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Abstract
In this paper, a class of analytic functions f defined on the open unit disc
satisfying
2

' . 2
Reldeie| 14| 22 4 1L 5o 22 (2) 4
y{ T(@ y( f(@
is studied, among other results, inclusion relations and applications involving a
certain class of integral operator are also considered.
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INTRODUCTION

Let A denote the class of all analytic function of the form

in the open unit disc U = { z:2eC|z|< 1}. Let S be the subclass of A consisting

f(z):z+ianz" (1.1)
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of univalent functions in U . We say that the function f is convex when f(U) isa
convex set. Also, we say that a function f is starlike with respect to the origin when
f(U) is a starlike set with respect to 0. By K or S° we denote the subclasses of A
consisting of all functions which are convex or starlike respectively, while by S'(5)

we denote the class of starlike functions of order &, 0 € [0,1).

In 1991, Goodman [7] introduced the class UCV of uniformly convex functions. A
function f e CV is the class UCV if for every circular are & < U, with center in

U, the arc f (&) is convex. A more useful characterization of class UCV was given
by Ma and Minda [11] (see also [17]) as:

7 (2)
()| f (@

In 1999, Kanas and Wisniowska [8] (see also [9]) introduced the class of k -uniformaly
convex functions, k>0, denoted by k-UCV and the class k-ST related to Kk -
UCV by Alexandar type relation, i.e.,

feUCVes f eA and Re[l+2f (Z)} . (zeU).

7" (2)
f (2) f (2)

In [8] and [9] respectively, their geometric definitions and connections with the conic

fek—UCVezf ek—STe feA and Re[1+Zf (Z)]>k . (zeU).

domains were also considered. For a fixed k>0, the class k-UCV is defined purely
geometrically as a subclass of univalent functions which map the intersection of U
with any disk centered at £,|{ |[<k, onto a convex domain. The notion of k -uniform
convexity is a natural extension of the classical convexity. Observe that, if k =0 then
the center ¢ 1s the origin and the class k -UCV reduces to the class kV .
Moreover for k =1 it coincides with the class of uniformly convex functions UCV
introduced by Goodman [7] and studied extensively by R @ nning [17] and
independently by Ma and Minda [11]. The class k -UCV started much earlier in
papers [5, 6] with some additional conditions but without the geometric
interpretation.

We say that a function f € A isin the S;y, k >0,y € C\{0}, if and only if

Re 1+E o (Z)—l >k1 Al (Z)—l . (zeU).
r\ (@) r| T(2)
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A lot of authors investigated the properties of the class S;J and their generalizations

in several directions, e.g., see [1, 2, 6,9, 15, 17, 19]. An analytic function f is said to
be subordinate to an analytic function g (writtenas f < g) if and only if there exists

an analytic function @ with
w(0)=0 and |w(z)|<1l for zeU
such that
f(z) = g(w(z2)) for zeU.
In particular, if g is univalent in U , we have the following equivalence
f<g< f(0)=9g(0) and f(U)cg).

The convolution or Hadamard product of two functions of class A 1is denoted and
defined by

(f*g)(2)=12 +ianbnz",
n=2

where f has the form (1.1) and

9(z2)=z+>p,z" zeU.
n=2

Let us consider the following second-order linear homogeneous differential equation
(see for details [3] and [4]):

220 (2)+bzew (z)+[d22—v2+(1—b)v]co(z)=0 (v,b,deC). (1.2)

The function @, 4(2), which is called the generalized Bessel function of the first kind
of order Vv, itis defined as a particular solution of (1.2). The function @, ,(z) has the

familiar representation as

0us@=3— V2] ey (13)
n=°n!1“( ]

Vn+——
2

Here I' stands for the Euler gamma function. The series (1.3) permits the study of
Bessel, modified Bessel, and spherical Bessel function altogether. It is worth
mentioning that, in particular:

i) For b=d =1 in (1.3), we obtain the familiar Bessel function of the first kind
of order u
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defined by

