
Global Journal of Pure and Applied Mathematics.
ISSN 0973-1768 Volume 16, Number 5 (2020), pp. 711-721
© Research India Publications
http://www.ripublication.com/gjpam.htm

Quantum Algorithm for Traveling Salesman Problem

by Quarter Method

Toru Fujimura

Third area security office, University of Tsukuba, Ibaraki-branch, Rising Sun Security
Service Co., Ltd., 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8577, Japan

Abstract

A quantum algorithm for the traveling salesman problem by a quarter method
and its example are reported. A route of the shortest distance is decided on
turning round n points with fixing a starting point. When the counter routes are
excluded, a computational complexity of a classical computation is (n – 1)!/2.
The computational complexity becomes about 3(log2 (n – 1))2(n – 1)2 by this
quantum algorithm. Therefore, a decreased process becomes possible.

Keywords: Quantum algorithm, traveling salesman problem, quarter method,
computational complexity, decreased process.

AMS subject classification: Primary 81-08; Secondary 68R10, 68W40.

1. INTRODUCTION

Ono, Mori, and Moriyama reported a high temperature silicon qubit [1]. The
algorithms of the quantum computer by Deutsch-Jozsa, Shor, Grover, and so on are
known [2-7]. Ambainis’s quantum walk algorithms was the example to decrease the

computational complexity [8]. When the feature of the problem isn’t used, it is

difficult to decrease the computational complexity. Bennett, Bernstein, Brassard, and
Vazirani addressed the class NP cannot be solved on a quantum Turing machine in

712 Toru Fujimura

time O(2n/2) [9]. However, they didn’t eliminate the unnecessary data on the

machine’s way to the end.
For this reason, Fujimura suggested that the probability amplitudes of the maximum
integer multiple-choice generalized knapsack problem are converged quickly by a
hybrid method of Grover’s database search and Shor’s data decrease [3, 5-7, 10]. Its
computational complexity is decreased. The traveling salesman problem [3, 4, 11] is
examined by a quarter method this time. Therefore, its result is reported.

2. TRAVELING SALESMAN PROBLEM

It is the traveling salesman problem to decide a route that turns round n points in the
shortest distance. The computational complexity of a classical computation is (n –
1)!/2, because a starting point is fixed and counter routes are excluded [3, 4, 11].

3. QUANTUM ALGORITHM

It is assumed that n points of P0 (x0, y0), P1 (x1, y1), P2 (x2, y2), ∙∙∙ , Pn – 2 (xn – 2, yn – 2),
and Pn – 1 (xn – 1, yn – 1) are set [xi and yi are the two dimensional coordinates. 0 ≤ i ≤ n
– 1. i is an integer.], P0 is fixed, and a distance between Pi and Pj is L(i, j)[= L(j, i)].
Therefore, routes of P1, P2, ∙∙∙ , Pn – 2, and Pn – 1 are considered.

(1) The number of the repeated permutation of n – 1 points is (n – 1)n – 1.

(2) The number of permutation of n – 1 points is (n – 1)!.

When n – 1 points are P1 + a(1), P1 + a(2), ∙∙∙ , P1 + a(n – 2), and P1 + a(n – 1) [where, a(q) = aq ;
0 ≤ aq ≤ n – 2. aq is an integer.], it is assumed that U[X] = a1 (n – 1)n – 2 + a2 (n – 1)n – 3
+ ∙∙∙ + an – 2 (n – 1)1 + an – 1 (n – 1)0 [X is the number of datum.] is the numbering
datum from 0 to (n – 1)n – 1 – 1 [For example, U[X = 0] is a1 = 0, a2 = 0, ∙∙∙ , an – 2 = 0,
and an – 1 = 0, and U[X = (n – 1)n – 1 – 1] is a1 = n – 2, a2 = n – 2, ∙∙∙ , an – 2 = n – 2, and
an – 1 = n – 2.] in (1).

