

Majorization Theorem for Concavifiable Functions

**Faraz Mehmood¹, Ghulam Mujtaba Khan², Kashif Saleem³, Faisal Nawaz⁴,
Zehra Akhter Naveed⁵ and Abdul Rahman⁶**

¹⁻⁶ *Dawood University of Engineering and Technology, New M. A. Jinnah Road,
Karachi-74800, Pakistan.*

Abstract

In the present article, we would extend the majorization theorem from concave function to concavifiable function and our article gives some results of different authors of different articles.

Keywords and phrases: Concave function, convex function, concavifiable function, majorization, Karamata's inequality.

2010 Mathematics Subject Classification: 26A51, 26D15, 26D99, 26E99.

1. INTRODUCTION

The concepts of generalised concavity have been introduced and investigated by different authors in different articles, e.g., *Hanson, Mangasarian, Ponstein, Karamardian, Greenberg and Pierskalla* (see articles in [23]).

A word of motivation is in order. Generalised concavity is important for several reasons. First, generalised concave functions arise naturally in applications. For example, unimodal probability density functions (like the gamma). Second, generalised concavity proves that this is useful in extreme value problems. Particularly in the theory of nonlinear programming, authors: *Mangasarian and Zangwill*, in different articles have presented the case for the utility of generalised concavity (see [23]).

Some other applications, in microeconomic theory and production functions that are usually assumed to be concave over some or all of their domains, resulting in diminishing returns to input factors (see [21]). Further that concavity of a function replaces the second derivative test to separate local max, min or saddle, moreover, for a concave function a critical point which is local max (min) is global (see [22]).

Therefore, we say that concave function's theory has become an especial domain of inequality's theory it means they have closed relationship.

While convex theory plays an important role in several fields of physical sciences. This theory attracts many engineers and economists including mathematicians due to number of applications and important results in the following respective fields [18] such as; differential equations, operations research, functional analysis, geometry, control theory, optimization, probability theory, operator theory, information theory, integral operator theory, numerical integration etc. The theory of convex functions also acts an important part in other fields of sciences as: mechanics, statistics, finance, engineering, physics, management sciences and economics.

Here, we state useful definition which is extracted from [19, 20] for concave function. Throughout the article L is an interval in \mathbb{R} .

Definition 1.1. *A function $\Psi : L \rightarrow \mathbb{R}$, known as concave if the given inequality holds*

$$\Psi(\sigma u_1 + (1 - \sigma) u_2) \geq \sigma \Psi(u_1) + (1 - \sigma) \Psi(u_2) \quad (1)$$

$\forall u_1, u_2 \in L$ and $\sigma \in [0, 1]$.

Remark 1.2. *The following are the remarks about strictly concave, convex and strictly convex functions and recalled from [9, 15].*

- (1) *If inequality (1) is strict for each $u_1 \neq u_2$ and $\sigma \in (0, 1)$, then Ψ is called strictly concave.*
- (2) *If inequality (1) is reversed, then Ψ is called convex and if it is strict for each $u_1 \neq u_2$ and $\sigma \in (0, 1)$, then Ψ is called strictly convex.*

For more study for higher order convex and concave functions (see [1, 10, 11]).

1.1. Majorization

The basic idea of majorization has come from measure of variety of m -tuple (m -dimensional) components of vector and it is nearly linked to convexity and

concavity. The main contributors are Hardy, Littlewood & Polya, who discussed interesting basic ideas about the majorization in their book “Inequality”. Questions related to majorization were worked on by the comparatively few research scholars who were inspired by the book “ Theory of Majorization and Its Application ”, they put effort in order to rearrange ideas and to separate the literature valiantly. They have also given proofs on fundamental consequences and references to multiple point of view with respect to the wide range of applied discipline.

The application of theory of majorization is present in many fields such as pure and applied mathematics and engineering as well.

Here we state some definitions and results that would be used in sequel manner.

For fixed $m \geq 2$, $\mathbf{u} = (u_1, \dots, u_m)$ and $\mathbf{v} = (v_1, \dots, v_m)$ denote 2 m -tuples and $u_{[1]} \geq u_{[2]} \geq \dots \geq u_{[m]}$, $v_{[1]} \geq v_{[2]} \geq \dots \geq v_{[m]}$ be the ordered components.

Definition 1.3. For all $\mathbf{u}, \mathbf{v} \in \mathbb{R}^m$,

$$\mathbf{u} \prec \mathbf{v} \quad \text{if} \quad \begin{cases} \sum_{i=1}^k u_{[i]} \leq \sum_{i=1}^k v_{[i]} & , \quad k \in \{1, \dots, m-1\}, \\ \sum_{i=1}^m u_{[i]} = \sum_{i=1}^m v_{[i]} & , \end{cases}$$

where $\mathbf{u} \prec \mathbf{v}$, \mathbf{u} is majorized by \mathbf{v} or \mathbf{v} majorizes \mathbf{u} .

