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Abstract

In this paper, we introduce the notion of a Q-cubic bi-quasi ideal of semigroup
and we characterize the regular semigroup in terms of a Q-cubic bi-quasi ideal
of a semigroup.
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1. INTRODUCTION

In 1965, the fundamental concept of fuzzy sets was introduced by Zadeh [17]. At
present, it is an important tool in science, engineering, computer science, control
engineering, etc. In 1979, Kuroki [8, 9, 10] was given the idea of fuzzy ideal,
fuzzy bi-ideals, and fuzzy interior ideals in semigroups. Later, concepts were
expanded about interval-valued fuzzy sets that have many applications such as
approximate reasoning, image processing, decision making, medicine, and mobile
networks, etc. In 2006 [15], Narayanan and Manikanran initiated the notion of
interval valued fuzzy ideal in semigroup. In 2012, Jun [6], introduced a new
notion, called a cubic set, and investigated several properties and introduced cubic
subsemigroups and cubic left (right) ideals of semigroups. Later, in 2015 Sadaf
et al. [16], discussed cubic bi-ideal of a semigroup. In later years V. Chinnadurai
and K. Bharathivelan[3], studied cubic ideal in Γ-semigroup and PO-Γ-semigroup.
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The idea of an intuitionistic Q-fuzzy set was first discussed by Atanassov [1, 2],
as a generalization of the notion of a fuzzy set. Kyung Ho Kim[7] introduced on
intuitionistic Q-Fuzzy semiprime ideals in Semigroups. Thillaigovindan et al.[12]
discussed on interval-valued fuzzy quasi-ideals of semigroups. In 2020, the concept
of fuzzy semigroups has been discussed in research on the prime fuzzy m-bi ideals
in semigroups[14], Manahon et al. [13] studied on BF-semigroups and fuzzy
BF-semigroups, and T. Gaketem[5] introduced cubic interior ideals in semigroups, etc.

The aim of this paper we define definition of Q-cubic bi-quasi ideal in semigroup and
properties of Q-cubic bi-quasi ideals are investigated. Then we characterized regular
semigroup in terms of Q-cubic bi-quasi ideal.

2. PRELIMINARIES

In this section, we give definitions that are used in this paper. By a subsemigroup of
a semigroup S we mean a non-empty subset A of S such that A2 ⊆ A, and by a left
(right) ideal of S we mean a non-empty subset A of S such that SA ⊆ A(AS ⊆ A).
By a two-sided ideal or simply an ideal, we mean a non-empty subset of a semigroup S
that is both a left and a right ideal of S. A non-empty subset A of S is called an interior
ideal of S if SAS ⊆ A. A subsemigroup A of a semigroup S is called a bi-ideal of S
if ASA ⊆ A. A non-empty subset A of a semigroup S is called a quasi-ideal of S if
AS ∩ SA ⊆ A. A subsemigroup A of a semigroup of a semigroup S is said to be left
(right) bi-quasi ideal of S if SA ∩ ASA ⊆ A(AS ∩ ASA ⊆ A). A subsemigroup A
of a semigroup S is said to be bi-quasi ideal of S if it is both a left bi-quasi and right
bi-quasi ideal of S.

Definition 1. Let X and Q be non-empty sets. A mapping f : X ×Q→ [0, 1] is called
a Q-fuzzy set of X over Q.

Definition 2. let X and Q be a non-empty set. A mapping f̄ : X × Q → D[0, 1] is
called interval Q-fuzzy set over Q, where D[0, 1] denote the family of all closed sub
interval of [0, 1] and f̄ = [f−, f+], where f− and f+ are Q-fuzzy sets of X such that
f−(x, q) ≤ f+(x, q) for all x ∈ X, q ∈ Q.

Definition 3. Let X and Q be a non-empty sets. A Q-cubic set A is an object having
the form A = {((x, q), f̄(x, q), ω(x, q)) : x ∈ X, q ∈ Q} which is briefly denoted by
A = (f̄ , ω) with respect to Q, where f̄ : X × Q → D[0, 1] is an interval Q-fuzzy set
over Q and ω : X ×Q→ [0, 1] is a Q-fuzzy set over Q.

