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Abstract
A quantum algorithm for the traveling salesman problem by a quarter method
and its example are reported. A route of the shortest distance is decided on
turning round » points with fixing a starting point. When the counter routes are
excluded, a computational complexity of a classical computation is (n — 1)!/2.
The computational complexity becomes about 3(log (n — 1))*(n — 1)? by this

quantum algorithm. Therefore, a decreased process becomes possible.
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1. INTRODUCTION

Ono, Mori, and Moriyama reported a high temperature silicon qubit [1]. The
algorithms of the quantum computer by Deutsch-Jozsa, Shor, Grover, and so on are
known [2-7]. Ambainis’s quantum walk algorithms was the example to decrease the
computational complexity [8]. When the feature of the problem isn’t used, it is
difficult to decrease the computational complexity. Bennett, Bernstein, Brassard, and

Vazirani addressed the class NP cannot be solved on a quantum Turing machine in
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time O(2"%) [9]. However, they didn’t eliminate the unnecessary data on the
machine’s way to the end.

For this reason, Fujimura suggested that the probability amplitudes of the maximum
integer multiple-choice generalized knapsack problem are converged quickly by a
hybrid method of Grover’s database search and Shor’s data decrease [3, 5-7, 10]. Its
computational complexity is decreased. The traveling salesman problem [3, 4, 11] is

examined by a quarter method this time. Therefore, its result is reported.

2. TRAVELING SALESMAN PROBLEM
It is the traveling salesman problem to decide a route that turns round » points in the
shortest distance. The computational complexity of a classical computation is (n —

1)!/2, because a starting point is fixed and counter routes are excluded [3, 4, 11].

3. QUANTUM ALGORITHM

It is assumed that n points of Po (xo, y0), P1(x1, ¥1), P2 (x2, ¥2), =", Pn—2(Xn—2, yn-2),
and P, 1(x,- 1, y»— 1) are set [x;and y; are the two dimensional coordinates. 0 <i < n
— 1. i is an integer.], Po is fixed, and a distance between P; and P; is L(i, j)[= L( j, i)].

Therefore, routes of P1, P>, -, P,— 2, and P, _ | are considered.
(1) The number of the repeated permutation of n — 1 points is (n — 1)~ 1.
(2) The number of permutation of n — 1 points 1s (n — 1)!.

When n — 1 points are P1+a1), P1+a@), *** s P1+am- 2), and P1+qu - 1y [Where, a(q) = aq ;
0 <a,<n-2.a,is an integer.], it is assumed that UX]=ai(n — 1) >+ ax(n — 1)" 3
+ o+ a,2(m— D'+ a-1(m—1)° [Xis the number of datum.] is the numbering
datum from 0 to (n — 1)" '~ 1 [For example, U X=0]is a1 =0,a2=0, =, as-2=0,
anda,-1=0,and U X=m—-1)""'—1]lisai=n—-2,a2=n—-2,,an—>=n—2, and
an-1=n-2.]1in(1).

In (2), it 1s assumed that the first datum V(Y =1)is a1=0, a2=1, -, an-2=n -3, and
an-1=n-—2,and the (n — 1)!-thdatum M(Y=mn - 1)) isai=n-2,a2=n-3, -, an-
2=1,and a,-1=0, Y [where, IS Y < (n—1)! — 1. Y is an integer.] is obtained from v,
m=2)!+v(n-3)!+- +v, 21l [Where, 0 <v; <n— (1 +1i). v;is an integer.] Each

oft;[1 <i<mn—1.iisaninteger.] is 1 piece of permutation from 0 to n — 2.

() When v; is 0 from i = 1 to i = n — 3 sequentially, # is the smallest number in
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remained numbers.

(II) When v; isn’t 0 from i = 1 to i = n — 3 sequentially, and v;+1, vi+2, =, v»—3, and
vn—2 are 0, t; 1s the v;-th small number in remained numbers, and #;+1 > #;+2 > -

>t,_2> 1,1 18 selected in remained numbers.

(ITIT) When v; isn’t 0 from i = 1 to i = n — 3 sequentially, and there are vi+1# 0 or vi+2
#0or - orv,—3#0o0rv,_2#0, ¢ is the (v;+ 1)-th small number in remained

numbers.

