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Abstract

In the present article, we would establish generalisation of companion of
Ostrowski’s type integral inequality involving weights. This article recaptures the
results of M. W. Alomari’s article. Moreover, application is given for numerical
integration.
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1. INTRODUCTION

In the development of mathematics, inequalities are one of the most powerful tools.
Among these inequalities, the Ostrowski inequality is a remarkable inequality which is
introduced by A. M. Ostrowski [12] in 1938 and this result had obtained by applying
the Montgomery identity.
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Here, we present an inequality from article [5] that is given below. Throughout the
article K ⊂ R and Ko is the interior of the interval K.

Proposition 1.1. Suppose ρ : K → R is a differentiable function in the interval Ko

such that ρ′ ∈ L[j, k], where j, k ∈ K and j < k. If |ρ′(θ)| ≤ M ∀ θ ∈ (j, k) where
M > 0 is constant. Then∣∣∣∣ρ(θ)− 1

k − j

∫ k

j

ρ(†)d†
∣∣∣∣ ≤M(k − j)

[
1

4
+

(
θ − j+k

2

)2
(k − j)2

]
. (1.1)

The constant 1
4

is the best possible constant that it can not be replaced by the smaller
one.

For the results related to Ostrowski’s inequality (see [1, 2]). Also, the reader may be
refer to the monograph [5] where various inequalities of Ostrowski type are discussed.

In [9], Guessab et.al. have derived the following companion of Ostrowski’s inequality
like others.

Proposition 1.2. Let ρ : [j, k] → R be satisfies the Lipschitz condition, i.e., |ρ(†) −
ρ(s)| ≤M|† − s|. Then ∀ θ ∈ [j, j+k

2
], then

∣∣∣∣ρ(θ) + ρ(j + k − θ)
2

− 1

k − j

∫ k

j

ρ(†)d†
∣∣∣∣
≤

1
8
+ 2

(
θ − 3j+k

4

k − j

)2
M(k − j), (1.2)

The constant 1
8

is the best possible constant that it can not be replaced by the smaller
one.

Note that the above inequality is the best due to it gives the trapezoid type inequality
for θ = 3j+k

4
, i.e.,∣∣∣∣∣ρ(3j+k4

) + ρ( j+3k
4

)

2
− 1

k − j

∫ k

j

ρ(†)d†

∣∣∣∣∣ ≤ M(k − j)
8

. (1.3)

The constant 1
8

is the sharp in above the inequality.

In [7], S. S. Dragomir has derived the following companion of the Ostrowski inequality.
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Proposition 1.3. Let ρ : K → R be an absolutely continuous function on [j, k]. Then
we have the inequalities∣∣∣∣ρ(θ) + ρ(j + k − θ)

2
− 1

k − j

∫ k

j

ρ(†)d†
∣∣∣∣

≤



1
8
+ 2

(
θ − 3j+k

4

k − j

)2
 (k − j)‖ρ′‖∞, ρ′ ∈ L∞[j, k],

2
1
q

(q + 1)
1
q

(θ − j
k − j

)q+1

+

(
j+k
2
− θ

k − j

)q+1
 1
q

(k − j)
1
q ‖ρ′‖[j,k],p ,

p > 1, 1
p
+ 1

q
= 1, and ρ′ ∈ Lp[j, k],[

1

4
+

∣∣∣∣∣θ − 3j+k
4

k − j

∣∣∣∣∣
]
‖ρ′‖[j,k],1 ,

(1.4)

∀ θ ∈ [j, j+k
2
].

In 2002, S. S. Dragomir [6] established some inequalities for this companion for
mappings of bounded variation. In 2009, Z. Liu [10] introduced some companions
of an Ostrowski type inequality for functions whose second derivatives are absolutely
continuous. In 2009, Barnett et. al [4] have derived some companions for Ostrowski
inequality and the generalised trapezoid inequality. In 2011, M. W. Alomari [3]
obtained the companion of Ostrowski inequality (1.3) for differentiable bounded
functions and also gave the applications.

In the present article we would prove a companion of weighted Ostrowski’s type
inequality for differentiable bounded functions and then we would give its applications.

2. GENERALISATION OF COMPANION OF OSTROWSKI’S TYPE
INEQUALITY

Under present section we would give our results about companion of Ostrowski’s type
inequality which are as follow:

Theorem 2.1. Let ρ : [j, k] → R be a differentiable function in the interval (j, k)
and j < k and w : [j, k] → R is an integrable function. If ρ′ ∈ L1[j, k] and
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m1 ≤ ρ′(†) ≤M1, for all † ∈ [j, k], then∣∣∣∣∣ρ(θ)
∫ j+k

2

j

w(†)d†+ ρ(j + k − θ)
∫ k

j+k
2

w(†)d† −
∫ k

j

ρ(†)w(†)d†

∣∣∣∣∣
≤

[∫ j+θ
2

j

(∫ †
j

w(u)du

)
d†+

∫ θ

j+θ
2

(∫ †
j

w(u)du

)
d† −

∫ j+k
2

θ

(∫ †
j+k
2

w(u)du

)
d†

+

∫ j+k−θ

j+k
2

(∫ †
j+k
2

w(u)du

)
d† −

∫ j−θ+2k
2

j+k−θ

(∫ †
k

w(u)du

)
d†

−
∫ k

j−θ+2k
2

(∫ †
k

w(u)du

)
d†

]
(M1 +m1)

2
(2.1)

holds ∀ θ ∈ [j, j+k
2
].

