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Abstract 

A quantum algorithm for the traveling salesman problem by a quarter method 
and its example are reported. A route of the shortest distance is decided on 
turning round n points with fixing a starting point. When the counter routes are 
excluded, a computational complexity of a classical computation is (n – 1)!/2. 
The computational complexity becomes about 3(log2 (n – 1))2(n – 1)2 by this 
quantum algorithm. Therefore, a decreased process becomes possible. 
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1. INTRODUCTION 

Ono, Mori, and Moriyama reported a high temperature silicon qubit [1]. The 
algorithms of the quantum computer by Deutsch-Jozsa, Shor, Grover, and so on are 
known [2-7]. Ambainis’s quantum walk algorithms was the example to decrease the 

computational complexity [8]. When the feature of the problem isn’t used, it is 

difficult to decrease the computational complexity. Bennett, Bernstein, Brassard, and 
Vazirani addressed the class NP cannot be solved on a quantum Turing machine in 
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time O(2n/2) [9]. However, they didn’t eliminate the unnecessary data on the 

machine’s way to the end.  
For this reason, Fujimura suggested that the probability amplitudes of the maximum 
integer multiple-choice generalized knapsack problem are converged quickly by a 
hybrid method of Grover’s database search and Shor’s data decrease [3, 5-7, 10]. Its 
computational complexity is decreased. The traveling salesman problem [3, 4, 11] is 
examined by a quarter method this time. Therefore, its result is reported. 
 
2. TRAVELING SALESMAN PROBLEM 

It is the traveling salesman problem to decide a route that turns round n points in the 
shortest distance. The computational complexity of a classical computation is (n – 
1)!/2, because a starting point is fixed and counter routes are excluded [3, 4, 11]. 
 

3. QUANTUM ALGORITHM 

It is assumed that n points of P0 (x0, y0), P1 (x1, y1), P2 (x2, y2), ∙∙∙ , Pn – 2 (xn – 2, yn – 2), 
and Pn – 1 (xn – 1, yn – 1) are set [xi and yi are the two dimensional coordinates. 0 ≤ i ≤ n 
– 1. i is an integer.], P0 is fixed, and a distance between Pi and Pj is L(i, j)[= L( j, i)]. 
Therefore, routes of P1, P2, ∙∙∙ , Pn – 2, and Pn – 1 are considered. 

(1) The number of the repeated permutation of n – 1 points is (n – 1)n – 1. 

(2) The number of permutation of n – 1 points is (n – 1)!. 

When n – 1 points are P1 + a(1), P1 + a(2), ∙∙∙ , P1 + a(n – 2), and P1 + a(n – 1) [where, a(q) = aq ; 
0 ≤ aq ≤ n – 2. aq is an integer.], it is assumed that U[X] = a1 (n – 1)n – 2 + a2 (n – 1)n – 3 
+ ∙∙∙ + an – 2 (n – 1)1 + an – 1 (n – 1)0 [X is the number of datum.] is the numbering 
datum from 0 to (n – 1)n – 1 – 1 [For example, U[X = 0] is a1 = 0, a2 = 0, ∙∙∙ , an – 2 = 0, 
and an – 1 = 0, and U[X = (n – 1)n – 1 – 1] is a1 = n – 2, a2 = n – 2, ∙∙∙ , an – 2 = n – 2, and 
an – 1 = n – 2.] in (1). 

In (2), it is assumed that the first datum V(Y = 1) is a1 = 0, a2 = 1, ∙∙∙ , an – 2 = n – 3, and 
an – 1 = n – 2, and the (n – 1)!-th datum V(Y = (n – 1)!) is a1 = n – 2, a2 = n – 3, ∙∙∙ , an – 

2 = 1, and an – 1 = 0, Y [where, 1≤ Y ≤ (n – 1)! – 1. Y is an integer.] is obtained from v1 

(n – 2)! + v2 (n – 3)! + ∙∙∙ + vn – 2 1!. [Where, 0 ≤ vi ≤ n – (1 + i). vi is an integer.] Each 
of ti [1 ≤ i ≤ n – 1. i is an integer.] is 1 piece of permutation from 0 to n – 2. 

