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Abstract

In this paper, we study the spectrum and g - spectrum of g - idempotent
matrices. Relations between g - eigen values of a matrix M and eigen values
of the matrix GM are obtained. Spectral characterisations of g-idempotent
matrices are investigated.
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1. Introduction

Let the space of n X n complex matrices be denoted by C**™. Let C" be the space of
complex n-tuples. Let u = (ug, Uy, Uy, ..., Uy—1) € C*. Let G be the Minkowski

metric tensor defined by Gu = (uy, —uq, —Uy, ..., —U,_1). Then the Minkowski

1 0

metric matrix G is given by G = (0 ) and G? = I,. Minkowski inner product

—Iq
on C" is defined by (u,v) = (u, Gv), where (.,.) is the conventional Hilbert Space
inner product. A space with Minkowski inner product is called a Minkowski space,
which has been studied by physicists in optics. With respect to the Minkowski inner
product the adjoint of a matrix M € C™" is given by M~ = GM*G, where M* is the

usual Hermitian adjoint.
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A complex matrix M € C™™, that satisfies the relation M? = M is called idempotent
matrix. Idempotent matrix plays an important role in functional analysis especially
spectral theory of transformations and projections. For the properties of idempotent
matrices and its generalizations one may refer [1, 2, 4, 5, 7, 9]. In [8], B. Vasudevan
and N. Anis Fathima introduced a new generalization of idempotent matrices, namely
g -idempotent matrix in the Minkowski Space.

In this paper, we define g- eigen values of a matrix. The g - spectral resolution of a
g-idempotent matrix is determined. Relations among the multiplicity of eigen values
of a g-idempotent matrix M and the matrix functions such as t7M, det M and rank M
are discussed.

This paper is organized as follows. In Section 2, we define g-eigen value of a matrix
as a special case of generalized eigen value problem Mx = ANx. The g -spectrum of
a matrix is discussed. Section 3 deals with the spectral characterisation of g -
idempotent matrices. The g-spectral properties of g-idempotent matrix is analysed in
Section 4.

2. g — Eigen value and ¢ -Eigen vector

The definition of g-idempotent matrix has been introduced in [8]. In this section,
using the generalized eigen value problem, we define g-eigen value of a matrix and
proved that every matrix M satisfies the g- characteristic equation of GM. Also g —
similarity of g-idempotent matrix is discussed.

Definition 2.1

A complex matrix M € C™"

M = GM?*G = M2,

1s said to be g-idempotent, if

where G is the Minkowski metric matrix, G = ((1) _ 0 >
n-1
Definition 2.2

A g - eigen value of a matrix M is defined as the root of the equation |AG — M| = 0.
i.e., det(AG — M) = 0.

The polynomial det(AG — M) is called g- characteristic polynomial of M.

Definition 2.3

A non-zero vector x (# 0) in C"is said to be a g - eigen vector of a complex matrix
M associated with a g - eigen value A, if it satisfies Mx = AGx.
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Example 2.4
(1 0 _-102 -1 e
Let G = (0 _1) and M = 12 2 ) Then g - eigen values of M are the
roots of the equation det(AG — M) = 0.
A+ ! !
2 tll=o=2=11
3 —1+=
* 2

The g - eigen vector of M corresponding to the g - eigen value 1 is < > and the g -

(OSSR R

1
eigen vector of M corresponding to the g - eigen value -1 is < E)
-1

Theorem 2.5
If M € C"", then

i. (4,x) is a (g - eigen value, g - eigen vector) pair for M if and only if it is an
(eigen value, eigen vector) pair for GM.

ii. Every matrix M satisfies the g- characteristic equation of GM.

iii. Any set of g - eigen vectors corresponding to distinct g - eigen values of a
matrix must be linearly independent.

Proof

(1) (4, x) is a (g - eigen value, g - eigen vector) pair for M
& Mx = AGx
& GMx = Ax

& (A4, x) is a (eigen value, eigen vector) pair
for GM

(i1) Since every square matrix satisfies its characteristic equation (Cayley-Hamiton
theorem), we have det(Al — M) = 0. Now

det(AG — GM) = det[G(AI — M)] = det(G) det(Al — M) = 0.
Therefore the matrix M satisfies the g- characteristic equation of GM.