Definition 4. Let A = (f̄A, ωA) be a Q-cubic set in X . Define U(A; t̄, n) = {x ∈
X|t̄ ⊆ f̄(x, q), ω(x, q) ≤ n}, where t̄ ∈ D[0, 1] and n ∈ [0, 1] is called the Q-cubic
level set of A.

For any non-empty subset I of a set X , the characteristic function of I is defined to be
a structure χI = {(x, f̄χI

(x, q), ωχI
(x, q)) : x ∈ X, q ∈ Q} which is briefly denoted by

χI = (f̄χI
, ωχI

) where,
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f̄χI
: X → [0, 1], x 7→ f̄χI

(x, q) :=

{
[1,1], x ∈ I;
[0,0], x /∈ I.

ωχI
: X → [0, 1], x 7→ ωχI

(x, q) :=

{
0, x ∈ I;
1, x /∈ I.

The whole cubic set S in a semigroup S is defined to be a structure

χS = {(x, f̄χS
(x, q), ωχS

(x, q)) : x ∈ S, q ∈ Q},

with f̄χS
(x, q) = [1, 1] and ωχS

(x, q) = 0. It will be briefly denoted by χS = (f̄χS
, ωχS

).

For two Q-cubic sets A = (f̄ , ω), B = (ḡ, υ) in a semigroup S, we define A v B if and
only if f̄⊆̄ḡ and ω � υ , where f̄⊆̄ḡ means that f̄(x, q) ⊆ ḡ(x, q) and ω � υ means
that ω(x, q) ≥ υ(x, q) for all x ∈ S, q ∈ Q.

The Q-cubic product of A = (f̄ , ω) and B = (ḡ, υ) is defined to be a Q-cubic set
A

∼◦ B = {((x, q), (f̄ ◦ ḡ)(x, q), (ω ◦ υ)(x, q)) : x ∈ S, q ∈ Q}

(f̄ ◦ ḡ)(x, q) =


⋃
x=yz

{f̄(y, q) ∩ ḡ(z, q)} for some x, y, z ∈ S, q ∈ Q;

0 otherwise.

(ω ◦ υ)(x, q) =


∧
y=yz

{ω(y, q) ∨ υ(z, q)} for some x, y, z ∈ S, q ∈ Q;

1 otherwise.

Let A = (f̄ , ω) and B = (ḡ, υ) be two Q-cubic sets in S. The intersection of A and B
denoted by A u B is the Q-cubic set. A u B = (f̄ ∩̄ḡ, ω g υ) with respect to Q, where
(f̄ ∩̄ḡ)(x, q) = f̄(x, q) ∩ ḡ(x, q) and (ω g υ)(x, q) = ω(x, q) ∨ υ(x, q).

The union of A and B denoted by A t B is the Q-cubic set. A t B = (f̄ ∪̄ḡ, ω f υ)
with respect to Q, where (f̄ ∪̄ḡ)(x, q) = f̄(x, q) ∪ ḡ(x, q) and (ω f υ)(x, q) =
ω(x, q) ∧ υ(x, q).

Definition 5. A Q-cubic set A = (f̄ , ω) of S is called a Q-cubic subsemigroup of S if
it satisfies the following conditions:

1. f̄(x, q) ∩ f̄(y, q) ⊆ f̄(xy, q),

2. ω(xy, q) ≤ ω(x, q) ∨ ω(y, q)

for all x, y ∈ S and q ∈ Q.
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Definition 6. A Q-cubic set A = (f̄ , ω) of S is called a Q-cubic left(resp.right) ideal of
S if it satisfies the following conditions:

1. f̄(y, q) ⊆ f̄(xy, q)(f̄(x, q) ⊆ f̄(xy, q)),

2. ω(xy, q) ≤ ω(y, q)(ω(xy, q) ≤ ω(x, q))

for all x, y ∈ S and q ∈ Q.