(IV)When v, -2 is 1, t,-2< t,—1 is selected in remained numbers. Therefore, ¢ (n —
D' 2+tm-1) 3+ 4t am— D+t (n— 1) is UMY)). [Where, ¢ is
equal to a; in (2).]

g is the minimum integer that follows (n — 1)!/2 < 2% = 4% because a number of
combinations of answers is at least 2. U(V(Y = 1)), UW(Y = ((n — 1)!/4) - 2)), UMY =
(n — 1D/16) — 2)), =, UMY = ((n — 1)1/45~ 1) = 2)), and UV(Y = (n — 1)!/4%)) are
computed. [— See Appendix-1] M; that is a starting distance value is decided at

random. Next, a quantum algorithm is shown as the following.

First of all, quantum registers |ap, |a2, =, |an—1, |bv, |b, =, |ba-D, |cD, |c2, |d,
and |e> are prepared. When F is the minimum integer that is logz (4(n — 1)) or more,
each of |ap that 4 is an integer from 1 to n — 1 is consisted of F' qubits. [— See
Appendix-2] States of |ap, |a2, =, [an—1, |bD, [b2, =, [ba-1D, |cD, [c2, |d>, and |e> are

ai, az, -+, an-1, b1, ba, -, by—1, c1, c2, d, and e, respectively.

Step 1: Each qubit of |ap, a2, =, |an-1, |bv, [b2>, ==, |bu-1, cD, |2, |d>, and |e> 1s
set |0>.

Step 2: The Hadamard gate |H| acts on each qubit of |ap, |a2, -, |a.-2>, and |a.- 1> [3,
4]. It changes them for entangled states. The total states are (2)" ~1[2F = 4(n — 1)].
[lan> 1s consisted of F' qubits. Each qubit is acted on by . Therefore, F(n — 1) of

are necessary. |

Step 3: It is assumed that a quantum gate (B) changes |bv, b2, -, |bn-3>, |bn-2>, and
|bn—1> for |1 + b, |1 + b, , |1 + by, |l +by—»,and |l +b,—»>inar=0,1, " ,n

—4,n -3, and n — 2, respectively. This action repeats from |a1> to |a, - .

As the target state for |bp is 1, quantum phase inversion gates (P/) and quantum
inversion about mean gates (/M) act on |b1>. [Grover’s database search. The same
gates action is shown in the following.] [3, 6, 7] When G; is 2 that is (21)"~ Y((n —
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1) — 2)1 247 2)12 = (4= — 1)~ Y((n — 1)(n — 2)"~ 247212 = (4(n — 1)"2/(n —
2)"~2)12 = 2 the total number that (PI) and (IM) act on |by> is G1 = 2, because they
are a couple. Next, (OB) observes |b1>. Therefore, only the routes that contain 1 piece
of 0 remain. The number of data is (n — 1)(n — 2)" 24" 2. [Shor’s data decrease. The

same gate action is shown in the following.] [3, 5] [~ See Appendix-2]

As the target state for |by> is 1, (PI) and (IM) act on |b2>. When G is 2 that is (((n —
D)(n = 2)" 24" 2)/((n = 1)(n = 2)(n = 3)" 4" )2 = (4(n - 2)" /(n - 3)")? = 2,
the total number that (PI) and (IM) act on |by is G> = 2. Next, (OB) observes |b2>.
Therefore, only the routes that contain 1 piece of 1 remain. The number of data is (n —
D(n—2)(n—3)" 34" 3,

Similarly, these actions are repeated sequentially from |b3» to [b,— 1> with Gi [3<i<n
— 1. 7 is an integer.]. Only the routes that contain 1 piece of number from 0 to n — 2,

respectively, remain. The number of data is (n — 1)! [= Wo].

Step 4: It is assumed that a quantum gate (C1) changes |c1> and |c2> for |c1 + L(0, 1 +
a)+ L1 +a, 1 +a)and |2+ (n—1)"2a1+ (n — 1)" 3aw, respectively, from |a1>

and |a»>.

Similarly, (C;) [2 <i < n — 3. i 1is the integer.] changes |c1> and |c2» for |c1 + L(1 + ai,
1+ai+1)and |c2 + (n — 1)" " 2q; . 15, respectively, from |a» and |a;+ 1>. This action is

repeated sequentially from |a2> to |a, - 3>.

(Cn-2) changes |c1> and |c2> for |e1 + L(1 + an—2, 1+ an—1)+ L(1 +a,-1, 0) and |c2

+ (n - 1)%a, - 1, respectively, from |a, - 2> and |a, - 1.