(ii1) By (i), any set of g - eigen vectors corresponding to distinct g - eigen values of a
matrix M is the set of eigen vectors correspond to distinct eigen values of GM.
Hence they are linearly independent.
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Remark 2.6

If 0(M) and o,(M) denote the spectrum and g-spectrum of M respectively then it is
true that a,(M) = o(GM)

Definition 2.7

Two matrices M and N in C™*" are said to be g - similar if there exists a non singular
matrix P € C"" such that N = GP"1GMP. Equivalently, M is g - similar to N if and
only if GM 1is similar to GN.

Example 2.8
/1 0 _1/-1 1 _1(-1+iV3 0 )
LetG—(0 _1) and M—2(3 1). ThenN—Z( 0 1+ i3 is

- similar to M. For a non singular matrix P = ' ! , we have N =
9 g V3 V3
GP~1GMP.

Theorem 2.9
Let M be a g-idempotent matrix.

i. Let N be a matrix similar to Mand N = P"1MP then N is g-idempotent if G
commutes with P i.e., GP = PQG.

ii. Let S be a matrix g - similar to M and S = GQ 1GMQ then S is g-idempotent if
G commutes with Q i.e., GQ = QG

Proof

Since M is a g-idempotent matrix, we have GM*G = M.

(i) GN*G = GP"*MPP 'MPG = GP"*M?PG = P"1GM?*GP = P"'MP =N
Hence N is g-idempotent.

(i) S=GQ 1GMQ = Q"1GGMQ = Q~*MQ. Therefore S is similar to M.
Hence by (1), S is g-idempotent.

Theorem 2.10

Let M and N be two g-idempotent matrices. If N is g - similar to M, then N3 is
similar to M3.
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Proof

Since N is g - similar to M, we have N = GP~1GMP, for some non singular matrix P.
So,

GN = P1GMP
(GN)2 = P~1GMPP~1GMP
(GN)2 = P~1(GM)2P
N3 =P IM3P  (byRemark 2.5 of [8])

Hence N3 is similar to M3.

3. Spectral Characterizations of g -ldempotent Matrices

This section deals with the spectral resolution of g-idempotent matrices.

Theorem 3.1

Let M be a g-idempotent matrix. Then the eigen values of M are zero or cube roots
of unity.

Proof
Let A be an eigen value of a g-idempotent matrix M. Then

Mx = Ax = M?x = AMx = M?x = 1?x = M*x = 1°M?x
= Mx = Mx = Ax = 1*x
= (1= Dx =0
= 113 -1Dx =0.
Sincex = 0, wehave A(A3—1)=0=21=0o0rA>=1

—1+iV3

= A1=0o0r1,w w?where w =

Example 3.2

Let G = ((1) _(i) and M = %(:; _11) Then M is g-idempotent matrix. The

eigen values of M are w and w?.
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Theorem 3.3

If M eC™™, is a g-idempotent matrix then it is diagonalizable and o(M) <
-1+4iV3

>
projectors P; for i € {0, 1, 2, 3} such that

{0,1, w, w?}, where w = Moreover, there exist unique disjoint oblique

M =33, 0P (3.1)

and 1= ,P (3.2)

Proof

Since M is g-idempotent matrix, M* = M (by theorem 2.11 of [8]) and so the
polynomial q(t) = t* —t is a multiple of q,,(t) of M and every root of q,(t) has
multiplicity 1 (cf.[3], ppl1). Hence the matrix M is diagonalizable.

Moreover, a(M) € {0, 1, w, w?} (by theorem 3.1 above)
Let us define P;’s by the formula,

p, = ];%((0)) where f,(1) = 1_[(,1 ') and
;= ]]:J(( )) where f;(1) = 1_[/1(/1 w) forj=1,2,3
j
l:t]
Since 1 + w + w? = 0, we have
Py=1— M3

1

P, = §(M3 + wM? + w*M)
1

P, = §(M3 + w*M? + wM)

1
Py =§(M3+M2+M)

When w’/ & o(M) for j € {1,2,3}, we see that P; = 0. Similarly when 0 & o(M),
we see that Py, = 0.