Proof. For the sake of proof we state the weighted kernel as;

P (θ, †) =



∫ †
j

w(u)du, if † ∈ [j, θ],

∫ †
j+k
2

w(u)du, if † ∈ (θ, j + k − θ],

∫ †
k

w(u)du, if † ∈ (j + k − θ, k],

∀ θ ∈ [j, j+k
2
].

Applying by parts formula of integration, obtain∫ k

j

P (θ, †)ρ′(†)d† = ρ(θ)

∫ j+k
2

j

w(†)d†+ ρ(j + k − θ)
∫ k

j+k
2

w(†)d†

−
∫ k

j

ρ(†)w(†)d†. (2.2)

We know that ∫ k

j

P (θ, †)d† = 0. (2.3)

Let C = M1+m1

2
. From (2.2) and (2.3) it follows∫ k

j

P (θ, †)[ρ′(†)− C]d† = ρ(θ)

∫ j+k
2

j

w(†)d†+ ρ(j + k − θ)
∫ k

j+k
2

w(†)d†

−
∫ k

j

ρ(†)w(†)d†. (2.4)
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Another way we have

∣∣∣∣∣
∫ k

j

P (θ, †)[ρ′(†)− C]d†

∣∣∣∣∣ ≤ max
†∈[j,k]

|ρ′(†)− C| ·
∫ k

j

|P (θ, †)|d†. (2.5)

Since

max
†∈[j,k]

|ρ′(†)− C| ≤ M1 +m1

2
(2.6)

and

∫ k

j

|P (θ, †)|d† =

∫ j+θ
2

j

(∫ †
j

w(u)du

)
d†+

∫ θ

j+θ
2

(∫ †
j

w(u)du

)
d†

−
∫ j+k

2

θ

(∫ †
j+k
2

w(u)du

)
d†+

∫ j+k−θ

j+k
2

(∫ †
j+k
2

w(u)du

)
d†

−
∫ j−θ+2k

2

j+k−θ

(∫ †
k

w(u)du

)
d† −

∫ k

j−θ+2k
2

(∫ †
k

w(u)du

)
d†.(2.7)

Now from (2.5) to (2.7), it follows that

∣∣∣∣∣ρ(θ)
∫ j+k

2

j

w(†)d†+ ρ(j + k − θ)
∫ k

j+k
2

w(†)d† −
∫ k

j

ρ(†)w(†)d†

∣∣∣∣∣
≤

[∫ j+θ
2

j

(∫ †
j

w(u)du

)
d†+

∫ θ

j+θ
2

(∫ †
j

w(u)du

)
d† −

∫ j+k
2

θ

(∫ †
j+k
2

w(u)du

)
d†

+

∫ j+k−θ

j+k
2

(∫ †
j+k
2

w(u)du

)
d† −

∫ j−θ+2k
2

j+k−θ

(∫ †
k

w(u)du

)
d†

−
∫ k

j−θ+2k
2

(∫ †
k

w(u)du

)
d†

]
(M1 +m1)

2
,

∀ θ ∈ [j, j+k
2
].

Remark 2.2. If put w = 1
k−j in Theorem 2.1, then we recapture the Theorem 4 of [3].

Corollary 2.3. In the inequality (2.1), select
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(i) θ = 3j+k
4

, obtain∣∣∣∣∣ρ(3j + k

4
)

∫ j+k
2

j

w(†)d†+ ρ(
j + 3k

4
)

∫ k

j+k
2

w(†)d† −
∫ k

j

w(†)ρ(†)d†

∣∣∣∣∣
≤

[∫ 7j+k
8

j

(∫ †
j

w(u)du

)
d†+

∫ 3j+k
4

7j+k
8

(∫ †
j

w(u)du

)
d† −

∫ j+k
2

3j+k
4

(∫ †
j+k
2

w(u)du

)
d†

+

∫ j+3k
4

j+k
2

(∫ †
j+k
2

w(u)du

)
d† −

∫ j+7k
8

j+3k
4

(∫ †
k

w(u)du

)
d†

−
∫ k

j+7k
8

(∫ †
k

w(u)du

)
d†

]
(M1 +m1)

2
, (2.8)