In (2), it is assumed that the first datum V(Y = 1) is a1 = 0, a2 = 1, ∙∙∙ , an – 2 = n – 3, and
an – 1 = n – 2, and the (n – 1)!-th datum V(Y = (n – 1)!) is a1 = n – 2, a2 = n – 3, ∙∙∙ , an –

2 = 1, and an – 1 = 0, Y [where, 1≤ Y ≤ (n – 1)! – 1. Y is an integer.] is obtained from v1

(n – 2)! + v2 (n – 3)! + ∙∙∙ + vn – 2 1!. [Where, 0 ≤ vi ≤ n – (1 + i). vi is an integer.] Each
of ti [1 ≤ i ≤ n – 1. i is an integer.] is 1 piece of permutation from 0 to n – 2.

(I) When vi is 0 from i = 1 to i = n – 3 sequentially, ti is the smallest number in

Quantum Algorithm for Traveling Salesman Problem by Quarter Method 713

remained numbers.

(II) When vi isn’t 0 from i = 1 to i = n – 3 sequentially, and vi + 1, vi + 2, ∙∙∙, vn – 3, and
vn – 2 are 0, ti is the vi -th small number in remained numbers, and ti + 1 > ti + 2 > ∙∙∙
> tn – 2 > tn – 1 is selected in remained numbers.

(III) When vi isn’t 0 from i = 1 to i = n – 3 sequentially, and there are vi + 1 ≠ 0 or vi + 2

≠ 0 or ∙∙∙ or vn – 3 ≠ 0 or vn – 2 ≠ 0, ti is the (vi + 1)-th small number in remained
numbers.

(IV) When vn – 2 is 1, tn – 2 < tn – 1 is selected in remained numbers. Therefore, t1 (n –
1)n – 2 + t2 (n – 1)n – 3 + ∙∙∙ + tn – 2 (n – 1)1 + tn – 1 (n – 1)0 is U(V(Y)). [Where, ti is
equal to ai in (2).]

g is the minimum integer that follows (n – 1)!/2 ≤ 22g = 4g, because a number of
combinations of answers is at least 2. U(V(Y = 1)), U(V(Y = ((n – 1)!/4) – 2)), U(V(Y =
((n – 1)!/16) – 2)), ∙∙∙ , U(V(Y = ((n – 1)!/4g – 1) – 2)), and U(V(Y = (n – 1)!/4g)) are
computed. [→ See Appendix-1] M1 that is a starting distance value is decided at
random. Next, a quantum algorithm is shown as the following.

First of all, quantum registers |a1›, |a2›, ∙∙∙ , |an – 1›, |b1›, |b2›, ∙∙∙ , |bn – 1›, |c1›, |c2›, |d›,
and |e› are prepared. When F is the minimum integer that is log2 (4(n – 1)) or more,
each of |ah› that h is an integer from 1 to n – 1 is consisted of F qubits. [→ See
Appendix-2] States of |a1›, |a2›, ∙∙∙ , |an – 1›, |b1›, |b2›, ∙∙∙ , |bn – 1›, |c1›, |c2›, |d›, and |e› are
a1, a2, ∙∙∙ , an – 1, b1, b2, ∙∙∙ , bn – 1, c1, c2, d, and e, respectively.

Step 1: Each qubit of |a1›, |a2›, ∙∙∙ , |an – 1›, |b1›, |b2›, ∙∙∙ , |bn – 1›, |c1›, |c2›, |d›, and |e› is
set |0›.

Step 2: The Hadamard gate H acts on each qubit of |a1›, |a2›, ∙∙∙ , |an – 2›, and |an – 1› [3,
4]. It changes them for entangled states. The total states are (2F)n – 1 [2F ≈ 4(n – 1)].
[|ah› is consisted of F qubits. Each qubit is acted on by H. Therefore, F(n – 1) of H
are necessary.]

Step 3: It is assumed that a quantum gate (B) changes |b1›, |b2›, ∙∙∙ , |bn – 3›, |bn – 2›, and
|bn – 1› for |1 + b1›, |1 + b2›, ∙∙∙ , |1 + bn – 3›, |1 + bn – 2›, and |1 + bn – 1› in ah = 0, 1, ∙∙∙ , n
– 4, n – 3, and n – 2, respectively. This action repeats from |a1› to |an – 1›.