A Q-cubic set A = (f̄ , ω) of S is called a Q-cubic ideal of S if it is both Q-cubic left
ideal and Q-cubic right ideal of S.

3. Q-CUBIC BI-QUASI IDEALS OF SEMIGROUPS

In this section we define Q-cubic bi-quasi ideals in semigroup and investigation
properties of Q-cubic bi-quasi ideals.

Definition 7. A Q-cubic subsemigroup A = (f̄ , ω) of S is called a Q-cubic left(right)
bi-quasi ideal of S if it satisfies the following conditions:

1. f̄χS
◦ f̄ ∩̄f̄ ◦ f̄χS

◦ f̄⊆̄f̄ ( f̄ ◦ f̄χS
∩̄f̄ ◦ f̄χS

◦ f̄⊆̄f̄ ),

2. ω � ωχS
◦ ω g ω ◦ ωχS

◦ ω (ω � ω ◦ ωχS
g ω ◦ ωχS

◦ ω),

A Q-fuzzy set A = (f̄ , ω) of semigroup S is called a Q-cubic bi-quasi ideal if it is both
Q-cubic left bi-quasi ideal and Q-cubic right bi-quasi ideal of S.

Theorem 8. Every Q-cubic left ideal of a semigroup S is a Q-cubic left bi-quasi ideal
of S.

Proof. Let A = (f̄ , ω) be a Q-cubic left ideal of a semigroup S. Let x ∈ S and q ∈ Q.
Then

(f̄χS
◦ f̄)(x, q) =

⋃
x=yz

{f̄χS
(y, q) ∩ f̄(z, q)}

=
⋃
x=yz

{f̄(z, q)}

⊆
⋃
x=yz

{f̄(yz, q)}

=
⋃
x=yz

{f̄(x, q)}

= f̄(x, q).

Thus f̄χS
◦ f̄ ∩̄f̄ ◦ f̄χS

◦ f̄⊆̄f̄ .
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And

(ωχS
◦ ω)(x, q) =

∧
x=yz

{ωχS
(y, q) ∨ ω(z, q)}

=
∧
x=yz

{ωχS
(y, q) ∨ ω(z, q)}

=
∧
x=yz

{ω(z, q)}

≥
∧
x=yz

{ω(yz, q)}

=
∧
x=yz

{ω(x, q)}

= ω(x, q).

Then ωχS
◦ ω g ω ◦ ωχS

◦ ω � ω.

Hence A = (f̄ , ω) be a Q-cubic left bi-quasi ideal of the semigroup S.

Theorem 9. Every Q-cubic left ideal of a semigroup S is a Q-cubic right bi-quasi ideal
of S.

Proof. Let A = (f̄ , ω) be a Q-cubic left ideal of a semigroup S. Let x ∈ S and q ∈ Q.
We have (f̄χS

◦ f̄)(x, q) ⊆ f̄(x, q) and (ωχS
◦ ω)(x, q) ≥ ω(x, q). Then

(f̄ ◦ f̄χS
◦ f̄)(x, q) =

⋃
x=abc

{f̄(a, q) ∩ (f̄χS
◦ f̄)(bc, q)}

⊆
⋃
x=abc

{f̄(a, q) ∩ f̄(bc, q)}

⊆ f̄(x, q).

Thus f̄ ◦ f̄χS
∩̄f̄ ◦ f̄χS

◦ f̄⊆̄f̄ .

And

(ω ◦ ωχS
◦ ω)(x, q) =

∧
x=abc

{ω(a, q) ∨ (ωχS
◦ ω)(bc, q)}

≥
∧
x=abc

{ω(a, q) ∨ ω(bc, q)}

≥ ω(x, q).

Now ω ◦ ωχS
g ω ◦ ωχS

◦ ω � ω.

Hence A = (f̄ , ω) be a Q-cubic right bi-quasi ideal of the semigroup S.
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Theorem 10. Every Q-cubic right ideal of a semigroup S is a Q-cubic right bi-quasi
ideal of S.

