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Abstract 

In this paper, a class of analytic functions f  defined on the open unit disc 
satisfying  
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is studied, among other results, inclusion relations and applications involving a 
certain class of integral operator are also considered.  

Keywords: Analytic function, univalent function, starlike function, convex 
function, subordination, bessel function  
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1  INTRODUCTION 

Let A  denote the class of all analytic function of the form  
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in the open unit disc  1|<:|:= zzzU C . Let S  be the subclass of A  consisting 
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of univalent functions in U . We say that the function f  is convex when )(Uf  is a 
convex set. Also, we say that a function f  is starlike with respect to the origin when 

)(Uf  is a starlike set with respect to 0. By K  or *S  we denote the subclasses of A  

consisting of all functions which are convex or starlike respectively, while by )(S*   
we denote the class of starlike functions of order  0,1,  . 

 

In 1991, Goodman [7] introduced the class UCV of uniformly convex functions. A 
function CVf  is the class UCV  if for every circular are U , with center in 
U , the arc )(f  is convex. A more useful characterization of class UCV was given 
by Ma and Minda [11] (see also [17]) as:  
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In 1999, Kanas and Wisniowska [8] (see also [9]) introduced the class of k -uniformaly 
convex functions, 0k , denoted by k - UCV  and the class k - ST  related to k -
UCV  by Alexandar type relation, i.e., 
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In [8] and [9] respectively, their geometric definitions and connections with the conic 
domains were also considered. For a fixed 0k , the class k -UCV  is defined purely 
geometrically as a subclass of univalent functions which map the intersection of U  
with any disk centered at k||,  , onto a convex domain. The notion of k -uniform 
convexity is a natural extension of the classical convexity. Observe that, if 0=k  then 
the center   is the origin and the class      k - UCV  reduces to the class Vk . 
Moreover for 1=k  it coincides with the class of uniformly convex functions UCV  
introduced by Goodman [7] and studied extensively by R ø nning [17] and 
independently by Ma and Minda [11]. The class k - UCV  started much earlier in 
papers    [5, 6] with some additional conditions but without the geometric 
interpretation.  

We say that a function Af  is in the {0}\0,,*

, CS   kk , if and only if  
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A lot of authors investigated the properties of the class *

,kS  and their generalizations 

in several directions, e.g., see [1, 2, 6, 9, 15, 17, 19]. An analytic function f  is said to 
be subordinate to an analytic function g  (written as gf  ) if and only if there exists 
an analytic function   with 

 Uzforzand 1|<)(|0=(0)   

such that 

 .))((=)( Uzforzgzf   

In particular, if g  is univalent in U , we have the following equivalence  

 ).()((0)=(0) UgUfandgfgf   

The convolution or Hadamard product of two functions of class A  is denoted and 
defined by  
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where f  has the form (1.1) and  
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Let us consider the following second-order linear homogeneous differential equation 
(see for details [3] and [4]): 

 ).,,(0=)()(122)()(2 C




  dbvzvbvdzz'bzz''z   (1.2) 

The function )(,, zdbv , which is called the generalized Bessel function of the first kind 

of order v , it is defined as a particular solution of (1.2). The function )(,, zdbv  has the 

familiar representation as 
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Here   stands for the Euler gamma function. The series (1.3) permits the study of 
Bessel, modified Bessel, and spherical Bessel function altogether. It is worth 
mentioning that, in particular:   

i) For 1== db  in (1.3), we obtain the familiar Bessel function of the first kind 
of order u    
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defined by  
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ii) For 1=b  and 1= d  in (1.3), we obtain the modified Bessel function of the 
first kind of order v  defined by  
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iii) For 2=b  and 1=d  in (1.3), the function )(,, zdbv  reduces to )(
2

zvS


, 

where vS  is the spherical Bessel function of the first kind of order v , defined 
by  
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Now, consider the function CC:)(,, zu dbv , defined by the transformation 
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By using the well-known Pochhammer symbol (or the shifted factorial) )(  defined, 