1= - (1) 1)@ (z€C). (1.4)

il v+n+

ii) For b=1 and d =-1 in (1.3), we obtain the modified Bessel function of the
first kind of order v defined by

© ( l) 7 2n+v
,(2) = nznll“(v+n+1)(§] (zeC). (1.5)

iii) For b=2 and d =1 in (1.3), the function @,,,(z) reduces to %SV(Z) ,
T

where S, is the spherical Bessel function of the first kind of order v, defined

by

n0n|r

(_1)n 7 2n+v
S,(2)= Z (—) (zeC). (1.6)
V2 (v+ n+§) 2

Now, consider the function u,, ,(z):C — C, defined by the transformation
v b+1) =
uv,b,d (Z) = 2 r V+T z 2 a)v,b,d (\/E) (17)

By using the well-known Pochhammer symbol (or the shifted factorial) (1), defined,
for A, ue€C and interms of the Euler I" function, by

() = TA+A) 1 (1 =0;4€CHOY),
ueT (1) - A(A+1)---(A+n=1) (u=neN;1eC),

and (1), =1, we obtain for the function u,, ,(z) the following representation

=)
Uypg(2) = Z

n>0( b+1) n’
v+

2 n
b+1

where k = V+T¢O —1,-2,.... This function is analytic on C and satisfies the



Bessel Function with Linear Differential Operator 627

second order linear differential equation
472y (z)+2(2v+b+1)zu' (z)+dzu(z)=0.

Now, we introduce the function ¢, (z) defined in terms of generalized Bessel

function @, , ,(2), defined by

Py (2) =2U,,4(2)

= ZVF(V + b7+1]21—2 @y 4 (2)

n n+1

Z . where k = v+b—Jrl
=) 4" '(k) 2

=g(k,d,z)

Motivated by Selvaraj and Karthikeyan [14], we define the following
D} (k,d)f(z):U ->U by

D,(k,d)f(z) = f(2)*g(k,d,2) (1.8)
D} (k,d) f (2)=(1-2)(f (2)*g(k,d, 2) 1+ 22(f (2)*g(k,d,2)) (1.9)
D" (k,d) f (z) = D} (DI (k,d) f (2)) (1.10)

If feA,then from (1.9)and (1.10) we may easily deduce that

DI'(k,d) f(z) = z+ Z(1+(n -)2)"(=d)"a,2"

= AT (=-DUK),, (0

where me NOZNU{O} and 120.

It can be easily verified from definition of (1.11) that

iz(D?(k,d)f(z)) Dm+1(k d) f (2)-(1-4)D}' (k,d) f (2) (1.12)
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In the special cases of the DJ'(k,d) f (z), we obtain the following operators related to

the Bessel function;

i) Choosing m=0 in (1.11) we get the Deniz operator

BE == Z+i (-d)a,z"
“ 4 (n-1)1K),,

ii) Choosing m=0 and b=d =1 in (1.11) we obtain the operator J,:A—> A
related with Bessel function, defined by

_ - (_:l-)n_l“::,'nzn
D=2+ Y i )

iii) Choosing m=0, b=1 and d=-1 in (1.11) we obtain the operator
J, :A — A related with modified Bessel function, defined by

% (1)"a,z"
I 2 =2 +Zz: A" (n-1)(v+1),,

iv) Choosing m=0, b=2 and d=1 in (1.11) we obtain the operator
S, :A— A related with spherical Bessel function, defined by

- (_1) i an A "

S, f(0)=z+), N
"2 4" (n-1)! (v+ 2)

Definition 1.1 A function f(z)eA is in the class S*(a,ﬁ,y), y € C\{0} if and
only if

2

: : 2
i, 1 2 (2) 1] zf (2)
Re{e 1+7[f(z) 1] +4 > y[f(z) 1} . (1.13)
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Remark 1 The above differential inequality can be equivalently written as

1+;[ Z‘; ((ZZ)) —1]<e_i“(h(z) cosar+isina)=K , (2).