(ii) θ = 2j+k
3

, obtain∣∣∣∣∣ρ(2j + k

3
)

∫ j+k
2

j

w(†)d†+ ρ(
j + 2k

3
)

∫ k

j+k
2

w(†)d† −
∫ k

j

w(†)ρ(†)d†

∣∣∣∣∣
≤

[∫ 5j+k
6

j

(∫ †
j

w(u)du

)
d†+

∫ 2j+k
3

5j+k
6

(∫ †
j

w(u)du

)
d† −

∫ j+k
2

2j+k
3

(∫ †
j+k
2

w(u)du

)
d†

+

∫ j+2k
3

j+k
2

(∫ †
j+k
2

w(u)du

)
d† −

∫ j+5k
6

j+2k
3

(∫ †
k

w(u)du

)
d†

−
∫ k

j+5k
6

(∫ †
k

w(u)du

)
d†

]
(M1 +m1)

2
, (2.9)

(iii) θ = j+k
2

, obtain∣∣∣∣∣ρ(j + k

2
)

∫ k

j

w(†)d† −
∫ k

j

w(†)ρ(†)d†

∣∣∣∣∣
≤

[∫ 3j+k
4

j

(∫ †
j

w(u)du

)
d†+

∫ j+k
2

3j+k
4

(∫ †
j

w(u)du

)
d† −

∫ j+3k
4

j+k
2

(∫ †
k

w(u)du

)
d†

−
∫ k

j+3k
4

(∫ †
k

w(u)du

)
d†

]
(M1 +m1)

2
. (2.10)

(iv) θ = j, obtain∣∣∣∣∣ρ(j)
∫ j+k

2

j

w(†)d†+ ρ(k)

∫ k

j+k
2

w(†)d† −
∫ k

j

ρ(†)w(†)d†

∣∣∣∣∣
≤

[∫ k

j+k
2

(∫ †
j+k
2

w(u)du

)
d† −

∫ j+k
2

j

(∫ †
j+k
2

w(u)du

)
d†

]
(M1 +m1)

2
. (2.11)
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In the following we present special cases of above corollary.
Special Case 1: If put w = 1

k−j in (ii) of Corollary 2.3, then we get∣∣∣∣∣ρ(2j+k3
) + ρ( j+2k

3
)

2
− 1

k − j

∫ k

j

ρ(†)d†

∣∣∣∣∣ ≤ 5(k − j)
72

(M1 +m1).

Special Case 2: If put w = 1
k−j in (iii) of Corollary 2.3, then we get midpoint

inequality ∣∣∣∣∣ρ(j + k

2
)− 1

k − j

∫ k

j

ρ(†)d†

∣∣∣∣∣ ≤ (k − j)
4

(M1 +m1).

Remark 2.4. (i) By putting w = 1
k−j in (i) of Corollary 2.3, we recapture the

Corollary 1 of [3].

(ii) By putting w = 1
k−j in (iv) of Corollary 2.3, we recapture the Corollary 2 of [3].

Ostrowski’s type inequality can be defined in the form of following corollary.

Corollary 2.5. Let the assumptions of Theorem 2.1 be valid. Further, if ρ is symmetric
about the θ-axis, i.e., ρ(j + k − θ) = ρ(θ), then∣∣∣∣∣ρ(θ)

∫ k

j

w(†)d† −
∫ k

j

w(†)ρ(†)d†

∣∣∣∣∣
≤

[∫ j+θ
2

j

(∫ †
j

w(u)du

)
d†+

∫ θ

j+θ
2

(∫ †
j

w(u)du

)
d† −

∫ j+k
2

θ

(∫ †
j+k
2

w(u)du

)
d†

+

∫ j+k−θ

j+k
2

(∫ †
j+k
2

w(u)du

)
d† −

∫ j−θ+2k
2

j+k−θ

(∫ †
k

w(u)du

)
d†

−
∫ k

j−θ+2k
2

(∫ †
k

w(u)du

)
d†

]
(M1 +m1)

2
(2.12)

holds ∀ θ ∈ [j, j+k
2
].

Remark 2.6. In Corollary 2.5, select θ = j, then obtain∣∣∣∣∣ρ(j)
∫ k

j

w(†)d† −
∫ k

j

w(†)ρ(†)d†

∣∣∣∣∣
≤

[∫ k

j+k
2

(∫ †
j+k
2

w(u)du

)
d† −

∫ j+k
2

j

(∫ †
j+k
2

w(u)du

)
d†

]
(M1 +m1)

2

Remark 2.7. By putting w = 1
k−j in Corollary 2.5, we recapture the Corollary 3 of [3].
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3. APPLICATION TO NUMERICAL INTEGRATION

Let Kn : j = θ0 < θ1 < · · · < θn = k be a division of the interval [j, k] and
hi = θi+1 − θi, (i = 0, 1, 2, · · · , n− 1).