(I) When vi is 0 from i = 1 to i = n – 3 sequentially, ti is the smallest number in 
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remained numbers. 

(II) When vi isn’t 0 from i = 1 to i = n – 3 sequentially, and vi + 1, vi + 2, ∙∙∙, vn – 3, and 
vn – 2 are 0, ti is the vi -th small number in remained numbers, and ti + 1 > ti + 2 > ∙∙∙ 
> tn – 2 > tn – 1 is selected in remained numbers. 

(III) When vi isn’t 0 from i = 1 to i = n – 3 sequentially, and there are vi + 1 ≠ 0 or vi + 2 

≠ 0 or ∙∙∙ or vn – 3 ≠ 0 or vn – 2 ≠ 0, ti is the (vi + 1)-th small number in remained 
numbers. 

(IV) When vn – 2 is 1, tn – 2 < tn – 1 is selected in remained numbers. Therefore, t1 (n – 
1)n – 2 + t2 (n – 1)n – 3 + ∙∙∙ + tn – 2 (n – 1)1 + tn – 1 (n – 1)0 is U(V(Y)). [Where, ti is 
equal to ai in (2).] 

g is the minimum integer that follows (n – 1)!/2 ≤ 22g = 4g, because a number of 
combinations of answers is at least 2. U(V(Y = 1)), U(V(Y = ((n – 1)!/4) – 2)), U(V(Y = 
((n – 1)!/16) – 2)), ∙∙∙ , U(V(Y = ((n – 1)!/4g – 1) – 2)), and U(V(Y = (n – 1)!/4g)) are 
computed. [→ See Appendix-1] M1 that is a starting distance value is decided at 
random. Next, a quantum algorithm is shown as the following. 

First of all, quantum registers |a1›, |a2›, ∙∙∙ , |an – 1›, |b1›, |b2›, ∙∙∙ , |bn – 1›, |c1›, |c2›, |d›, 
and |e› are prepared. When F is the minimum integer that is log2 (4(n – 1)) or more, 
each of |ah› that h is an integer from 1 to n – 1 is consisted of F qubits. [→ See 
Appendix-2] States of |a1›, |a2›, ∙∙∙ , |an – 1›, |b1›, |b2›, ∙∙∙ , |bn – 1›, |c1›, |c2›, |d›, and |e› are 
a1, a2, ∙∙∙ , an – 1, b1, b2, ∙∙∙ , bn – 1, c1, c2, d, and e, respectively. 

Step 1: Each qubit of |a1›, |a2›, ∙∙∙ , |an – 1›, |b1›, |b2›, ∙∙∙ , |bn – 1›, |c1›, |c2›, |d›, and |e› is 
set |0›. 

Step 2: The Hadamard gate H acts on each qubit of |a1›, |a2›, ∙∙∙ , |an – 2›, and |an – 1› [3, 
4]. It changes them for entangled states. The total states are (2F)n – 1 [2F ≈ 4(n – 1)]. 
[|ah› is consisted of F qubits. Each qubit is acted on by H. Therefore, F(n – 1) of H 
are necessary.] 

Step 3: It is assumed that a quantum gate (B) changes |b1›, |b2›, ∙∙∙ , |bn – 3›, |bn – 2›, and 
|bn – 1› for |1 + b1›, |1 + b2›, ∙∙∙ , |1 + bn – 3›, |1 + bn – 2›, and |1 + bn – 1› in ah = 0, 1, ∙∙∙ , n 
– 4, n – 3, and n – 2, respectively. This action repeats from |a1› to |an – 1›.  