As the target state for |b1› is 1, quantum phase inversion gates (PI) and quantum
inversion about mean gates (IM) act on |b1›. [Grover’s database search. The same

gates action is shown in the following.] [3, 6, 7] When G1 is 2 that is ((2F) n – 1/((n –

714 Toru Fujimura

1)(n – 2) n – 24n – 2))1/2 ≈ (4n – 1(n – 1) n – 1/((n – 1)(n – 2) n – 24n – 2))1/2 = (4(n – 1) n – 2/(n –
2) n – 2)1/2 ≈ 2, the total number that (PI) and (IM) act on |b1› is G1 = 2, because they
are a couple. Next, (OB) observes |b1›. Therefore, only the routes that contain 1 piece
of 0 remain. The number of data is (n – 1)(n – 2)n – 24n – 2. [Shor’s data decrease. The

same gate action is shown in the following.] [3, 5] [→ See Appendix-2]

As the target state for |b2› is 1, (PI) and (IM) act on |b2›. When G2 is 2 that is (((n –
1)(n – 2) n – 24n – 2)/((n – 1)(n – 2)(n – 3) n – 34n – 3))1/2 = (4(n – 2) n – 3/(n – 3) n – 3)1/2 ≈ 2,
the total number that (PI) and (IM) act on |b2› is G2 = 2. Next, (OB) observes |b2›.
Therefore, only the routes that contain 1 piece of 1 remain. The number of data is (n –
1)(n – 2)(n – 3)n – 34n – 3.

Similarly, these actions are repeated sequentially from |b3› to |bn – 1› with Gi [3 ≤ i ≤ n
– 1. i is an integer.]. Only the routes that contain 1 piece of number from 0 to n – 2,
respectively, remain. The number of data is (n – 1)! [= W0].

Step 4: It is assumed that a quantum gate (C1) changes |c1› and |c2› for |c1 + L(0, 1 +
a1) + L(1 + a1, 1 + a2)› and |c2 + (n – 1)n – 2a1 + (n – 1)n – 3a2›, respectively, from |a1›
and |a2›.

Similarly, (Ci) [2 ≤ i ≤ n – 3. i is the integer.] changes |c1› and |c2› for |c1 + L(1 + ai,
1 + ai + 1)› and |c2 + (n – 1)n – (i + 2)ai + 1›, respectively, from |ai› and |ai + 1›. This action is
repeated sequentially from |a2› to |an – 3›.

(Cn – 2) changes |c1› and |c2› for |c1 + L(1 + an – 2, 1 + an – 1) + L(1 + an – 1, 0)› and |c2
+ (n – 1)0an – 1›, respectively, from |an – 2› and |an – 1›.

Therefore, |c1› and |c2› become |Ltotal = L(0, 1 + a1) + L(1 + a1, 1 + a2) + ∙∙∙ + L(1 + an –

2, 1 + an – 1) + L(1 + an – 1, 0)› and |U(V)›, respectively.

Step 5: It is assumed that a quantum gate (D) changes |d› for |d + c1› in c1 ≤ M1, or it
changes |d› for |d + M1 + c2› in the others of c1.

Step 6: It is assumed that a quantum gate (E1) doesn’t changes |e› in d ≤ M1 or M1 +
U(V(Y = 1)) ≤ d ≤ M1 + U(V(Y = ((n – 1)!/4) – 2)), or it changes |e› for |e + 1› in the

others of d. As the target state for |e› is 0, (PI) and (IM) act on |e›. The number of the

data that is included in d ≤ M1 or M1 + U(V(Y = 1)) ≤ d ≤ M1 + U(V(Y = ((n – 1)!/4) –
2)) is W1 ≈ (n – 1)!/4. [→ See Appendix-3] When K1 is 2 that is (W0/W1)1/2 ≈ 2, the
total number that (PI) and (IM) act on |e› is K1 = 2. Next, (OB) observes |e›, and the

data of W1 remain.

Quantum Algorithm for Traveling Salesman Problem by Quarter Method 715

Similarly, (Ei) [2 ≤ i ≤ g – 1. i is the integer.] doesn’t change |e› in d ≤ M1 or M1 +
U(V(Y = 1)) ≤ d ≤ M1 + U(V(Y = ((n – 1)!/4i) – 2)), or it changes |e› for |e + 1› in the

others of d. As the target state for |e› is 0, (PI) and (IM) act on |e›. The number of the
data that is included in d ≤ M1 or M1 + U(V(Y = 1)) ≤ d ≤ M1 + U(V(Y = ((n – 1)!/4i) –
2)) is Wi ≈ (n – 1)!/4i. When Ki is 2 that is (Wi – 1/Wi)1/2 ≈ 2, the total number that (PI)
and (IM) act on |e› is Ki = 2. Next, (OB) observes |e›, and the data of Wi remain. These
actions are repeated sequentially from 2 to g – 1 at i.