2

(z+0)

1+ 2
p .2 1+ @) ,e:[e"-lj B

where h(z) =1-—-—+—| log o +1 "~ 2c0sa

cos’a 7« 1 |z+9)
1+ &)
Definition 1.2 A function f(z)eA isin the class QI'(k,d,a, 3, 7),if and only if

{ei“[l+ %(J(/l, m,k,d, z)—l)]}

z(Dg‘ (k,d)f (z))'
DMk d)f(2)

2 2
v

where

J(2,mk,d,z)= (1.14)

Since K_(z) = ei"‘(h(z) Cosa +1isin a) is a convex univalent function, we can write

Definition 1.1 in subordination form

feQl(k,d,a, p,7)< f eAand J(1,mk,d,z)<K_(z) (zeU).

Special Cases

For =0 and f eQ(k,d,a, f,7) wehave DI (k,d)f(z)eS (. 5.7).

2 PRELIMINARY RESULTS

Lemma 1 [13] Let h be a convex univalent function in U with Re(ﬂh(z)+,u)> 0,
where ©eC,21eC\{0},zeU . If p isanalyticin U with p(0)=h(0), then

2p (2)
p(2)+ /1p(z)+y<h(z)'
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Lemma2[12] Let d be a complex number with Red > 0. Suppose that W :C* > C
is continuous and satisfies the conditions Re W (ix,y) <0, when x is real and

y<(=|d—ix P)/(2Red).

If p is analytic in U with p(0)=d and Re[‘l’(p(z),zp' (Z)):|>O for zeU,

then Re p(z)>0 in U.

Lemma 3 [18] Let f and g be in the class kV and S™ respectively. Then, for
every function F analyticin U , we have

F(2)*9(2)F(2) _
f@)*90) eco[F(U)], zeU,

where a[F(U )], denotes the closed convex hull of the set F(U).

Lemma 4 [16] Let the function ¢(z) given by

#(2)= 38,7

be convex in U . Suppose also that the function h(z) given by

h(z) = ihnzn
n=1

is holomorphic in U . If h(z) <¢(z), zeU ,then |h, [<|B, |, ne N ={,2,3,---}.

3 COEFFICIENT INEQUALITIES

A function f(z)eA is said to be bi-univalent in U if both f(z) and f™(z) are
univalent in U . Let Z denote the class of bi-univalent functions defined in the unit
disk U .

Definition 3.1 Let h:U — C be a convex univalent function such that h(0) =1 and
h(z)=h(z),for zeU and Re(h(z))>0.Afunction f e issaidtobein the class
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S*Z(a, 7),7 € C\{0} if the following conditions are satisfied:

fed, e‘“(1+i(m— D<h(z)003a+isina, zeU (3.1

r\1(2)
and
e‘“{1+1[m—1n<h(w)003a+isina, wel, (3.2)
7 9()

where
g(o) = f'l(a)):w—azwz+(2a§—as)a)3—(5a§—5a2a3+a4)w4+---,ae( 72[ Z)

Definition 3.2 A function fe). given by (1.1) is said to be in the class

Sg((x, y,k,d, h) if the following conditions are satisfied:

1 z(Di“ (k,d)f(z))'

el®| 14~
7| DI'(k.d)f(2)

-1||<h(z)coxx+isinx, zeU (3.3)

and

a1 w(Dj{‘(k,d)g(w))-

7| DY (kd)g(w)

-1||<h(w)cosx+isinx, weU, (3.4)

e
where g(w) = f™(w),y €C\{0},0<1<1,z,weVU on specializing the parameter A

Theorem 1 Let f given by (1.1) be in the class S*Z(a,y),then

|2, [<yl7 1B, [cose

and
|a;[<4]y]| B,|cosa.
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Theorem 2 Let f given by (1.1) be in the class Sg(a,y,k,d,h),then

2|7 B,|cosa

a <
2| (1+2/1)md2_(1+/1)2"‘d2
8(k), 8(k);
and
2
|a3|< 2|7||BI|COSO.’