As the target state for |b1› is 1, quantum phase inversion gates (PI) and quantum 
inversion about mean gates (IM) act on |b1›. [Grover’s database search. The same 

gates action is shown in the following.] [3, 6, 7] When G1 is 2 that is ((2F) n – 1/((n – 
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1)(n – 2) n – 24n – 2))1/2 ≈ (4n – 1(n – 1) n – 1/((n – 1)(n – 2) n – 24n – 2))1/2 = (4(n – 1) n – 2/(n – 
2) n – 2)1/2 ≈ 2, the total number that (PI) and (IM) act on |b1› is G1 = 2, because they 
are a couple. Next, (OB) observes |b1›. Therefore, only the routes that contain 1 piece 
of 0 remain. The number of data is (n – 1)(n – 2)n – 24n – 2. [Shor’s data decrease. The 

same gate action is shown in the following.] [3, 5] [→ See Appendix-2]  

As the target state for |b2› is 1, (PI) and (IM) act on |b2›. When G2 is 2 that is (((n – 
1)(n – 2) n – 24n – 2)/((n – 1)(n – 2)(n – 3) n – 34n – 3))1/2 = (4(n – 2) n – 3/(n – 3) n – 3)1/2 ≈ 2, 
the total number that (PI) and (IM) act on |b2› is G2 = 2. Next, (OB) observes |b2›. 
Therefore, only the routes that contain 1 piece of 1 remain. The number of data is (n – 
1)(n – 2)(n – 3)n – 34n – 3.  

Similarly, these actions are repeated sequentially from |b3› to |bn – 1› with Gi [3 ≤ i ≤ n 
– 1. i is an integer.]. Only the routes that contain 1 piece of number from 0 to n – 2, 
respectively, remain. The number of data is (n – 1)! [= W0]. 

Step 4: It is assumed that a quantum gate (C1) changes |c1› and |c2› for |c1 + L(0, 1 + 
a1) + L(1 + a1, 1 + a2)› and |c2 + (n – 1)n – 2a1 + (n – 1)n – 3a2›, respectively, from |a1› 
and |a2›.  

Similarly, (Ci) [2 ≤ i ≤ n – 3. i is the integer.] changes |c1› and |c2› for |c1 + L(1 + ai,     
1 + ai + 1)› and |c2 + (n – 1)n – (i + 2)ai + 1›, respectively, from |ai› and |ai + 1›. This action is 
repeated sequentially from |a2› to |an – 3›.  

(Cn – 2) changes |c1› and |c2› for |c1 + L(1 + an – 2,  1 + an – 1) + L(1 + an – 1, 0)› and |c2 
+ (n – 1)0an – 1›, respectively, from |an – 2› and |an – 1›.  

Therefore, |c1› and |c2› become |Ltotal = L(0, 1 + a1) + L(1 + a1, 1 + a2) + ∙∙∙ + L(1 + an – 

2, 1 + an – 1) + L(1 + an – 1, 0)› and |U(V)›, respectively. 

Step 5: It is assumed that a quantum gate (D) changes |d› for |d + c1› in c1 ≤ M1, or it 
changes |d› for |d + M1 + c2› in the others of c1. 

Step 6: It is assumed that a quantum gate (E1) doesn’t changes |e› in d ≤ M1 or M1 + 
U(V(Y = 1)) ≤ d ≤ M1 + U(V(Y = ((n – 1)!/4) – 2)), or it changes |e› for |e + 1› in the 

others of d. As the target state for |e› is 0, (PI) and (IM) act on |e›. The number of the 

data that is included in d ≤ M1 or M1 + U(V(Y = 1)) ≤ d ≤ M1 + U(V(Y = ((n – 1)!/4) – 
2)) is W1 ≈ (n – 1)!/4. [→ See Appendix-3] When K1 is 2 that is (W0/W1)1/2 ≈ 2, the 
total number that (PI) and (IM) act on |e› is K1 = 2. Next, (OB) observes |e›, and the 