for C,  and in terms of the Euler   function, by 
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and 1=)( 0 , we obtain for the function )(,, zu dbv  the following representation 
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where 2,1,0,
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vk . This function is analytic on C  and satisfies the 
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second order linear differential equation  
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Now, we introduce the function )(,, zdbv  defined in terms of generalized Bessel 

function )(,, zdbv , defined by  
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Motivated by Selvaraj and Karthikeyan [14], we define the following 
UUzfdkDm :)(),(  by  
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If Af , then from (1.9) and (1.10) we may easily deduce that  
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where  0=0  NNm  and 0 . 

It can be easily verified from definition of (1.11) that  
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In the special cases of the )(),( zfdkDm

 , we obtain the following operators related to 
the Bessel function:   

i) Choosing 0=m  in (1.11) we get the Deniz operator 
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ii) Choosing 0=m  and 1== db  in (1.11) we obtain the operator AAJ :v  
related with Bessel function, defined by  

 .
1)(1)!(4

1)(
=)(

1

1

1

2= 










n

n

n

n

n

n

v
vn

za
zzfJ  

 

iii) Choosing 0=m , 1=b  and 1= d  in (1.11) we obtain the operator 
AAJ :v  related with modified Bessel function, defined by  
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iv) Choosing 0=m , 2=b  and 1=d  in (1.11) we obtain the operator 
AAS :v  related with spherical Bessel function, defined by  
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Definition 1.1  A function A)(zf  is in the class   ,,S , {0}\C  if and 

only if  
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Remark 1  The above differential inequality can be equivalently written as  
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Definition 1.2  A function A)(zf  is in the class   ,,,,dkQm ,if and only if  
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 sincos)(=)( izhezK i   is a convex univalent function, we can write 

Definition 1.1 in subordination form  
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Special Cases 
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2  PRELIMINARY RESULTS  
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Lemma 2 [12] Let d  be a complex number with 0>dRe . Suppose that CC 2:  

is continuous and satisfies the conditions 0),( yixRe , when x  is real and  
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Lemma 3 [18] Let f  and g  be in the class Vk  and *S  respectively. Then, for 

every function F  analytic in U , we have  
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3  COEFFICIENT INEQUALITIES 

A function A)(zf  is said to be bi-univalent in U  if both )(zf  and )(1 zf   are 

univalent in U . Let   denote the class of bi-univalent functions defined in the unit 

disk U . 

 

Definition 3.1  Let CUh :  be a convex univalent function such that 1=(0)h  and 

)(=)( zhzh , for Uz  and 0>))(( zhRe . A function f  is said to be in the class 
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{0}\),,( CS 
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Definition 3.2  A function f  given by (1.1) is said to be in the class 
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Theorem 1  Let f  given by (1.1) be in the class ),( 
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 .cos||||4|| 13  Ba   
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Theorem 2  Let f  given by (1.1) be in the class ),,,,(, hdkm 


S , then  

 

2

1

22

2

2

1
2

)8(

)(1

)8(

)2(1

cos||||2
||

k

d

k

d

B
a

mm 







  

and  

 .

)8(

)(1

)8(

)2(1

cos||||2
||

2

1

22

2

2

1

2

3

k

d

k

d

B
a

mm 







  

Proof. It follows from (3.3) and (3.4) that  

 Uzizp
zfdkmD

'
zfdkmDz

ie 














































 ,sincos)(=1
)(),(

)(),(
1

1 







  (3.5) 

and  

 ,,sincos)(=1
)(),(

)(),(
1

1 Uiq
gdkmD

'
gdkmD

ie 














































 











  (3.6) 

where )()( zhzp   and )()(  hq   have the forms  

  2

211=)( zpzpzp  

and  

  2

211=)(  qqq  

respectively. It follows from (3.5) and (3.6) that  

 






cos=
)(4(1)!