T (1+24)"d®  (1+A)*"d*
8(k), 8(k);

Proof. It follows from (3.3) and (3.4) that

1 z(D/r{‘(k,d)f(z))

a1t
7| DIM(k.d)f(2)

e

-1||=p(z)cosa+isina, zeU (3.5

and

m
|1 o DY kg (@)) »
7| DR (kd)g(w)

e

=Q(w)cosa+isina, weU, (3.6)

where p(z)<h(z) and q(w)<h(w) have the forms
p(2) =1+ pz+ p,2° +--
and
A(®) =14 g0+ 00" +---
respectively. It follows from (3.5) and (3.6) that
e (1+4)"(=d)

k), a, = p,cosa (3.7)
e« [ @Q@+20)"d?_ ((@+)"=d)) L)
7[ £@'(0, as_( 401K, )%]'p"-“’” 8

—e'" (1+ )" (=d)
y o AMNk),

a, =0, cosa 3.9
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and
2
2

J azj =(,cosa.(3.10)

e (4)(1+2/1)'“d2az_(Z)(1+2/1)md2 _((1+z)m(—d)
y | #Uk), QUK 4(D)N(K),

From (3.7) and (3.9), we obtain
P = =0,
Adding (3.8) and (3.10), we get

g((u 22)"d?  (1+A4)™"d?
y U 8(k), 8(k);

Jag =(p,+0,)cos c. (3.11)

Since p,geh(U), applying Lemma 4, we have

p™ (0)
m!

1P| = <|B), meN (3.12)

(m) 0
| = qTf) <[, meN. (3.13)

Applying (3.12), (3.13) and Lemma 4 for the coefficients p;, p,,q, and (,, we get

2|yl |Bq| cosa
las |< > TR (3.14)
(1+22)™Md*  (1+4)°Md
8(k)2 8(k)?
Subtracting (3.10) from (3.8), we get
e [ (1+24)"d? (1+20)"d? ,
— - =(p,— 3.15

or, equivalently

. :[ y J 8(k) (py—0y)cosa J{ y ]2 (pp+0y)Cosa
37 gl (1+22) Mg 2 ') | @21)Md? (1+2)°Md?

8(k) 87 )
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Applying (3.12), (3.13) and Lemma 4 once again for the coefficients p;, p,,0, and @,

, we get

|a|< 2|]/|2|Bl|COSOC
T (1+20)"d?  (1+4)"d?
8(k), 8(k);

This complete the proof of Theorem 2.

Corollary 1 Let f € A be bi convex function of order g then |a,|<,1-/ and
la;[<1-4.

Corollary 2 Let feA satisfy the condition 1+ Zf, (Z)<h(z) and
f(2)
"’ B,./B
1429 ) _py then |a, < 2 /B, and |a, < = (B,+|B2—BL1]).
g (W) J2| B! +2B, - 2B, | 2

Corollary 3 Let f begivenby (1.1)and g=f~".If f and g satisfies the

condition (1-2)7 (Z)+/1[1+ o (Z)]<h(z)

@) f(2)

and (1—/1)V\©(W)+/1[1+V\©(W)]<g(w),

9(w) g (W)
then
B../B
|la, |< VB, (3.16)
J(@+2) | BZ+(1+ 2)(B,—B,) |
and
2, |SM_ (3.17)

1+ 1
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B, /B,

J2|B?+2B, - 2B, |

Remark 2 Put 2 =1 incorollary 3, we get the result |a, |[< and

a sl B,+|B2-B1|) of corollary 2.
3 2 1

4 CLOSURE PROPERTY
Theorem 3 Let

F(A,mk,d, f(2)) = D" (k,d)f (2). (4.1)
Then f eQ"(k,d,a,/,y) ifand onlyif F(1,mk,d, f(2))eS (o, £,7).
Proof. Let F(4,m,k,d, f(z)) e S™(, 8,7), then

2

' 2
Re eia[Hl(zF (ﬂ,m,k,d,f(z))(z)_lj] +p>

1 ZF amkd, f@)@) _,
ry| F(A,mk.d, f(2))

y|  F(A,mk,d,f(z2))

(4.2)
Thus (4.1) together with (4.2) implies

{eia(1+]1/(3(/1,m,k,d,z)—l))}

where J(4,m,k,d,z) is given by (1.14). Therefore f(z)eQr(k,d, e, f3,7) .