data of W1 remain.  
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Similarly, (Ei) [2 ≤ i ≤ g – 1. i is the integer.] doesn’t change |e› in d ≤ M1 or M1 + 
U(V(Y = 1)) ≤ d ≤ M1 + U(V(Y = ((n – 1)!/4i) – 2)), or it changes |e› for |e + 1› in the 

others of d. As the target state for |e› is 0, (PI) and (IM) act on |e›. The number of the 
data that is included in d ≤ M1 or M1 + U(V(Y = 1)) ≤ d ≤ M1 + U(V(Y = ((n – 1)!/4i) – 
2)) is Wi ≈ (n – 1)!/4i. When Ki is 2 that is (Wi – 1/Wi)1/2 ≈ 2, the total number that (PI) 
and (IM) act on |e› is Ki = 2. Next, (OB) observes |e›, and the data of Wi remain. These 
actions are repeated sequentially from 2 to g – 1 at i.  

(Eg) doesn’t change |e› in d ≤ M1, or it changes |e› for |e + 1› in the others of d. As the 
target state for |e› is 0, (PI) and (IM) act on |e›. The number of the data that is included 
in d ≤ M1 is Wg

 ≈ 2. When Kg is 2 that is (Wg – 1/Wg)1/2 ≈ 2, the total number that (PI) 
and (IM) act on |e› is Kg = 2. Next, (OB) observes |a1›, |a2›, ∙∙∙ , |an – 1›, |b1›, |b2›, ∙∙∙ , |bn 

– 1›, |c1›, |c2›, |d›, and |e›, and one of the data of Wg remains.  

Therefore, one example of routes that are Ltotal ≤ M1 is obtained. 

Step 7: When the state of |e› is 0 or 1, M1 is assumed to be M2 [< M1] or M2 [> M1], 
respectively, these computations from step 1 to step 7 are repeated. It is assumed that 
the minimum distance Mmin obtains by repeating about log2 (n – 1)! [12]. 

An example is shown as the next section. However, this algorithm is applied as far as 
the effect of Grover’s database search and Shor’s data decrease. 

 

4. NUMERICAL COMPUTATION 

It is assumed that there are n = 10, P0(0, 0), P1(1, – 2), P2(3, – 1), P3(4, 1), P4(2, 3), 
P5(1, – 1), P6(3, – 2), P7(4, 0), P8(0, 1), P9(2, 2), L(0, 2) ≈ 3.2, L(0, 5) ≈ 1.4, L(0, 8) = 
1, L(0, 3) ≈ 4.1, L(0, 7) = 4, L(1, 5) = 1, L(1, 4) ≈ 5.1, L(2, 6) = 1, L(3, 7) = 1, L(3, 1) 
≈ 4.2, L(3, 9) ≈ 2.2, L(4, 9) = 1, L(4, 6) ≈ 5.1, L(4, 2) ≈ 4.1, L(5, 9) ≈ 3.2, L(6, 1) = 2, 
L(6, 8) ≈ 4.2,  L(7, 2) ≈ 1.4, L(7, 5) ≈ 3.2, L(7, 8) ≈ 4.1, L(8, 4) ≈ 2.8, L(8, 7) ≈ 4.1, 

L(8, 3) = 4, L(9, 3) ≈ 2.2, L(9, 2) ≈ 3.2, L(9, 4) = 1 [The value of the others of L(i, j) is 
10M1.], g = 9 [9!/2 = 181440 ≤ 49 = 262144], U(V(Y = 1)) = 6053444, U(V(Y = (9!/4) 
– 2 = 90718)) = 95584572 [for example, Y = 90718 = 2∙8! + 1∙7! + 6∙6! + 5∙5! + 4∙4! + 