Therefore, |c1> and |c2> become |Liotal = L(0, 1 + a1) + L(1 + a1, 1 +a2) + -+ L(1 + a,-
2, 1 +an-1)+ L(1 +a,-1,0) and |U(V), respectively.

Step 5: It is assumed that a quantum gate (D) changes |d> for |d + c1> in c1 < M, or it
changes |d> for |d + M1 + c¢2> in the others of ci.

Step 6: It is assumed that a quantum gate (£1) doesn’t changes |e> in d < M or M +
UMNY=1)<d<s M+ UMY = ((n—-1)/4) — 2)), or it changes |e> for [e + 1> in the
others of d. As the target state for |e> is 0, (P]) and (IM) act on |e>. The number of the
data that is included ind < My or Mi + UV(Y = 1)) <d< M1+ UV(Y = ((n—1)1/4) —
2)) is Wi= (n — 1)!/4. [— See Appendix-3] When K is 2 that is (Wo/W1)'? = 2, the
total number that (P/) and (/M) act on |e> is K1 = 2. Next, (OB) observes |e>, and the

data of | remain.
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Similarly, (£) [2 <i < g — 1. i is the integer.] doesn’t change |e> in d < M; or M) +
UMWY =1))<d< M, + UMY = ((n — 1)!/4") — 2)), or it changes |e> for |e + 1> in the
others of d. As the target state for |e> is 0, (PI) and (/M) act on |e>. The number of the
data that is included in d < M or My + UV(Y = 1)) <d< M, + UMY = ((n — 1)!/4") —
2))is W;= (n — 1)!/4'. When K; is 2 that is (W;_1/W;)"? = 2, the total number that (PI)
and (IM) act on |e> is K;= 2. Next, (OB) observes |e>, and the data of W¥; remain. These

actions are repeated sequentially from 2 to g — 1 at i.

(Eg) doesn’t change |e> in d < M, or it changes |e» for |e + 1> in the others of d. As the
target state for |e> is 0, (PI) and (/M) act on |e>. The number of the data that is included
ind < M is Wy~ 2. When K, is 2 that is (Wz_1/W,)!'"? = 2, the total number that (PI)
and (IM) act on |e» is Kz = 2. Next, (OB) observes |ap, |a2», =, |an-1, |b1, [b2, =, |bn

~ D, lev, e, |d>, and |e>, and one of the data of W, remains.
Therefore, one example of routes that are Liota1 < M is obtained.

Step 7: When the state of |e» is 0 or 1, M is assumed to be M> [< Mi] or M> [> Mi],
respectively, these computations from step 1 to step 7 are repeated. It is assumed that

the minimum distance Mmin obtains by repeating about log> (n — 1)! [12].

An example is shown as the next section. However, this algorithm is applied as far as

the effect of Grover’s database search and Shor’s data decrease.

4. NUMERICAL COMPUTATION

It is assumed that there are n = 10, Po(0, 0), Pi(1, — 2), P»(3, — 1), P3(4, 1), P42, 3),
Ps(1,—1), Ps(3, —2), P1(4, 0), Ps(0, 1), Po(2, 2), L(0, 2) = 3.2, L(0, 5) = 1.4, L(0, 8) =
1, L(0,3)= 4.1, L0, 7) =4, L(1,5)=1,L(1,4)= 5.1, L(2,6)=1,L(3,7)=1, L3, 1)
~42,L(3,9)~=22,L(4,9=1,L4,6)=5.1,L4,2)=4.1, L(5,9)=3.2,L(6, 1) =2,
L(6,8)=4.2, L(7,2)=14,L(7,5)~=3.2,L(7,8)=4.1, L(8,4)= 2.8, L(8,7)= 4.1,
L(8,3)=4,L(9,3)=2.2,L(9,2)=3.2, L(9, 4) =1 [The value of the others of L(i, j) is
10M1.], g =9 [9!/2 = 181440 < 4° = 262144], UV(Y = 1)) = 6053444, UV(Y = (9!/4)
—2=90718)) = 95584572 [for example, Y =90718 =2-8! + 17! + 6-6! + 5-5! + 4-4! +
331+ 2:21 +0-1!, UMY = 90718)) = 95584572 = 2:9% + 1-97 + 8-9° + 7-9° + 6:9* +
59° + 39 + 49! + 0:9°], [ See Appendix-1] UMY = (9!/16) — 2 = 22678)) =
26275564, UV(Y = (91/64) — 2 = 5668)) = 10598756, U(V(Y = (9!/256) — 2 = 1416))
= 6894596, U(V(Y =(91/1024) — 2 = 352)) = 6198348, U(V(Y = (9!/4096) — 2 = 87)) =
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6073748, U(V(Y = (9/16384) — 2 = 20)) = 6055548, U(V(Y = (9!/65536) — 2 = 4)) =
6053532, and M, = 20.