(Eg) doesn’t change |e› in d ≤ M1, or it changes |e› for |e + 1› in the others of d. As the
target state for |e› is 0, (PI) and (IM) act on |e›. The number of the data that is included
in d ≤ M1 is Wg

 ≈ 2. When Kg is 2 that is (Wg – 1/Wg)1/2 ≈ 2, the total number that (PI)
and (IM) act on |e› is Kg = 2. Next, (OB) observes |a1›, |a2›, ∙∙∙ , |an – 1›, |b1›, |b2›, ∙∙∙ , |bn

– 1›, |c1›, |c2›, |d›, and |e›, and one of the data of Wg remains.

Therefore, one example of routes that are Ltotal ≤ M1 is obtained.

Step 7: When the state of |e› is 0 or 1, M1 is assumed to be M2 [< M1] or M2 [> M1],
respectively, these computations from step 1 to step 7 are repeated. It is assumed that
the minimum distance Mmin obtains by repeating about log2 (n – 1)! [12].

An example is shown as the next section. However, this algorithm is applied as far as
the effect of Grover’s database search and Shor’s data decrease.

4. NUMERICAL COMPUTATION

It is assumed that there are n = 10, P0(0, 0), P1(1, – 2), P2(3, – 1), P3(4, 1), P4(2, 3),
P5(1, – 1), P6(3, – 2), P7(4, 0), P8(0, 1), P9(2, 2), L(0, 2) ≈ 3.2, L(0, 5) ≈ 1.4, L(0, 8) =
1, L(0, 3) ≈ 4.1, L(0, 7) = 4, L(1, 5) = 1, L(1, 4) ≈ 5.1, L(2, 6) = 1, L(3, 7) = 1, L(3, 1)
≈ 4.2, L(3, 9) ≈ 2.2, L(4, 9) = 1, L(4, 6) ≈ 5.1, L(4, 2) ≈ 4.1, L(5, 9) ≈ 3.2, L(6, 1) = 2,
L(6, 8) ≈ 4.2, L(7, 2) ≈ 1.4, L(7, 5) ≈ 3.2, L(7, 8) ≈ 4.1, L(8, 4) ≈ 2.8, L(8, 7) ≈ 4.1,

L(8, 3) = 4, L(9, 3) ≈ 2.2, L(9, 2) ≈ 3.2, L(9, 4) = 1 [The value of the others of L(i, j) is
10M1.], g = 9 [9!/2 = 181440 ≤ 49 = 262144], U(V(Y = 1)) = 6053444, U(V(Y = (9!/4)
– 2 = 90718)) = 95584572 [for example, Y = 90718 = 2∙8! + 1∙7! + 6∙6! + 5∙5! + 4∙4! +

3∙3! + 2∙2! +0∙1!, U(V(Y = 90718)) = 95584572 = 2∙98 + 1∙97 + 8∙96 + 7∙95 + 6∙94 +
5∙93 + 3∙92 + 4∙91 + 0∙90], [→ See Appendix-1] U(V(Y = (9!/16) – 2 = 22678)) =
26275564, U(V(Y = (9!/64) – 2 = 5668)) = 10598756, U(V(Y = (9!/256) – 2 ≈ 1416))

= 6894596, U(V(Y = (9!/1024) – 2 ≈ 352)) = 6198348, U(V(Y = (9!/4096) – 2 ≈ 87)) =

716 Toru Fujimura

6073748, U(V(Y = (9!/16384) – 2 ≈ 20)) = 6055548, U(V(Y = (9!/65536) – 2 ≈ 4)) =

6053532, and M1 = 20.