3∙3! + 2∙2! +0∙1!, U(V(Y = 90718)) = 95584572 = 2∙98 + 1∙97 + 8∙96 + 7∙95 + 6∙94 + 
5∙93 + 3∙92 + 4∙91 + 0∙90], [→ See Appendix-1] U(V(Y = (9!/16) – 2 = 22678)) = 
26275564, U(V(Y = (9!/64) – 2 = 5668)) = 10598756, U(V(Y = (9!/256) – 2 ≈ 1416)) 

= 6894596, U(V(Y = (9!/1024) – 2 ≈ 352)) = 6198348, U(V(Y = (9!/4096) – 2 ≈ 87)) = 
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6073748, U(V(Y = (9!/16384) – 2 ≈ 20)) = 6055548, U(V(Y = (9!/65536) – 2 ≈ 4)) = 

6053532, and M1 = 20. 

First of all, |a1›, |a2›, ∙∙∙ , |a9›, |b1›, |b2›, ∙∙∙ , |b9›,|c1›, |c2›, |d›, and |e› are prepared. When 
F is the minimum integer that is log2 (4(n – 1)) = log2 (4∙9) ≈ 5.170 ≤ 6 = F, each of 
|ah› that h is the integer from 1 to 9 is consisted of F = 6 qubits. States of |a1›, |a2›, ∙∙∙ , 
|a9›, |b1›, |b2›, ∙∙∙ , |b9›, |c1›, |c2›, |d›, and |e› are a1, a2, ∙∙∙ , a9, b1, b2, ∙∙∙ , b9, c1, c2, d, and 
e, respectively. 

Step 1: Each qubit of |a1›, |a2›, ∙∙∙ , |a9›, |b1›, |b2›, ∙∙∙ , |b9›, |c1›, |c2›, |d›, and |e› is set |0›. 

Step 2: H acts on each qubit of |a1›, |a2›, ∙∙∙ , |a8›, and |a9›. It changes them for 

entangled states. The total states are (2F)n-1 = (26)9 = 649. 

Step 3: (B) changes |b1›, |b2›, ∙∙∙ , |b8›, and |b9› for |1 + b1›, |1 + b2›, ∙∙∙ , |1 + b8›, and |1 
+ b9› in ah = 0, 1, ∙∙∙ , 7, and 8, respectively. This action repeats from |a1› to |a9›.  

As the target state for |b1› is 1, (PI) and (IM) act on |b1›. When G1 is 2 that is (4(n – 1) 

n – 2/(n – 2) n – 2))1/2 = (4∙98/88)1/2 = 2(9/8)4 ≈ 2, the total number that (PI) and (IM) act 
on |b1› is G1 = 2. Next, (OB) observes |b1›. Therefore, only the routes that contain 1 
piece of 0 remain. The number of data is (n – 1)(n – 2) n – 24n – 2 = 9∙88∙48.  

As the target state for |b2› is 1, (PI) and (IM) act on |b2›. When G2 is 2 that is (4(n – 2) 

n – 3/(n – 3) n – 3)1/2 = 2(8/7)7/2 ≈ 2, the total number that (PI) and (IM) act on |b2› is G2 
= 2. Next, (OB) observes |b2›. Therefore, only the routes that contain 1 piece of 1 
remain. The number of data is (n – 1)(n – 2)(n – 3) n – 34n – 3 = 9∙8∙77∙47.  

Similarly, these actions are repeated sequentially from |b3› to |b9› with Gi [3 ≤ i ≤ n – 1 
= 9. i is the integer.]. Only the routes that contain 1 piece of number from 0 to 8, 
respectively, remain. The number of data is (n – 1)! = 9! [= W0]. 

Step 4: (C1) changes |c1› and |c2› for |c1 + L(0, 1 + a1) + L(1 + a1, 1 + a2)› and |c2 + 
98a1 + 97a2›, respectively, from |a1› and |a2›.  

Similarly, (Ci) [2 ≤ i ≤ 7. i is the integer.] changes |c1› and |c2› for |c1 + L(1 + ai, 1 + ai 

+ 1)› and |c2 + 910 – (i + 2)ai + 1›, respectively, from |ai› and |ai + 1›. This action is repeated 

sequentially from |a2› to |a7›.  