First of all, |ap, a2, =, |av, |b1, |b2>, =+, |bo,|cD, |c2>, |d>, and |e> are prepared. When
F is the minimum integer that is logz (4(n — 1)) = logx (49) = 5.170 < 6 = F, each of
lan> that A is the integer from 1 to 9 is consisted of F' = 6 qubits. States of |ap, |a2, -,
laoy, b1y, |b2>, -+, [bo>, |c1, |c2>, |d>, and |e> are a1, az, -, a9, b1, b2, -+, bo, c1, c2, d, and

e, respectively.
Step 1: Each qubit of |ap, a2, =, |as, |bv, [b2, =, |bo, c1>, [c2, |d>, and |e> is set |0>.

Step 2: |H| acts on each qubit of |ap, |a», -, |a®>, and |a9>. It changes them for
entangled states. The total states are (25)"! = (26)° = 64°.

Step 3: (B) changes |b1, |b2, -, |bg>, and |bo> for |1 + by, |1 + by, -, |1 + by, and |1

+ by inay=0, 1, -+, 7, and 8, respectively. This action repeats from |a1> to |ao>.

As the target state for |b1> is 1, (PI) and (IM) act on |b1>. When G is 2 that is (4(n — 1)
"=2/(n —2)" ") = (4-9%/8%)12 = 2(9/8)* = 2, the total number that (PI) and (IM) act
on |bp> is G1 = 2. Next, (OB) observes |b1>. Therefore, only the routes that contain 1

piece of 0 remain. The number of data is (n — 1)(n —2)" 24" =2 =9-8%.4%,

As the target state for |b2> is 1, (PI) and (IM) act on |b2>. When G- is 2 that is (4(n — 2)
"=3/(n —3)"~3)V2 = 2(8/7)"* = 2, the total number that (PI) and (IM) act on |by is G»
= 2. Next, (OB) observes |b2>. Therefore, only the routes that contain 1 piece of 1
remain. The number of data is (n — 1)(n —2)(n — 3)" 34" 3=9-8-77-47,

Similarly, these actions are repeated sequentially from |b3» to |be» with G; [3 <i<n—1
= 0. i is the integer.]. Only the routes that contain 1 piece of number from 0 to 8,

respectively, remain. The number of data is (n — 1)! = 9! [= Wo].

Step 4: (C1) changes |c1> and |c» for |er + L(0, 1 + a1) + L(1 + a1, 1 + a2)> and |c2 +

9%a1+ 97an>, respectively, from |a1> and |a2>.

Similarly, (Ci) [2 <i < 7. i1is the integer.] changes |c1> and |c2» for |1 + L(1 + ai, 1 + a;
1) and |e2 + 9197 0* g, . 1, respectively, from |a» and |a; + 1>. This action is repeated

sequentially from |a2> to |a7.

(Cs) changes |c1> and [c2> for |e1 + L(1 + as, 1 + ao) + L(1 + ao, 0)> and |c2 + 9%a0»,

respectively, from |ag> and |ao>.
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Therefore, |c1> and |c2> become |Liotar = L(0, 1 + a1) + L(1 + a1, 1 + a2) + - + L(1 + as,
1 + a9) + L(1 + a9, 0)> and |U(V), respectively.

Step 5: (D) changes |d> for |[d + c1> in ¢1 < M1 =20, or it changes |d> for |d + 20 + ¢» in

the others of ¢i.

Step 6: (E1) doesn’t change |e> in d < M; =20 or M; + U(V(Y = 1)) =20 + 6053444 =
6053464 <d< M+ UV(Y =((n—1)1/4) -2 =(9!1/4) — 2 =90718)) = 20 + 95584572
= 95584592, or it changes |e> for |e + 1> in the others of d. As the target state for |e> is
0, (PI) and (IM) act on |e>. The number of the data that is included in d < 20 or
6053464 < d< 95584592 is Wi~ 9!/4. When K is 2 that is (Wo/W1)"? = (91/(9!/4))? =
2, the total number that (P/) and (/M) act on |e> is K1 = 2. Next, (OB) observes |e>, and

the data of W) remain.