First of all, |a1›, |a2›, ∙∙∙ , |a9›, |b1›, |b2›, ∙∙∙ , |b9›,|c1›, |c2›, |d›, and |e› are prepared. When
F is the minimum integer that is log2 (4(n – 1)) = log2 (4∙9) ≈ 5.170 ≤ 6 = F, each of
|ah› that h is the integer from 1 to 9 is consisted of F = 6 qubits. States of |a1›, |a2›, ∙∙∙ ,
|a9›, |b1›, |b2›, ∙∙∙ , |b9›, |c1›, |c2›, |d›, and |e› are a1, a2, ∙∙∙ , a9, b1, b2, ∙∙∙ , b9, c1, c2, d, and
e, respectively.

Step 1: Each qubit of |a1›, |a2›, ∙∙∙ , |a9›, |b1›, |b2›, ∙∙∙ , |b9›, |c1›, |c2›, |d›, and |e› is set |0›.

Step 2: H acts on each qubit of |a1›, |a2›, ∙∙∙ , |a8›, and |a9›. It changes them for

entangled states. The total states are (2F)n-1 = (26)9 = 649.

Step 3: (B) changes |b1›, |b2›, ∙∙∙ , |b8›, and |b9› for |1 + b1›, |1 + b2›, ∙∙∙ , |1 + b8›, and |1
+ b9› in ah = 0, 1, ∙∙∙ , 7, and 8, respectively. This action repeats from |a1› to |a9›.

As the target state for |b1› is 1, (PI) and (IM) act on |b1›. When G1 is 2 that is (4(n – 1)

n – 2/(n – 2) n – 2))1/2 = (4∙98/88)1/2 = 2(9/8)4 ≈ 2, the total number that (PI) and (IM) act
on |b1› is G1 = 2. Next, (OB) observes |b1›. Therefore, only the routes that contain 1
piece of 0 remain. The number of data is (n – 1)(n – 2) n – 24n – 2 = 9∙88∙48.

As the target state for |b2› is 1, (PI) and (IM) act on |b2›. When G2 is 2 that is (4(n – 2)

n – 3/(n – 3) n – 3)1/2 = 2(8/7)7/2 ≈ 2, the total number that (PI) and (IM) act on |b2› is G2
= 2. Next, (OB) observes |b2›. Therefore, only the routes that contain 1 piece of 1
remain. The number of data is (n – 1)(n – 2)(n – 3) n – 34n – 3 = 9∙8∙77∙47.

Similarly, these actions are repeated sequentially from |b3› to |b9› with Gi [3 ≤ i ≤ n – 1
= 9. i is the integer.]. Only the routes that contain 1 piece of number from 0 to 8,
respectively, remain. The number of data is (n – 1)! = 9! [= W0].

Step 4: (C1) changes |c1› and |c2› for |c1 + L(0, 1 + a1) + L(1 + a1, 1 + a2)› and |c2 +
98a1 + 97a2›, respectively, from |a1› and |a2›.

Similarly, (Ci) [2 ≤ i ≤ 7. i is the integer.] changes |c1› and |c2› for |c1 + L(1 + ai, 1 + ai

+ 1)› and |c2 + 910 – (i + 2)ai + 1›, respectively, from |ai› and |ai + 1›. This action is repeated

sequentially from |a2› to |a7›.

(C8) changes |c1› and |c2› for |c1 + L(1 + a8, 1 + a9) + L(1 + a9, 0)› and |c2 + 90a9›,

respectively, from |a8› and |a9›.

Quantum Algorithm for Traveling Salesman Problem by Quarter Method 717

Therefore, |c1› and |c2› become |Ltotal = L(0, 1 + a1) + L(1 + a1, 1 + a2) + ∙∙∙ + L(1 + a8,
1 + a9) + L(1 + a9, 0)› and |U(V)›, respectively.

Step 5: (D) changes |d› for |d + c1› in c1 ≤ M1 = 20, or it changes |d› for |d + 20 + c2› in

the others of c1.

Step 6: (E1) doesn’t change |e› in d ≤ M1 = 20 or M1 + U(V(Y = 1)) = 20 + 6053444 =
6053464 ≤ d ≤ M1 + U(V(Y = ((n – 1)!/4) – 2 = (9!/4) – 2 = 90718)) = 20 + 95584572
= 95584592, or it changes |e› for |e + 1› in the others of d. As the target state for |e› is

0, (PI) and (IM) act on |e›. The number of the data that is included in d ≤ 20 or
6053464 ≤ d ≤ 95584592 is W1 ≈ 9!/4. When K1 is 2 that is (W0/W1)1/2 ≈ (9!/(9!/4))1/2 =
2, the total number that (PI) and (IM) act on |e› is K1 = 2. Next, (OB) observes |e›, and

the data of W1 remain.