In [4] Hardy *et.al.* has introduced this above notation for majorization.

We provide the following theorem of majorization involving concave function from [16].

Theorem 1.4. Let continuous function $\Psi : L \rightarrow \mathbb{R}$ be concave and $\mathbf{u} = (u_1, \dots, u_m)$, and $\mathbf{v} = (v_1, \dots, v_m)$ be two m -tuples, such that $u_i, v_i \in L$ ($i = 1, \dots, m$). If \mathbf{u} majorizes \mathbf{v} , then

$$\sum_{i=1}^m \Psi(u_i) \geq \sum_{i=1}^m \Psi(v_i), \quad (2)$$

holds.

Remark 1.5. (i) It is clear that if Ψ is concave then $-\Psi$ is convex and vice versa.

(ii) The reversed inequality (2) of above is known in the literature as Karamata’s inequality [5, 6, 8].

In the following we provide the definition of concavifiable function as *S. Zlobec* discussed *Convexifiable function* in his article “Characterization of convexifiable function” [24](see also [8]).

Definition 1.6. [16] Let a continuous function $\Psi : L \rightarrow \mathbb{R}$ defined on compact interval $L \subset \mathbb{R}$, consider a function $F : L \times \mathbb{R} \rightarrow \mathbb{R}$ stated as

$$F(u, \sigma) = \Psi(u) - \frac{\sigma}{2}u^2.$$

If $F(u, \sigma)$ is concave function in the interval L for some $\sigma = \sigma^*$, then $F(u, \sigma)$ is said to be concavification of Ψ and σ^* is its concavifier on L . Function Ψ is concavifiable if it has a concavification.

A remark about concavifiable function are given by authors in their article [16] that is in the following as *Muhammad Adil Khan* had given in his article “Majorization theorem for convexifiable functions”.

Remark 1.7. If σ^* is a concavifier of Ψ , then for each $\sigma \geq \sigma^*$.

Concavifiable functions have been studied on \mathbb{R} . The class of concavifiable functions is large: beside concave and twice continuous differentiable function.

In this article, we would extend inequality (2) and its weighted version from concave to concavifiable functions.

2. MAIN RESULTS

The following are the results for (2) and its weighted version in the form of concavifiable functions.

Theorem 2.1. Let continuous function $\Psi : L \rightarrow \mathbb{R}$ be concavifiable on the compact interval L and σ its concavifier. Let $\mathbf{u} = (u_1, \dots, u_m)$, and $\mathbf{v} = (v_1, \dots, v_m)$ be two m -tuples, such that $u_i, v_i \in L$ ($i = 1, \dots, m$). If \mathbf{u} majorizes \mathbf{v} , then

$$\sum_{i=1}^m \Psi(u_i) \geq \sum_{i=1}^m \Psi(v_i) - \frac{\sigma}{2} \sum_{i=1}^m (v_i^2 - u_i^2), \quad (3)$$

holds.

Proof. Since Ψ is concavifiable with concavifier σ , so $F(u, \sigma) = \Psi(u) - \frac{\sigma}{2}u^2$ is a concave function and \mathbf{u} majorizes \mathbf{v} . Therefore, by applying $F(u, \sigma)$ instead of $\Psi(u)$ in inequality (2) we obtain our required inequality (3). \square

Remark 2.2. By putting $\sigma = 0$ in above theorem we recapture Theorem 2.1 of [16].

Remark 2.3. If we put $\Psi = -\Psi$ in Theorem 2.1, then we get Theorem 2 of [8].

In the following theorem we give result for weighted concavifiable function.

Theorem 2.4. Let continuous function $\Psi : L \rightarrow \mathbb{R}$ be concavifiable on the compact interval L and σ its concavifier. Let $\mathbf{u} = (u_1, \dots, u_m)$, and $\mathbf{v} = (v_1, \dots, v_m)$ be two decreasing m -tuples such that $u_i, v_i \in L$ ($i = 1, \dots, m$) and $\mathbf{r} = (r_1, r_2, \dots, r_m)$ be a real m -tuples such that

$$\sum_{i=1}^k r_i u_i \geq \sum_{i=1}^k r_i v_i \quad \text{for} \quad k = 1, \dots, m-1, \quad (4)$$

and

$$\sum_{i=1}^m r_i u_i = \sum_{i=1}^m r_i v_i \quad (5)$$

Then

$$\sum_{i=1}^m r_i \Psi(u_i) \geq \sum_{i=1}^m r_i \Psi(v_i) - \frac{\sigma}{2} \sum_{i=1}^m r_i (v_i^2 - u_i^2). \quad (6)$$

Proof. By putting $\Psi = -\Psi$ in Theorem 3 of [8] then we get desired result. \square

Remark 2.5. By substituting several conditions on the m -tuples \mathbf{u}, \mathbf{v} and \mathbf{p} , weighted versions of inequality (2) and their integral versions have been proved (see [2, 3, 17]) and some of the reference therein. In the similar way, by using Theorem 2.4 we can get all such results for concavifiable functions.