Similarly, (E;) [2 <i<g— 1 = 8. i is the integer.] doesn’t change |e> in d < 20 or
6053464 < d< 20+ U(V(Y = (9!/4") — 2)), or it changes |e> for |e + 1> in the others of d.
As the target state for |e> is 0, (PI) and (IM) act on |e>. The number of the data that is
included in d < 20 or 6053464 < d<20 + U(V(Y = (91/4") — 2)) is Wi= 9!/4". When K;
is 2 that is (W;_ /W) = ((91/4"1)/(9!/47))> = 2, the total number that (PI) and (IM)
act on |e> is K;= 2. Next, (OB) observes |e>, and the data of W; remain. These actions

are repeated sequentially from2tog— 1 =8 ati.

(E9) doesn’t changes |e» in d < 20, or it changes |e> for |e + 1> in the others of d. As the
target state for |e> 1s 0, (P]) and (/M) act on |e>. The number of the data that is included
ind <20 is Wo= 2. When Ko is 2 that is (Ws/Wo)"> = ((9!/4%)/(9!/4°))""* = 2, the total
number that (P/) and (/M) act on |e> is Ko= 2. Next, (OB) observes |ap, |a», |a3, |as,
las>, |ae>, |ar, lasgy, |a, |bv, |b, =, |by, |c1, |c2>, |d>, and |e», and one of the data of
Wy remains. For example, when a1, a2, a3, as, as, as, a7, as, a9, b1, ba, -+, bo, c1, c2, d,
andeare4,0,5,1,6,2,7,3,8,1, 1, -, 1, 18, UMY = 163491)) = 174944564, 18,

and 0, respectively.

Step 7: In the example, the state of |e> is 0. Therefore, M) is assumed to be M> =15 [<
18 < M, = 20], and these calculations from step 1 to step 7 are repeated. It is assumed
that the state of |e» is 0. When the states of |e» is 1 at M3 = 10, M4 = 13, and Ms= 14,

the minimum distance Mmin is 15 [= M>].

Therefore, a1, az, as, as, as, as, az, as, as, b1, ba, -, bo, c1, c2, d, and e are 4, 0, 5, 1, 6,
2,8,3,7,1,1, -, 1,15, UMY = 163493)) = 174944644, 15, and 0, respectively. As a
result, the shortest route Py — Ps — P1 — P¢ — P» —» P7 — P3 — P9 — P4 — P3—
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Py is obtained. And then, Py — P3 — P4+ — Py — P3 — P7 — P, — P¢ — P — Ps —

Py is the another answer.

5. DISCUSSION AND SUMMARY

In the example of section 4, the computational complexity of this quantum algorithm
[= §] is 680. The computational complexity of the classical computation [= Z] is (n —
1)!/2 = 91/2 = 181440. After all, S/Z becomes about 1/267.

In general, S becomes the following. In the order of the actions by the gates, the
number of them is F(n — 1) at , n—1lat(B),Zi-1-x-1Gi=2(n-1) at (P]) and
(IM),(n—1)at (OB),n—1at(C;) [l <i<n-—1.iisthe integer.], 1 at (D), g at (E;) [1
< i < g iis the integer.], ;=1 ¢ K;= 2g at (PI) and (IM), and g at (OB). These
processes repeated about logz (n — 1)!. Therefore, S becomes (F(n — 1) + 7n — 6 +
4g)loga (n— 1)!.

When 7 is large enough, S becomes about 3(logz (n — 1))*(n — 1)?, where F is about
logx (4(n — 1)), g is about (1/2)((logz (n — 1)!) — 1), and n! is about n"e™(2nn)"?
[Stirling’s formula], and S/Z is about 3(logz (n — 1))*(n — 1)*/((n — 1)!/2). For example,

as for n = 50, S/Z is about 1/10°’. Therefore, a decreased process becomes possible.

I hope that this result will be confirmed by many experiments.

APPENDIX-1 [13]

U[X] [X is the number of datum.] is the number of the repeated permutation of (n — 1)"
~1type, and V(Y) [Y is the number of datum.] is the number of permutation of (n — 1)!

type.