Similarly, (Ei) [2 ≤ i ≤ g – 1 = 8. i is the integer.] doesn’t change |e› in d ≤ 20 or
6053464 ≤ d ≤ 20 + U(V(Y = (9!/4i) – 2)), or it changes |e› for |e + 1› in the others of d.
As the target state for |e› is 0, (PI) and (IM) act on |e›. The number of the data that is
included in d ≤ 20 or 6053464 ≤ d ≤ 20 + U(V(Y = (9!/4i) – 2)) is Wi ≈ 9!/4i. When Ki
is 2 that is (Wi – 1/Wi)1/2 ≈ ((9!/4i-1)/(9!/4 i))1/2 = 2, the total number that (PI) and (IM)
act on |e› is Ki = 2. Next, (OB) observes |e›, and the data of Wi remain. These actions
are repeated sequentially from 2 to g – 1 = 8 at i.

(E9) doesn’t changes |e› in d ≤ 20, or it changes |e› for |e + 1› in the others of d. As the
target state for |e› is 0, (PI) and (IM) act on |e›. The number of the data that is included
in d ≤ 20 is W9

 ≈ 2. When K9 is 2 that is (W8/W9)1/2 ≈ ((9!/48)/(9!/49))1/2 = 2, the total
number that (PI) and (IM) act on |e› is K9 = 2. Next, (OB) observes |a1›, |a2›, |a3›, |a4›,

|a5›, |a6›, |a7›, |a8›, |a9›, |b1›, |b2›, ∙∙∙ , |b9›, |c1›, |c2›, |d›, and |e›, and one of the data of
W9 remains. For example, when a1, a2, a3, a4, a5, a6, a7, a8, a9, b1, b2, ∙∙∙ , b9, c1, c2, d,
and e are 4, 0, 5, 1, 6, 2, 7, 3, 8, 1, 1, ∙∙∙ , 1, 18, U(V(Y = 163491)) = 174944564, 18,
and 0, respectively.

Step 7: In the example, the state of |e› is 0. Therefore, M1 is assumed to be M2 = 15 [<
18 < M1 = 20], and these calculations from step 1 to step 7 are repeated. It is assumed
that the state of |e› is 0. When the states of |e› is 1 at M3 = 10, M4 = 13, and M5 = 14,
the minimum distance Mmin is 15 [= M2].

Therefore, a1, a2, a3, a4, a5, a6, a7, a8, a9, b1, b2, ∙∙∙ , b9, c1, c2, d, and e are 4, 0, 5, 1, 6,
2, 8, 3, 7, 1, 1, ∙∙∙ , 1, 15, U(V(Y = 163493)) = 174944644, 15, and 0, respectively. As a
result, the shortest route P0 → P5 → P1 → P6 → P2 → P7 → P3 → P9 → P4 → P8 →

718 Toru Fujimura

P0 is obtained. And then, P0 → P8 → P4 → P9 → P3 → P7 → P2 → P6 → P1 → P5 →

P0 is the another answer.

5. DISCUSSION AND SUMMARY

In the example of section 4, the computational complexity of this quantum algorithm
[= S] is 680. The computational complexity of the classical computation [= Z] is (n –
1)!/2 = 9!/2 = 181440. After all, S/Z becomes about 1/267.

In general, S becomes the following. In the order of the actions by the gates, the
number of them is F(n – 1) at H, n – 1 at (B), Σi = 1 → n – 1 Gi = 2(n – 1) at (PI) and
(IM), (n – 1) at (OB), n – 1 at (Ci) [1 ≤ i ≤ n – 1. i is the integer.], 1 at (D), g at (Ei) [1
≤ i ≤ g. i is the integer.], Σi = 1 → g Ki = 2g at (PI) and (IM), and g at (OB). These
processes repeated about log2 (n – 1)!. Therefore, S becomes (F(n – 1) + 7n – 6 +
4g)log2 (n – 1)!.