(C8) changes |c1› and |c2› for |c1 + L(1 + a8, 1 + a9) + L(1 + a9, 0)› and |c2 + 90a9›, 

respectively, from |a8› and |a9›.  
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Therefore, |c1› and |c2› become |Ltotal = L(0, 1 + a1) + L(1 + a1, 1 + a2) + ∙∙∙ + L(1 + a8, 
1 + a9) + L(1 + a9, 0)› and |U(V)›, respectively. 

Step 5: (D) changes |d› for |d + c1› in c1 ≤ M1 = 20, or it changes |d› for |d + 20 + c2› in 

the others of c1. 

Step 6: (E1) doesn’t change |e› in d ≤ M1 = 20 or M1 + U(V(Y = 1)) = 20 + 6053444 = 
6053464 ≤ d ≤ M1 + U(V(Y = ((n – 1)!/4) – 2 = (9!/4) – 2 = 90718)) = 20 + 95584572 
= 95584592, or it changes |e› for |e + 1› in the others of d. As the target state for |e› is 

0, (PI) and (IM) act on |e›. The number of the data that is included in d ≤ 20 or 
6053464 ≤ d ≤ 95584592 is W1 ≈ 9!/4. When K1 is 2 that is (W0/W1)1/2 ≈ (9!/(9!/4))1/2 = 
2, the total number that (PI) and (IM) act on |e› is K1 = 2. Next, (OB) observes |e›, and 

the data of W1 remain.  

Similarly, (Ei) [2 ≤ i ≤ g – 1 = 8. i is the integer.] doesn’t change |e› in d ≤ 20 or 
6053464 ≤ d ≤ 20 + U(V(Y = (9!/4i) – 2)), or it changes |e› for |e + 1› in the others of d. 
As the target state for |e› is 0, (PI) and (IM) act on |e›. The number of the data that is 
included in d ≤ 20 or 6053464 ≤ d ≤ 20 + U(V(Y = (9!/4i) – 2)) is Wi ≈ 9!/4i. When Ki 
is 2 that is (Wi – 1/Wi)1/2 ≈ ((9!/4i-1)/(9!/4 i))1/2 = 2, the total number that (PI) and (IM) 
act on |e› is Ki = 2. Next, (OB) observes |e›, and the data of Wi remain. These actions 
are repeated sequentially from 2 to g – 1 = 8 at i.  

(E9) doesn’t changes |e› in d ≤ 20, or it changes |e› for |e + 1› in the others of d. As the 
target state for |e› is 0, (PI) and (IM) act on |e›. The number of the data that is included 
in d ≤ 20 is W9

 ≈ 2. When K9 is 2 that is (W8/W9)1/2 ≈ ((9!/48)/(9!/49))1/2 = 2, the total 
number that (PI) and (IM) act on |e› is K9 = 2. Next, (OB) observes |a1›, |a2›, |a3›, |a4›, 

|a5›, |a6›, |a7›, |a8›, |a9›, |b1›, |b2›, ∙∙∙ , |b9›, |c1›, |c2›, |d›, and |e›, and one of the data of 
W9 remains. For example, when a1, a2, a3, a4, a5, a6, a7, a8, a9, b1, b2, ∙∙∙ , b9, c1, c2, d, 
and e are 4, 0, 5, 1, 6, 2, 7, 3, 8, 1, 1, ∙∙∙ , 1, 18, U(V(Y = 163491)) = 174944564, 18, 
and 0, respectively. 

Step 7: In the example, the state of |e› is 0. Therefore, M1 is assumed to be M2 = 15 [< 
18 < M1 = 20], and these calculations from step 1 to step 7 are repeated. It is assumed 
that the state of |e› is 0. When the states of |e› is 1 at M3 = 10, M4 = 13, and M5 = 14, 
the minimum distance Mmin is 15 [= M2].  