By spectral theorem, we see that the non-zero P;’s so obtained are disjoint oblique
projectors to satisfy (3.1) and (3.2).
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Proof for Unigueness

Let us assume that, if possible, let Q;’s be non-zero disjoint oblique projectors such
that

M =3 ;0 (3.3)
for complex numbers a; and
I'=%i%Q; (3.4)

Claim: (3.3) and (3.4) are identical with (3.1) and (3.2)
First we prove that a;'s are eigen values of M.

Since Q; # 0, there exists a non-zero vector x in the range of Q; such that Q;x = x

and Q;x = 0 for j # i.
m
Mx = <Z aiQi>x

=1
Mx = a;x.
Thus «; is an eigen value of M.

Conversely, if A is an eigen value of M, then Mx = Ax

(Sraaeme=s(30)-

i =1
Zi(A—a)Qix=0 (3.5)

Since Q;'s are disjoint, we can find at least one x # 0 among the non-zero vectors for
which (3.5) is linearly independent. Hence A = ¢; for some i and the set of a;’s
equals the set of eigen values of M. Also by changing the order of terms suitably, we
can have

M=%, 00;.
Since the expression for P; is unique in terms of M, we have Q; = P; for i = {0, 1, 2, 3}.

Hence the decompositions (3.1) and (3.2) are unique.
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Example 3.4

Consider the matrices M and Ggiven in example 3.2. The eigen values of M are
w and w?. The oblique projectors of M are found to be

Py, =0,
1 i\/§\
2 6
P
i3 1
2 2
1 W3
P, = ?3 ‘15 and
T2 2
P3:O.

We can easily verify that the above projectors are disjoint, that is P;P; = 0 fori # j,
and the equations (3.1) and (3.2) are satisfied by the projectors P;’s.

Remark 3.5

Theorem 3.3 tells that every g-idempotent matrices are diagonalizable.
Let m;(i =0,1,2) denote the multiplicity of eigen values 0,1 and (w,w?)
respectively of a g-idempotent matrix M. Since conjugate roots occur in pairs, m,
denotes the multiplicity of w as well as w?. By spectral theorem, a g-idempotent
matrix M can be reduced to the following form (diagonal).

That is, we can find a matrix X such that

X IMX = diag(0 — mytimes, 1 — m,times, w — m,times, w? — m,times)
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Example 3.6

_(1 0 _1/—-1 1 . 2
Let G = (0 _1) and M = 2(_3 _01) The eigen values of M are w and w~.

-1 (W
We can find an X such X7 "MX = (0 wz)'
Here X = (“E l\/§) X 1= _—1(1\@ 1 )
-3 3/ 6 \iv3 -1

Theorem 3.7

Let m;(i =0,1,2) denote the multiplicity of eigen values 0,1 and (w,w?)
respectively of a g-idempotent matrix M of order n. Then

i. trM = m1 - mz
ii. detM =0or1
iii. rank M = 3m,; — 2trM

Proof

By Theorem 3.3, the g-idempotent matrix M is diagonalizable. So we can find a
matrix X such that

X IMX = diag(0 — mytimes, 1 — m,times, w — mytimes, w? — m,times)
It is obvious that

Tl=m0+m1+2m2

LtM=0Xmyg+1xm+ (w+ 0 )my, =m; + (—1)m, =m; —m,
ii. If my > 0 then we have detM = 0. Otherwise,
detM = 1M M2 2™ = 1(w3)™2 = 1.

iii. rankM = n —my, = my+ my + 2m, —my = my + 2(m; —trM) = 3my — 2trM

Example 3.8
(=172 3i/2 _(1 0 . . .
Let M = ( i/2 -1/ 2) and G = (0 _1>. Then M is g — idempotent. The eigen

values of M are w and w?. That is mg=0; m;y =0; m, =1.
ttM=m;—m,=0—1=-1

detM =1

rank M = 3m; —2trM = 3(0) — 2(—1) = 2
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4. g — Spectral Characterizations of g -ldempotent Matrices
In this section, g —spectral resolution of a g — idempotent matrix is studied.
Theorem 4.1

The g —eigen values of a g —idempotent matrix M are 0, 1 and -1.