)()(1
12

1

pa
k

de mi 
 (3.7) 

  






cos=
)(4(1)!

)()(1

)((2)!4

)2(2)(1
2

2

2

2

1

3

2

2

2

pa
k

d
a

k

de mmi






















 



 (3.8)  

 






cos=
)(4(1)!

)()(1
12

1

qa
k

de mi 
 (3.9) 
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and  

 .cos=
)(4(1)!

)()(1

)((2)!4

)2(2)(1

)((2)!4

)2(4)(1
2

2

2

2

1

3

2

2

2
2

2

2

2

2








qa
k

d
a

k

d
a

k

de mmmi






















 






(3.10) 

From (3.7) and (3.9), we obtain  

 .= 11 qp   

Adding (3.8) and (3.10), we get  

 .cos)(=
)8(

)(1

)8(

)2(1
22

2

22

1

22

2

2








qpa
k

d

k

de mmi








 


  (3.11) 

Since )(, Uhqp  , applying Lemma 4, we have  

 NmB
m

p
p

m

m  ,
!

(0)
= 1

)(

 (3.12) 

  NmB
m

q
q

m

m  ,
!

(0)
= 1

)(

. (3.13) 

 Applying (3.12), (3.13) and Lemma 4 for the coefficients 121 ,, qpp  and 2q , we get  

 

2
1)8(

22)(1

2)8(

2)2(1

cos|1|||2
|2|

k

dm

k

dm

B
a









 . (3.14) 

 Subtracting (3.10) from (3.8), we get  

 






cos)(=
)8(

)2(1

)8(

)2(1
22

2

2

2

2

3

2

2

qpa
k

d
a

k

de mmi








 


  (3.15) 

 or, equivalently  
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


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
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



















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




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
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


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1)8(

22)(1

2)8(

2)2(1

cos)22(
2

2)2(1

cos)22(2)8(
=3

k

dm

k

dm
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iedm

qpk

ie
a
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











 . 
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Applying (3.12), (3.13) and Lemma 4 once again for the coefficients 121 ,, qpp  and 2q

, we get  

 .

)8(

)(1

)8(

)2(1

cos||||2
||

2

1

22

2

2

1

2

3

k

d

k

d

B
a

mm 







  

This complete the proof of Theorem 2.  

  

Corollary 1  Let Af  be bi convex function of order   then  1|| 2a  and 

1|| 3a . 

Corollary 2  Let Af  satisfy the condition )(
)(

)(
1 zh

z'f

z''zf
  and 

)(
)(

)(
1 wh

w'g

w''zg
  then 

|22|2
||

21

2

1

11

2

BBB

BB
a


  and |)12|(

2

1
|| 13 BBBa  .  

  

Corollary 3  Let f  be given by (1.1) and 
1= fg . If f  and g  satisfies the 

condition )(
)(

)(
1

)(

)(
)(1 zh

z'f

z''zf

zf

z'zf














    

and )(
)(

)(
1

)(

)(
)(1 wg

w'g

w''wg
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w'wg














  , 

 then  

 
|))((1|)(1

||

21

2

1

11

2

BBB

BB
a





 (3.16) 

and  

 .
1

|12|
|| 1

3





BBB
a  (3.17) 
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Remark 2 Put 1=  in corollary 3, we get the result 
|22|2

||

21

2

1

11

2

BBB

BB
a


  and 

|)12|(
2

1
|| 13 BBBa   of corollary 2.  

 

4  CLOSURE PROPERTY 

Theorem 3  Let  

 ).(),(=))(,,,,( zfdkDzfdkmF m

  (4.1) 

Then   ,,,,dkQf m  if and only if   ,,))(,,,,( *SzfdkmF .  

Proof. Let   ,,))(,,,,( *SzfdkmF , then  

.