Proof. LetA = (f̄ , ω) be a Q-cubic right ideal of a semigroup S. Let x ∈ S and q ∈ Q.
Then

(f̄ ◦ f̄χS
)(x, q) =

⋃
x=yz

{f̄(y, q) ∩ f̄χS
(z, q)}

=
⋃
x=yz

{f̄(y, q)}

⊆
⋃
x=yz

{f̄(yz, q)}

=
⋃
x=yz

{f̄(x, q)}

= f̄(x, q).

Thus f̄ ◦ f̄χS
∩̄f̄ ◦ f̄χS

◦ f̄⊆̄f̄ .

And

(ω ◦ ωχS
)(x, q) =

∧
x=yz

{ω(y, q) ∨ ωχS
(z, q)}

=
∧
x=yz

{ω(z, q)}

≥
∧
x=yz

{ω(yz, q)}

=
∧
x=yz

{ω(x, q)}

= ω(x, q).

Then ω ◦ ωχS
g ω ◦ ωχS

◦ ω � ω.

Hence A = (f̄ , ω) be a Q-cubic right bi-quasi ideal of the semigroup S.

Corollary 11. Every Q-cubic right ideal of a semigroup S is a Q-cubic left bi-quasi
ideal of S.

Corollary 12. Every Q-cubic right(left) ideal of a semigroup S is a Q-cubic bi-quasi
ideal of S.

Theorem 13. Let S be a semigroup and A = (f̄ , ω) be a non-empty Q-fuzzy set of S.
A Q-fuzzy set A = (f̄ , ω) is a Q-cubic left bi-quasi ideal of a semigroup S if and only if
the Q-cubic level set U(A; t̄, n) of A is a left bi-quasi ideal of a semigroup S for every
t̄ ∈ D[0, 1], n ∈ [0, 1], where U(A; t̄, n) 6= ∅.
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Proof. Assume that A = (f̄ , ω) is a Q-cubic left bi-quasi ideal of a semigroup S,
U(A; t̄, n) 6= ∅, t̄ ∈ D[0, 1], n ∈ [0, 1].

Let x ∈ SU(A; t̄, n) ∩ U(A; t̄, n)SU(A; t̄, n). Then x = ba = cde where b, d ∈ S
and a, c, e ∈ U(A; t̄, n). Then t̄ ⊆ (f̄χS

◦ f̄)(x, q) and t̄ ⊆ (f̄ ◦ f̄χS
◦ f̄)(x, q) implies

that t̄ ⊆ f̄(x, q) and (ωχS
◦ ω)(x, q) ≤ n and (ω ◦ ωχS

◦ ω)(x, q) ≤ n implies that
ω(x, q) ≤ n. Then x ∈ U(A; t̄, n). Therefore U(A; t̄, n) is a left bi-quasi ideal of the
semigroup S.

Conversely suppose that U(A; t̄, n) is a left bi-quasi ideal of the semigroup S, for all
t̄ ∈ Im(f̄) and n ∈ Im(ω). Let x, y ∈ S, q ∈ Q. Then f̄(x, q) = t̄1, f̄(y, q) =
t̄2, ω(x, q) = n1, ω(y, q) = n2, t̄1 ⊇ t̄2 and n1 ≤ n2. Then x, y ∈ U(A; t̄, n).
We have SU(A; l̄, m) ∩ U(A; l̄, m)SU(A; l̄, m) ⊆ U(A; l̄, m), for all l̄ ∈ Im(f̄)
and m ∈ Im(ω). Suppose t̄ = min{Im(f̄)} and n = max{Im(ω)}. Then
SU(A; t̄, n) ∩ U(A; t̄, n)SU(A; t̄, n) ⊆ U(A; t̄, n). Therefor f̄χS

◦ f̄ ∩̄f̄ ◦ f̄χS
◦ f̄⊆̄f̄

and ω � ωχS
◦ ω g ω ◦ ωχS

◦ ω. Hence A = (f̄ , ω) is a Q-cubic left bi-quasi ideal of a
semigroup S.