When n is large enough, S becomes about 3(log2 (n – 1))2(n – 1)2, where F is about
log2 (4(n – 1)), g is about (1/2)((log2 (n – 1)!) – 1), and n! is about nne-n(2πn)1/2
[Stirling’s formula], and S/Z is about 3(log2 (n – 1))2(n – 1)2/((n – 1)!/2). For example,
as for n = 50, S/Z is about 1/1057. Therefore, a decreased process becomes possible.

I hope that this result will be confirmed by many experiments.

APPENDIX-1 [13]

U[X] [X is the number of datum.] is the number of the repeated permutation of (n – 1)n

– 1 type, and V(Y) [Y is the number of datum.] is the number of permutation of (n – 1)!
type.

Therefore, in (n – 1)! type, the numbers of permutation from first to ((n – 1)!/4) – 2
are, in (n – 1)n – 1 type, the numbers of permutation from U(V(Y = 1)) to U(V(Y = ((n –
1)!/4) – 2)), because a number of combinations of answers is at least 2. The order of
numbers of permutation from 1 to about (n – 1)!/4 converged the probability
amplitudes by the Appendix-3. And then, this process is repeated.

Where, the examples of U[X] = U(V(Y)) are shown at the section 4.

Quantum Algorithm for Traveling Salesman Problem by Quarter Method 719

Example-1:

Y = 1 = (v1 = 0)8! + (v2 = 0)7! + (v3 = 0)6! + (v4 = 0)5! + (v5 = 0)4! + (v6 = 0)3! + (v7 =
0)2! + (v8 = 1)1!.

Therefore, 0, 1, 2, 3, 4, 5, 6, 7, 8 ⇒ from (I), v1 = v2 = v3 = v4 = v5 = v6 = v7 = 0 → t1 = 0,
t2 = 1, t3 = 2, t4 = 3, t5 = 4, t6 = 5, t7 = 6; 7, 8 ⇒ from (IV), v8 = 1 → t8 = 7, t9 = 8.

And then, U(V(Y = 1)) = (t1 = 0)98 + (t2 = 1)97 + (t3 = 2)96 + (t4 = 3)95 + (t5 = 4)94 + (t6 =
5)93 + (t7 = 6)92 + (t8 = 7)91 + (t9 = 8)90 = 6053444.

Example-2:

Y = (9!/4) – 2 = 90718 = (v1 = 2)8! + (v2 = 1)7! + (v3 = 6)6! + (v4 = 5)5! + (v5 = 4)4! +
(v6 = 3)3! + (v7 = 2)2! + (v8 = 0)1!.

Therefore, 0, 1, 2, 3, 4, 5, 6, 7, 8 ⇒ from (III), v1= 2 → t1 = 2; 0, 1, 3, 4, 5, 6, 7, 8 ⇒
from (III), v2 = 1 → t2 = 1; 0, 3, 4, 5, 6, 7, 8 ⇒ from (III), v3 = 6 → t3 = 8; 0, 3, 4, 5, 6,
7 ⇒ from (III), v4 = 5 → t4 = 7; 0, 3, 4, 5, 6 ⇒ from (III), v5 = 4 → t5 = 6; 0, 3, 4, 5 ⇒
from (III), v6 = 3 → t6 = 5; 0, 3, 4 ⇒ from (II), v7 = 2, v8 = 0 → t7 = 3, t8 = 4, t9 = 0.

And then, U(V(Y = (9!/4) – 2 = 90718)) = (t1 = 2)98 + (t2 = 1)97 + (t3 = 8)96 + (t4 = 7)95

+ (t5 = 6)94 + (t6 = 5)93 + (t7 = 3)92 + (t8 = 4)91 + (t9 = 0)90 = 95584572.

APPENDIX-2

It is assumed that the state of |bi› is 1, and there is log2 (4k) ≤ F. [→ 4k ≈ 2F] When
the probability amplitudes of state of 1 are marked a minus, the mean of probability
amplitudes becomes ((2F)–1/2(2F – k) – (2F)–1/2k)/2F = (1 – (2k/2F))(2F)–1/2 ≈

(1/2)(4k)–1/2.

When the inversion about mean is practiced, the probability amplitudes of state of 1
are – (– (2F)–1/2) + (1 – (2k/2F))(2F)–1/2×2 = (3 – (4k/2F))(2F)–1/2 ≈ 2(4k)–1/2, and the
probability amplitude of state of 0 are

(2F)–1/2 – ((2F)–1/2 – (1 – (2k/2F))(2F)–1/2)×2 = (1 – (4k/2F))(2F)–1/2 ≈ 0.