2

1
))(,,,,(

)))((,,,,(1
>

2

1
))(,,,,(

)))((,,,,(1
1



























































zfdkmF

zzfdkm'zF

zfdkmF

zzfdkm'zFieRe















 (4.2) 

Thus (4.1) together with (4.2) implies  

     ,

2

1),,,,(
1

>

2

1),,,,(
1

1 
















 zdkmzdkmieRe 






 JJ  

where ),,,,( zdkmJ  is given by (1.14). Therefore   ,,,,)( dkQzf m . 
Converse is immediate.  

 

Theorem 4  For 1m ,      ,,,,,,,,1 dkQdkQ mm  .  

 

Proof. Let   ,,,,1 dkQf m  and  

 )(=
)(),(

)(),(

zp
zfdkmD

'
zfdkmDz



 






, (4.3) 

where p is analytic in U  and 1=(0)p . 
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From (1.12) and (4.3) and after some simplification, we obtain  

 ).(1)(=
)(),(

)(),(1




 


zp
zfdkD

zfdkD
m

m

 (4.4) 

By logarithmic differentiation of (4.4), we have  

 .
)()(1

)(
)(=

)(),(1

)(),(1

zp

z'zp
zp

zfdkmD

'
zfdkmDz



















 

 (4.5) 

Since   ,,,,1 dkQf m , so  

 ).(
)()(1

)(
)( zK

zp

z'zp
zp 





  

Thus by using Lemma 1, )()( zKzp   and hence   ,,,,dkQf m . 

Let us consider the Bernardi integral operator F  given by  

 .)(
1

=)( 1

0
dttft

z
zfF

z



 



  (4.6) 

For   with 1> Re  the operator has the property AA :F , (see, for instance, 

[10], p.11).  

Theorem 5  Let 1>   and   ,,,,dkQf m , then   ,,,,dkQfF m .  

  

Proof. Let   ,,,,dkQf m  and  

 )(=
))((),(

))((),(

zp
zfFdkmD

'zfFdkmDz



 






, (4.7) 

where the function )(zp  is analytic in U  and 1=(0)p . From (4.6), we have  

   )(1)(=))(()()( zfzfFz'fFz    

and so  

 










 ))((),()(),(1)((=))((),( zfFdkmDzfdkmD'zfFdkmDz 




 . (4.8) 
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Then, by using equations (4.7) and (4.8), we obtain  

 




 


)(=
))((),(

)(),(1)((
zp

zfFdkD

zfdkD
m

m

 (4.9) 

By logarithmic differentiation of(4.9), we have  

 ).(,
)(

)(=
)(),(

)(),(



















z
zp

'zp
zp

zfdkmD

'zfdkmDz

 

Hence by Lemma1, we conclude that )()( zKzp   in U  which implies that 

  ,,,,dkQfF m .  

 

Theorem 6  Let   ,,,,dkQf m  and Vk . If 1<0  , then 

   ,,,,dkQf m .  

  

Proof. Let fF =  . If   ,,,,dkQf m  then the condition (4.3) is satisfied 

with )(zKp  . Using the usual convolution properties and (4.3),  

          
)(),(

)(),(

=)(
zFdkmD

'zFdkmDz

zp



 





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=
fdkmD

'fdkmDz








 







 

 
fdkmD

'fdkmDz
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),(

=














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fdkmD

'fdkmDz

),(

),(

=
















 

 
 

)(

)()(
=

zF

zFzP







 . (4.10) 



638 S. Lakshmi, K. R. Karthikeyan, S. Varadharajan and C. Selvaraj 

By Theorem(3), the function   ,,)(),(=)( *SzfdkDzF m . 

Hence, by Lemma (3) , we have  

 ).()]([
)(),(

)(),(

zKUFco
zFdkmD

'zFdkmDz















 

 

Since )(zK  is a convex univalent and )()( zKzp  . 

Hence    ,,,,= dkQfF m .  
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