Proof

The g —eigen values of M are given by det(AG — M) = 0 and the g —eigen vector of
M associated with a g —eigen value A is given by

Mx = AGx 4.1)
= GMx = Ax
= (GM)*x = AGMx
= M3x = A%x
= M*x = 1*Mx
= Mx = A*Mx
= AGx = A3Gx
= A-23)6x=0
Since Gx + 0, we have A = 0,1, —1.

Example: 4.2

Consider the g —idempotent matrix M given in example 3.8. The g —eigen values of
M are 1 and -1.

Theorem: 4.3

If M € C™™", is a g-idempotent matrix then 0,(M) € {0,1,—1}. Moreover, there
exist unique disjoint oblique projectors Q; for j € {0, 1, —1} such that

GM =Q,— Q- (4.2)
I'=0Qp+0Q:1+0Q- (4.3)
Proof
Since g,(M) = o(GM) and by theorem 4.1, we have g,(M) < {0,1,—1}.

Let us define Q;’s by the formula,

GM —il
Q; = | | —— forj =0,1,—-1
, J—1
i=0,1,—-1
i#j

Then Qo = I — M Q; =+ (M® + GM); Q, = 3 (M? — GM).
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When j € a,(M)for j € {0,1,—1}, we have Q; = 0.

The proof for uniqueness of the disjoint oblique projectors of the non-zero Q;’s
satisfying the decompositions (4.2) and (4.3) is analogous to the proof in theorem 3.3.

Example 4.4

Consider the matrices M and G given in example 3.8. The oblique projectors of GM
are found to be

Q =0,
L]
Q, = 4i g and
4 4
_ (3/4 -3i/4
Q1= (i/4 1/4 )

It is easy to verify that the above projectors are disjoint and satisfy the equations (4.2)
and (4.3)

Theorem 4.7

Let M be a g-idempotent matrix. If —1 or 1 & o,(M), then MG = GM.

Proof

Assume that 1 € o,(M). Then, by theorem 4.3, we have Q; = 0.

Therefore, —GM = M3. But M3 = GM3G = G(—=GM)G = —MG. Hence GM = MG.
Similarly, we can prove GM = MG, whenever —1 & g,(M).

REFERENCES

[1] Baksalary. J.K and Baksalary. O.M, “Idempotency of linear combinations of
two idempotent matrices”, Lin. Alg. Appl., 321, (2000): 3-7.

[2] Baksalary. O.M. and G"Otz Trenkler, On K-Potent Matrices, Electronic

Journal of Linear Algebra ISSN 1081-3810, Volume 26, pp. 446-470, July
2013

[3] Benitez and Thome.N, “{k}-group periodic matrices”, SIAM.J.Matrix
Anal.Appl., vol.18., No.1, (2006) : 9 - 25.



782

B.Vasudevan, N. Anis Fathima

Benitez.J and Thome.N, “Idempotency of linear combinations of an
idempotent and a — potent matrix that commutes”, Lin.Alg.Appl., 403, (2005)
:414-418.

Erdos. J. A, “On products of idempotent matrices”, Glasgow Math.J., 8,
(1967): 118-122.

Horn R.A and Johnson C.R, “Matrix Analysis” Cambridge University press,
Cambridge, U.K, 1985.

Pei Yuan Wu, “Sums of idempotent matrices”, Lin. Alg. Appl., 142, (1990):
43-54

Vasudevan B, Anis Fathima N, “Idempotent Matrices in Minkowski Space”,
Advances and Applications in Discrete Mathematics, Vol.24, Number 2,
2020, pp 165-177

Yan Wu and Daniel F. Linder, On the Eigenstructures of Functional K-Potent
Matrices and their Integral Forms, WSEAS Trans. on Maths. ISSN: 1109-
2769, Issue 4, Vol. 9, pp. 244-253 April 2010.



