝐺𝑀 − 𝑖𝐼

𝑗 − 𝑖
𝑖=0,1,−1
𝑖≠𝑗

 for 𝑗 = 0, 1, −1 

Then 𝑄0 = 𝐼 −𝑀3;  𝑄1 =
1

2
(𝑀3 + 𝐺𝑀); 𝑄2 =

1

2
(𝑀3 − 𝐺𝑀). 
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When 𝑗 ∉ 𝜎ℊ(𝑀)for 𝑗 ∈ {0, 1, −1}, we have 𝑄𝑗 = 0. 

The proof for uniqueness of the disjoint oblique projectors of the non-zero 𝑄𝑗’s 

satisfying  the decompositions (4.2) and (4.3) is analogous to the proof in theorem 3.3. 

 

Example 4.4 

Consider the matrices 𝑀 and 𝐺 given in example 3.8.  The oblique projectors of 𝐺𝑀 
are found to be 

𝑄0 = 0, 

 𝑄1 = (

1

4

3𝑖

4

−
𝑖

4

3

4

)  and 

𝑄−1 = (
3/4 −3𝑖/4
𝑖/4 1/4

). 

It is easy to verify that the above projectors are disjoint and satisfy the equations (4.2) 
and (4.3) 

 

Theorem 4.7 

Let 𝑀 be a ℊ-idempotent matrix.  If −1 or 1 ∉ 𝜎ℊ(𝑀), then 𝑀𝐺 = 𝐺𝑀. 

Proof 

Assume that 1 ∉ 𝜎ℊ(𝑀).  Then , by theorem 4.3, we have 𝑄1 = 0.    

Therefore, −𝐺𝑀 = 𝑀3.  But 𝑀3 = 𝐺𝑀3𝐺 = 𝐺(−𝐺𝑀)𝐺 = −𝑀𝐺. Hence 𝐺𝑀 = 𝑀𝐺. 

Similarly, we can prove 𝐺𝑀 = 𝑀𝐺, whenever −1 ∉ 𝜎ℊ(𝑀). 
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