Therefore, a1, a2, a3, a4, a5, a6, a7, a8, a9, b1, b2, ∙∙∙ , b9, c1, c2, d, and e are 4, 0, 5, 1, 6, 
2, 8, 3, 7, 1, 1, ∙∙∙ , 1, 15, U(V(Y = 163493)) = 174944644, 15, and 0, respectively. As a 
result, the shortest route P0 → P5 → P1 → P6 → P2 → P7 → P3 → P9 → P4 → P8 → 



718 Toru Fujimura 

P0 is obtained. And then, P0 → P8 → P4 → P9 → P3 → P7 → P2 → P6 → P1 → P5 → 

P0 is the another answer. 

 

5. DISCUSSION AND SUMMARY 

In the example of section 4, the computational complexity of this quantum algorithm 
[= S] is 680. The computational complexity of the classical computation [= Z] is (n – 
1)!/2 = 9!/2 = 181440. After all, S/Z becomes about 1/267.  

In general, S becomes the following. In the order of the actions by the gates, the 
number of them is F(n – 1) at H,  n – 1 at (B), Σi = 1 → n – 1 Gi = 2(n – 1) at (PI) and 
(IM), (n – 1) at (OB), n – 1 at (Ci) [1 ≤ i ≤ n – 1. i is the integer.], 1 at (D), g at (Ei) [1 
≤ i ≤ g. i is the integer.], Σi = 1 → g Ki = 2g at (PI) and (IM), and g at (OB). These 
processes repeated about log2 (n – 1)!. Therefore, S becomes (F(n – 1) + 7n – 6 + 
4g)log2 (n – 1)!. 

When n is large enough, S becomes about 3(log2 (n – 1))2(n – 1)2, where F is about 
log2 (4(n – 1)), g is about (1/2)((log2 (n – 1)!) – 1), and n! is about nne-n(2πn)1/2 
[Stirling’s formula], and S/Z is about 3(log2 (n – 1))2(n – 1)2/((n – 1)!/2). For example, 
as for n = 50, S/Z is about 1/1057. Therefore, a decreased process becomes possible. 

I hope that this result will be confirmed by many experiments. 

 

APPENDIX-1 [13] 

U[X] [X is the number of datum.] is the number of the repeated permutation of (n – 1)n 

– 1 type, and V(Y) [Y is the number of datum.] is the number of permutation of (n – 1)! 
type.  

Therefore, in (n – 1)! type, the numbers of permutation from first to ((n – 1)!/4) – 2 
are, in (n – 1)n – 1 type, the numbers of permutation from U(V(Y = 1)) to U(V(Y = ((n – 
1)!/4) – 2)), because a number of combinations of answers is at least 2. The order of 
numbers of permutation from 1 to about (n – 1)!/4 converged the probability 
amplitudes by the Appendix-3. And then, this process is repeated. 

Where, the examples of U[X] = U(V(Y)) are shown at the section 4. 
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Example-1: 

Y = 1 = (v1 = 0)8! + (v2 = 0)7! + (v3 = 0)6! + (v4 = 0)5! + (v5 = 0)4! + (v6 = 0)3! + (v7 = 
0)2! + (v8 = 1)1!. 

Therefore, 0, 1, 2, 3, 4, 5, 6, 7, 8 ⇒ from (I), v1 = v2 = v3 = v4 = v5 = v6 = v7 = 0 → t1 = 0, 
t2 = 1, t3 = 2, t4 = 3, t5 = 4, t6 = 5, t7 = 6; 7, 8 ⇒ from (IV), v8 = 1 → t8 = 7, t9 = 8. 

And then, U(V(Y = 1)) = (t1 = 0)98 + (t2 = 1)97 + (t3 = 2)96 + (t4 = 3)95 + (t5 = 4)94 + (t6 = 
5)93 + (t7 = 6)92 + (t8 = 7)91 + (t9 = 8)90 = 6053444. 