Therefore, in (n — 1)! type, the numbers of permutation from first to ((n — 1)!/4) — 2
are, in (n — 1)" ! type, the numbers of permutation from U(V(Y = 1)) to UMY = ((n —
1)!/4) — 2)), because a number of combinations of answers is at least 2. The order of
numbers of permutation from 1 to about (n — 1)!/4 converged the probability

amplitudes by the Appendix-3. And then, this process is repeated.
Where, the examples of U[X] = U(V(Y)) are shown at the section 4.
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Example-1:

Y=1=0=0)8!+(n=0)7!+ (v3=0)6! + (v4a= 0)5! + (vs=0)4! + (v6= 0)3! + (7=
0)2! + (vg=1)11.

Therefore, 0, 1, 2, 3,4,5,6,7, 8 = from (I), vi=w=vi=wu=vs=vs=v7=0 — 11 =0,
h=1,6=2,t4=3,ts=4,t6=5,t7=6; 7,8 = from (IV), vs=1 > t5="7, to= 8.

And then, U(Y = 1)) = (1= 0)9%+ (2= 1)97+ (3= 2)9°+ (t2= 3)93+ (ts= 4)9* + (t6=
5)93+ (t7=6)9*+ (ts = 7)9" + (to = 8)9° = 6053444,

Example-2:

Y=0914)-2=90718 = (vi=2)8! + (v2=1)7! + (v3=6)6! + (v4=5)5! + (vs=4)4! +
(ve=3)3!+ (v7=2)2! + (vg=0)1!.

Therefore, 0, 1, 2, 3,4, 5,6, 7, 8 = from (IIl), vi=2 - #1=2;0,1,3,4,5,6,7,8 =
from (II1), v>=1—->1n=1;0,3,4,5,6,7, 8 = from (Ill), s=6 - =28, 0, 3,4, 5, 6,
7 = from (Ill), 4a=5 — 14=7;0, 3,4, 5, 6 = from (IIl), vs=4 —> t5=6;0,3,4,5 =
from (II), ve=3 — 1= 15; 0, 3,4 = from (II), vi=2, =0 > t7=3, ts=4, 1= 0.
And then, UV(Y = (9!/4) — 2 =90718)) = (t1=2)9%+ (2= 1)9"+ (3= 8)9°+ (ta= 7)9°
+ (t5=6)9*+ (t6= 5)9° + (t7=3)9*+ (ts=4)9' + (to= 0)9° = 95584572.

APPENDIX-2

It is assumed that the state of |b» is 1, and there is logs (4k) < F. [— 4k = 2¥] When
the probability amplitudes of state of 1 are marked a minus, the mean of probability
amplitudes becomes ((27)22F — k) — QN 2k)2F = (1 — Qk2N)RH? =
(1/2)(4ky 7.

When the inversion about mean is practiced, the probability amplitudes of state of 1
are — (— 20712 + (1 — KkR2F)Q2N)2x2 = (3 — (4k12F))(2F) V2 = 2(4k)™"2, and the
probability amplitude of state of 0 are

(112 = (@12 - (1 - K2R P)x2 = (1 - (42525 12 = 0.

Therefore, the sum of square of probability amplitude is

((3 — (k27 (2FY 122k + (1 — (4k/25))(2FY 2Y2(2F — k) = 4(4k) ke + 0X(4k — k) = 1.
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After all, the data of state of 1 [(4k)/4 — k] remain [3, 6, 7, 10]. [This is a quarter
method-1.]

APPENDIX-3

It is assumed that the number of data is N, the value of data of N/4 is R, and values of
data of 3N/4 are the others. When the probability amplitudes of data of R are marked a

minus, the mean of probability amplitudes becomes
(N~ Y2(3N/4) — N~ V2(N/4))/N = (1/2)N ~ 12,

When the inversion about mean is practiced, the probability amplitudes of data of R
are — (<N ~ ) + (1/2)N ~?x2 = 2N ~ 2 and the probability amplitude of data of
others are N~ 12 — (N =12 — (1/2)N ~"*)x2 = 0.

Therefore, the sum of square of probability amplitude is
2N~ "?Y(1/4N + 0*B/4HN=1+0=1.
After all, the data of N/4 of R remain [3, 6, 7, 10, 11, 13]. [This is a quarter method-2.]

When this process is repeated, the number of data decreases and the probability

amplitudes of necessary data increase.
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