Converse is immediate.

2

Re

2
+ > ‘ ,

1(J(;t,m,k,ol,z)—l)
4

Theorem4 For m>1, Q™(k,d,a,8,7)cQl(k,d, e, S.7).

Proof. Let f eQ™'(k,d, e, f3,7) and

z(Dg‘ (k,d)f (z))
D7 (k.d)f(2)

=p(2), (4.3)

where p is analyticin U and p(0)=1.
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From (1.12) and (4.3) and after some simplification, we obtain

D" (k. d)f(2)
D' (k,d)f(2)

= Ap(2)+(1-A). (4.4)

By logarithmic differentiation of (4.4), we have

z(Dg‘”(k,d)f(z))

i Lo 4.5
D?ﬂ(k,d)f(Z) p(2)+(1—/1)+lp(z)' (4.5)
Since fEQ/rlnﬂ(k,d,O(,,B,)/),so
@+ @ (o),

(1-24)+4p(2)
Thus by using Lemma 1, p(z) <K_(z) and hence f € QJ (k, d,a, S, 7/).
Let us consider the Bernardi integral operator F, given by

F,f(z)= “Z—J;l Iozt“‘lf (t)dt. (4.6)

For x4 with Reu>-1 the operator has the property F,:A— A, (see, for instance,
[10], p.11).
Theorem5 Let x>-1 and feQl(k,d,a f,7), then F,feQl(k,d,e, f,7).

Proof. Let f eQl'(k,d,e,f3,7) and

z(D?(k,d)Fﬂ(f)(z))'

D7 (k.d)F, (1))

=p(2), 4.7)

where the function p(z) is analyticin U and p(0)=1. From (4.6), we have

F,, () @+ ,(D@=() T @

and so

Z(Dg‘(k,d)Fﬂ(f)(z))':(y+1)(D£1n(k,d)f(z)—y(Dg‘(k,d)Fﬂ(f)(z)). (4.8)
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Then, by using equations (4.7) and (4.8), we obtain

(u+1)(D; (k,d) f (2)
Dy (k.d)F,(f)(2)

= p(2)+u (4.9)

By logarithmic differentiation of(4.9), we have
_ zp

/DM (k,d)f(2)]
(o7 ) =p(@+ S (2

D7 (k.d)f(2) p(2)

Hence by Lemmal, we conclude that p(z)<K_(z) in U which implies that
F,f lel"(k,d,a,,B,y).

Theorem 6  Let feQ(k,dafBy) and wekv . If 0<y<1 , then
l,y*feQ;“(k,d,a,ﬁ,y/).

Proof. Let F=yxf . If feQ(k,d,a,/f3,y) then the condition (4.3) is satisfied
with p < K_(z). Using the usual convolution properties and (4.3),

z(D?(k,d)F(z))'
DY (k,d)F(2)

p(z)=

P kaweh)

DMk )

) z(W*Dg‘ (k,d)f)'

y*DY (k,d)f

_W*Z(D/rln(k,d)f)'

y*DY (k,d)f

v P@F@) 40
y*F(2)
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By Theorem(3), the function F(z) =D] (k,d)f(z) e S*(a,ﬂ, 7/).
Hence, by Lemma (3) , we have
z(Dg‘(k,d)F(z))'
DY (k.d)F(2)

eco[F(U)lcK , (2).

Since K_(z) is a convex univalent and p(z) <K_(z).

Hence F=y=x* f eQ;"(k,d,a,ﬂ,y).
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