Corollary 14. Let S be a semigroup and A = (f̄ , ω) be a non-empty Q-fuzzy set of S.
A Q-fuzzy set A = (f̄ , ω) is a Q-cubic right bi-quasi ideal of a semigroup S if and only
if the Q-cubic level set U(A; t̄, n) of A is a right bi-quasi ideal of a semigroup S for
every t̄ ∈ D[0, 1], n ∈ [0, 1], where U(A; t̄, n) 6= ∅.

Corollary 15. Let S be a semigroup and A = (f̄ , ω) be a non-empty Q-fuzzy set of
S. A Q-fuzzy set A = (f̄ , ω) is a Q-cubic bi-quasi ideal of a semigroup S if and only
if the Q-cubic level set U(A; t̄, n) of A is a bi-quasi ideal of a semigroup S for every
t̄ ∈ D[0, 1], n ∈ [0, 1], where U(A; t̄, n) 6= ∅.

Lemma 16. For non-empty subsets G and H of a semigroup S, we have

1. f̄χG
◦ f̄χH

= f̄χGH
,

2. f̄χG
∩̄f̄χH

= f̄χG∩H
,

3. ωχG
◦ ωχH

= ωχGH
,

4. ωχG
g ωχH

= ωχG∨H
.

Proof. It is straightforward.

Theorem 17. Let I be a non-empty subset of a semigroup S and χI = (f̄χI
, ωχI

) be the
characteristic function of I . Then I is a left bi-quasi ideal of a semigroup S if and only
if χI = (f̄χI

, ωχI
) is a Q-cubic left bi-quasi ideal of a semigroup S.
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Proof. Suppose I is a left bi-quasi ideal of S. Then I is a subsemigroup of S and
SI ∩ ISI ⊆ I . Obviously χI = (f̄χI

, ωχI
) is a Q-cubic subsemigroup of S. And

(f̄χS
◦ f̄χI

∩̄f̄χI
◦ f̄χS

◦ f̄χI
)(x, q) = (f̄χS

◦ f̄χI
)(x, q) ∩ (f̄χI

◦ f̄χS
◦ f̄χI

)(x, q)
= f̄χSI

(x, q) ∩ f̄χISI
(x, q)

= f̄χSI∩ISI
(x, q)

⊆ f̄χI
(x, q).

Thus, f̄χS
◦ f̄χI

◦ f̄χS
∩̄f̄χI

◦ f̄χS
◦ f̄χI

⊆̄f̄χI
. Similarly, we can show that

ωχS
◦ω ◦ωχS

gω ◦ωχS
◦ω � ω. Hence χI = (f̄χI

, ωχI
) is a Q-cubic left bi-quasi ideal

of S.

Conversely suppose that χI = (f̄χI
, ωχI

) is a Q-cubic left bi-quasi ideal of S. Then I is
a subsemigroup of S. We have

(f̄χS
◦ f̄χI

)(x, q) ∩ (f̄χI
◦ f̄χS

◦ f̄χI
)(x, q) ⊆ f̄χI

(x, q)

⇒ f̄χSI
(x, q) ∩ f̄χISI

(x, q) ⊆ f̄χI
(x, q)

⇒ f̄χSI∩ISI
(x, q) ⊆ f̄χI

(x, q).

Thus SI ∩ ISI ⊆ I . Hence I is a left bi-quasi ideal of a semigroup S.

Corollary 18. Let I be a non-empty subset of a semigroup S and χI = (f̄χI
, ωχI

) be
the characteristic function of I . Then I is a right bi-quasi ideal of a semigroup S if and
only if χI = (f̄χI

, ωχI
) is a Q-cubic right bi-quasi ideal of a semigroup S.