Consider the quadrature formula

Qn(Kn, ρ) :=
n−1∑
i=0

[
ρ(
3θi + θi+1

4
)

∫ θi+θi+1
2

θi

w(†)d†+ ρ(
θi + 3θi+1

4
)

∫ θi+1

θi+θi+1
2

w(†)d†

]
.

(3.1)

We give following result.

Theorem 3.1. Let ρ : K → R be a differentiable function in the interval Ko and
w : [j, k] → R is an integrable function, where j, k ∈ K with j < k. If ρ′ ∈ L1[j, k]

and m1 ≤ ρ′(θ) ≤M1, for all θ ∈ [j, k], then the following holds∫ k

j

w(†)ρ(†)d† = Qn(Kn, ρ) +Rn(Kn, ρ), (3.2)

where Qn(Kn, ρ) is stated as above and the following remainder Rn(Kn, ρ) satisfies
the estimates

|Rn(Kn, ρ)| ≤
(M1 +m1)

2

n−1∑
i=0

[∫ 7θi+θi+1
8

θi

(∫ †
θi

w(u)du

)
d†

+

∫ 3θi+θi+1
4

7θi+θi+1
8

(∫ †
θi

w(u)du

)
d† −

∫ θi+θi+1
2

3θi+θi+1
4

(∫ †
θi+θi+1

2

w(u)du

)
d†

+

∫ θi+3θi+1
4

θi+θi+1
2

(∫ †
θi+θi+1

2

w(u)du

)
d† −

∫ θi+7θi+1
8

θi+3θi+1
4

(∫ †
θi+1

w(u)du

)
d†

−
∫ θi+1

θi+7θi+1
8

(∫ †
θi+1

w(u)du

)
d†

]
. (3.3)

Proof. Applying inequality (2.8) on the intervals [θi, θi+1], we get

Ri(Ki, ρ) =

∫ θi+1

θi

w(†)ρ(†)d† −

[
ρ(
3θi + θi+1

4
)

∫ θi+θi+1
2

θi

w(†)d†

+ ρ(
θi + 3θi+1

4
)

∫ θi+1

θi+θi+1
2

w(†)d†

]
.
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Summing (3.4) over i from 0 to n− 1, then

Rn(Kn, ρ) =
n−1∑
i=0

∫ θi+1

θi

w(†)ρ(†)d† −
n−1∑
i=0

[
ρ(
3θi + θi+1

4
)

∫ θi+θi+1
2

θi

w(†)d†

+ ρ(
θi + 3θi+1

4
)

∫ θi+1

θi+θi+1
2

w(†)d†

]
,

which follows the form of (2.8), i.e.

|Rn(Kn, ρ)| =

∣∣∣∣∣
n−1∑
i=0

∫ θi+1

θi

w(†)ρ(†)d† −
n−1∑
i=0

[
ρ(
3θi + θi+1

4
)

∫ θi+θi+1
2

θi

w(†)d†

+ ρ(
θi + 3θi+1

4
)

∫ θi+1

θi+θi+1
2

w(†)d†

]∣∣∣∣∣
≤ (M1 +m1)

2

n−1∑
i=0

[∫ 7θi+θi+1
8

θi

(∫ †
θi

w(u)du

)
d†+

∫ 3θi+θi+1
4

7θi+θi+1
8

(∫ †
θi

w(u)du

)
d†

−
∫ θi+θi+1

2

3θi+θi+1
4

(∫ †
θi+θi+1

2

w(u)du

)
d†+

∫ θi+3θi+1
4

θi+θi+1
2

(∫ †
θi+θi+1

2

w(u)du

)
d†

−
∫ θi+7θi+1

8

θi+3θi+1
4

(∫ †
θi+1

w(u)du

)
d† −

∫ θi+1

θi+7θi+1
8

(∫ †
θi+1

w(u)du

)
d†

]
.

This completes the required proof.

Remark 3.2. By putting w = 1
k−j in Theorem 3.1, we recapture the result of Theorem

5 of [3].

4. CONCLUSION

In this article, our aim was to generalise the results of [3]. We have obtained
generalisation of companion of Ostrowski’s type integral inequality involving weights.
By using suitable substitutions we have recaptured the results of M. W. Alomari’s
article and given some special cases. Further, we have deduced application to numerical
integration.
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[8] G. GRÜSS, Über das Maximum des absoluten Betrages von, Math. Z., 39 (1)
(1935), 215–226.

[9] GUESSAB, A., SCHMEISSER, G., Sharp integral inequalities of the
Hermite-Hadamard type, J. Approx. Th., 115 (2002), 260—288.

[10] Z. LIU, Some companions of an Ostrowski type inequality and applications, J.
Ineq. Pure & Appl. Math., Volume 10 (2009), Issue 2, Article 52, 12 pp.
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