 

Example-2: 

Y = (9!/4) – 2 = 90718 = (v1 = 2)8! + (v2 = 1)7! + (v3 = 6)6! + (v4 = 5)5! + (v5 = 4)4! + 
(v6 = 3)3! + (v7 = 2)2! + (v8 = 0)1!. 

Therefore, 0, 1, 2, 3, 4, 5, 6, 7, 8 ⇒ from (III), v1= 2 → t1 = 2; 0, 1, 3, 4, 5, 6, 7, 8 ⇒ 
from (III), v2 = 1 → t2 = 1; 0, 3, 4, 5, 6, 7, 8 ⇒ from (III), v3 = 6 → t3 = 8; 0, 3, 4, 5, 6, 
7 ⇒ from (III), v4 = 5 → t4 = 7; 0, 3, 4, 5, 6 ⇒ from (III), v5 = 4 → t5 = 6; 0, 3, 4, 5 ⇒ 
from (III), v6 = 3 → t6 = 5; 0, 3, 4 ⇒ from (II), v7 = 2, v8 = 0 → t7 = 3, t8 = 4, t9 = 0. 

And then, U(V(Y = (9!/4) – 2 = 90718)) = (t1 = 2)98 + (t2 = 1)97 + (t3 = 8)96 + (t4 = 7)95 

+ (t5 = 6)94 + (t6 = 5)93 + (t7 = 3)92 + (t8 = 4)91 + (t9 = 0)90 = 95584572. 

 

APPENDIX-2 

It is assumed that the state of |bi› is 1, and there is log2 (4k) ≤ F. [→ 4k ≈ 2F] When 
the probability amplitudes of state of 1 are marked a minus, the mean of probability 
amplitudes becomes ((2F)–1/2(2F – k) – (2F)–1/2k)/2F = (1 – (2k/2F))(2F)–1/2 ≈ 

(1/2)(4k)–1/2.  

When the inversion about mean is practiced, the probability amplitudes of state of 1 
are – (– (2F)–1/2) + (1 – (2k/2F))(2F)–1/2×2 = (3 – (4k/2F))(2F)–1/2 ≈ 2(4k)–1/2, and the 
probability amplitude of state of 0 are  

(2F)–1/2 – ((2F)–1/2 – (1 – (2k/2F))(2F)–1/2)×2 = (1 – (4k/2F))(2F)–1/2 ≈ 0.  

Therefore, the sum of square of probability amplitude is  

((3 – (4k/2F))(2F)–1/2)2k + ((1 – (4k/2F))(2F)–1/2)2(2F – k) ≈ 4(4k)–1k + 02(4k – k) = 1.  
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After all, the data of state of 1 [(4k)/4 → k] remain [3, 6, 7, 10]. [This is a quarter 
method-1.] 

 

APPENDIX-3 

It is assumed that the number of data is N, the value of data of N/4 is R, and values of 
data of 3N/4 are the others. When the probability amplitudes of data of R are marked a 
minus, the mean of probability amplitudes becomes  

(N – 1/2(3N/4) – N – 1/2(N/4))/N = (1/2)N – 1/2.  

When the inversion about mean is practiced, the probability amplitudes of data of R 
are – (–N – 1/2) + (1/2)N – 1/2×2 = 2N – 1/2, and the probability amplitude of data of 
others are N – 1/2 – (N – 1/2 – (1/2)N – 1/2)×2 = 0. 

Therefore, the sum of square of probability amplitude is  

(2N – 1/2)2(1/4)N + 02(3/4)N = 1 + 0 = 1. 

After all, the data of N/4 of R remain [3, 6, 7, 10, 11, 13]. [This is a quarter method-2.] 

When this process is repeated, the number of data decreases and the probability 
amplitudes of necessary data increase. 
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