REFERENCES

- [1] MUHAMMAD ADNAN, A. R. KHAN AND FARAZ MEHMOOD, Positivity of sums and integrals for higher order ∇ -convex and completely monotonic functions, *arXiv:1710.07182v1*, [math.CA], 13 Oct 2017.
- [2] S. S. DRAGOMIR, Some majorization type discrete inequalities for convex functions, *Math. Ineq. Appl.*, 7(2004), 207–216.
- [3] L. FUCHS, A new proof of an inequality of Hardy-Littlewood-Polya, *Mat. Tidsskr B* (1947), 53–54.
- [4] G. H. HARDY, J.E. LITTLEWOOD, G. PÓLYA, *Inequalities*, 2nd Ed. Cambridge University Press, England, (1952).

- [5] Z. KAELBURG, D. DUKIĆ, M. LUKIĆ, I. MATIĆ, Inequalities of Karamata, Schur and Muirhead, and some application, *The Teaching of Mathematics* **VIII** (2005), 31–45.
- [6] J. KARAMATA, Sur une *inégalité* réelle aux fonctions convexes, *Publ. Math. Univ. Belgrade*, **1** (1932), 145–148.
- [7] EHTISHAM KARIM, ASIF R. KHAN AND SYEDA SADIA ZIA, On Majorization Type Results, *Commun. Optim. Theory*, 2015, 2015:5, 1–17.
- [8] ADIL KHAN, Majorization theorem for convexifiable functions, *Math. Commun.*, **18**(2013), 61–65.
- [9] ASIF R. KHAN AND FARAZ MEHMOOD, Some Remarks on Functions with Non-decreasing Increments, *Journal of Mathematical Analysis*, **11** (1) (2020), 1–16.
- [10] ASIF R. KHAN AND FARAZ MEHMOOD, Positivity of Sums for Higher Order ∇ -Convex Sequences and Functions, *Global Journal of Pure and Applied Mathematics*, **16** (1) (2020), 93–105.
- [11] ASIF R. KHAN, FARAZ MEHMOOD, FAISAL NAWAZ AND AAMNA NAZIR, Some Remarks on Results Related to ∇ -Convex Function, to appear.
- [12] ASIF R. KHAN, FARAZ MEHMOOD AND M. AZEEM ULLAH SIDDIQUE, Some Results Related to Convexifiable Functions, to appear.
- [13] L. MALIGRANDA, J. E. PECARIC AND L. E. PERSSON, Weighted Favard and Berwald inequalities, *J. Math. Anal. Appl.*, (1995), pp.248–262.
- [14] MARSHALL, A. W., AND OLKIN, I, *Inequalities: Theory of Majorization and Its Applications*. Academic Press, New York 1979.
- [15] FARAZ MEHMOOD, *On Functions with Nondecreasing Increments*, (Unpublished doctoral dissertation), Department of Mathematics, University of Karachi, Karachi, Pakistan, 2019.
- [16] FARAZ MEHMOOD, ASIF R. KHAN AND M. AZEEM ULLAH SIDDIQUE, Concave and Concavifiable Functions and Some Related Results, *J. Mech. Cont. & Math. Sci.*, **15** (6) (2020), 268–279.
- [17] M. NIEZGODA, Remarks on convex functions and separable sequences, *Discrete Math.* 308(2008), 1765–1773.
- [18] I. C. P. NICULESCU AND L. E. PERSSON, *Convex functions and their applications. A contemporary approach*, Springer, New York, 2006.

- [19] MARTIN J. OSBORNE, *Mathematical methods for economic theory*, version 2019-09-05, site built on the core of the OJS system.
- [20] J. E. PEČARIĆ, F. PROSCHAN AND Y. L. TONG, *Convex functions, partial orderings and statistical applications*, Academic Press, New York, **187**(1992).
- [21] MALCOLM PEMBERTON AND NICHOLAS RAU, Mathematics for Economists: An Introductory Textbook, Oxford University Press (2015) 363—364. ISBN 978-1-78499-148-7.
- [22] SIMON, *Convex and concave function*, Chapter 21, p. 505–522.
- [23] JR. W. A. THOMPSON AND DARREL W. PARKE, Some Properties of Generalized Concave Functions, *Operations Research*, **21** 1 (Jan. - Feb., 1973), 305–313.
- [24] S. ZLOBEC, Characterization of convexiable function, *Optimization*, **55**(2006), 251–261.