Therefore, the sum of square of probability amplitude is

((3 – (4k/2F))(2F)–1/2)2k + ((1 – (4k/2F))(2F)–1/2)2(2F – k) ≈ 4(4k)–1k + 02(4k – k) = 1.

720 Toru Fujimura

After all, the data of state of 1 [(4k)/4 → k] remain [3, 6, 7, 10]. [This is a quarter
method-1.]

APPENDIX-3

It is assumed that the number of data is N, the value of data of N/4 is R, and values of
data of 3N/4 are the others. When the probability amplitudes of data of R are marked a
minus, the mean of probability amplitudes becomes

(N – 1/2(3N/4) – N – 1/2(N/4))/N = (1/2)N – 1/2.

When the inversion about mean is practiced, the probability amplitudes of data of R
are – (–N – 1/2) + (1/2)N – 1/2×2 = 2N – 1/2, and the probability amplitude of data of
others are N – 1/2 – (N – 1/2 – (1/2)N – 1/2)×2 = 0.

Therefore, the sum of square of probability amplitude is

(2N – 1/2)2(1/4)N + 02(3/4)N = 1 + 0 = 1.

After all, the data of N/4 of R remain [3, 6, 7, 10, 11, 13]. [This is a quarter method-2.]

When this process is repeated, the number of data decreases and the probability
amplitudes of necessary data increase.

REFERENCES

[1] Ono, K., Mori, T., and Moriyama, S., 2019, “High-temperature operation of a
silicon qubit,” Sci. Rep., 9, 469, DOI: 10.1038/ s41598-018-36476-z.

[2] Deutsch, D., and Jozsa, R., 1992, “Rapid solution of problems by quantum
computation,” Proc. Roy. Soc. Lond. A, 439, 553-558.

[3] Takeuchi, S., 2005, Ryoshi Konpyuta (Quantum Computer), Kodansha, Tokyo,
Japan [in Japanese].

[4] Miyano, K., and Furusawa, A., 2008, Ryoshi Konpyuta Nyumon (An
Introduction to Quantum Computation), Nipponhyoronsha, Tokyo, Japan [in
Japanese].

[5] Shor, P. W., 1994, “Algorithms for quantum computation: discrete logarithms
and factoring,” Proc. 35th Annu. Symp. Foundations of Computer Science,
IEEE, pp.124-134.

[6] Grover, L. K., 1996, “A fast quantum mechanical algorithm for database

Quantum Algorithm for Traveling Salesman Problem by Quarter Method 721

search,” Proc. 28th Annu. ACM Symp. Theory of Computing, pp.212-219.
[7] Grover, L. K., 1998, “A framework for fast quantum mechanical algorithms,”

Proc. 30th Annu. ACM Symp. Theory of Computing, pp.53-62.
[8] Ambainis, A., 2008, “Quantum walks and their algorithmic applications,” http://

arXiv. org/ quant-ph/ arXiv: quant-ph/ 0403120v3.
[9] Bennett, C. H., Bernstein, E., Brassard, G., and Vazirani, U., 1996, “Strengths

and weaknesses of quantum computing,” http:// arXiv. org/ quant-ph/ arXiv:
quant-ph/ 9701001v1.

[10] Fujimura, T., 2020, “Quantum algorithm for maximum integer multiple-choice
generalized knapsack problem by hybrid method of Grover’s database search

and Shor’s data decrease,” Glob. J. Pure Appl. Math., 16, 643-651.
[11] Fujimura, T., 2013, “Quantum algorithm for traveling salesman problem by

numbering method,” Glob. J. Pure Appl. Math., 9, 545-551.
[12] Durr, C., and Hoyer, P., 1996, “A quantum algorithm for finding the minimum,”

http:// arXiv. org/ quant-ph/ arXiv: quant-ph/ 9607014v2.
[13] Fujimura, T., 2020, “Quantum algorithm for longest path problem by hybrid

method of Grover’s database search and Shor’s data decrease,” Adva. Theo.

Appl. Math., 15, 1-10.

722 Toru Fujimura