Corollary 19. Let I be a non-empty subset of a semigroup S and χI = (f̄χI
, ωχI

) be
the characteristic function of I . Then I is a bi-quasi ideal of a semigroup S if and only
if χI = (f̄χI

, ωχI
) is a Q-cubic bi-quasi ideal of a semigroup S.

Theorem 20. if A = (f̄ , ω) and B = (ḡ, υ) are Q-cubic bi-quasi ideals of a semigroup
S, then A uB = (f̄ ∩̄ḡ, ω g υ) is a Q-cubic left bi-quasi ideal of a semigroup S.

Proof. Let A = (f̄ , ω) and B = (ḡ, υ) be Q-cubic bi-quasi ideals of a semigroup S.
Then

(f̄χS
◦ f̄ ∩̄ḡ)(x, q) =

⋃
x=ab

{f̄χS
(a, q) ∩ (f̄ ∩ ḡ)(b, q)}

=
⋃
x=ab

{f̄χS
(a, q) ∩ f̄(b, q) ∩ ḡ(b, q)}

=
⋃
x=ab

{{f̄χS
(a, q) ∩ f̄(b, q)} ∩ {f̄χS

(a, q) ∩ ḡ(b, q)}}

=
⋃
x=ab

{f̄χS
(a, q) ∩ f̄(b, q)} ∩

⋃
x=ab

{f̄χS
(a, q) ∩ ḡ(b, q)}

= (f̄χS
◦ f̄)(x, q) ∩ (f̄χS

◦ ḡ)(x, q)

= (f̄χS
◦ f̄ ∩̄f̄χS

◦ ḡ)(x, q).
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Therefore f̄χS
◦ f̄ ∩̄ḡ = f̄χS

◦ f̄ ∩̄f̄χS
◦ ḡ.

(f̄ ∩̄ḡ ◦ f̄χS
◦ f̄ ∩̄ḡ)(x, q) =

⋃
x=abc

{(f̄ ∩ ḡ)(a, q) ∩ (f̄χS
◦ f̄ ∩ ḡ)(bc, q)}

=
⋃
x=abc

{(f̄ ∩ ḡ)(a, q) ∩ {(f̄χS
◦ f̄ ∩ f̄χS

◦ ḡ)(bc, q)}}

=
⋃
x=abc

{(f̄ ∩ ḡ)(a, q) ∩ {(f̄χS
◦ f̄)(bc, q) ∩ (f̄χS

◦ ḡ)(bc, q)}}

=
⋃
x=abc

{{f̄(a, q) ∩ (f̄χS
◦ f̄)(bc, q)} ∩ {ḡ(a, q) ∩ (f̄χS

◦ ḡ)(bc, q)}}

= (f̄ ◦ f̄χS
◦ f̄)(x, q) ∩ (ḡ ◦ f̄χS

◦ ḡ)(x, q)

= (f̄ ◦ f̄χS
◦ f̄ ∩̄ḡ ◦ f̄χS

◦ ḡ)(x, q).

Therefore f̄ ∩̄ḡ ◦ f̄χS
◦ f̄ ∩̄ḡ = f̄ ◦ f̄χS

◦ f̄ ∩̄ḡ ◦ f̄χS
◦ ḡ.

Then f̄χS
◦(f̄ ∩̄ḡ)∩̄(f̄ ∩̄ḡ)◦ f̄χS

◦(f̄ ∩̄ḡ) = f̄χS
◦ f̄ ∩̄f̄ ◦ f̄χS

◦ f̄ ∩̄f̄χS
◦ ḡ∩̄ḡ◦ f̄χS

◦ ḡ⊆̄f̄ ∩̄ḡ.
Similarly, we can show that ωχS

◦ ωg υg ωg υ ◦ ωχS
◦ ωg υ = ωχS

◦ ω ◦gωχS
◦ υ ◦

gω ◦ ωχS
◦ ω g υ ◦ ωχS

◦ υ � ω g υ. Therefore A u B = (f̄ ∩̄ḡ, ω g υ) is a Q-cubic
left bi-quasi ideal of a semigroup S.

Corollary 21. IfA = (f̄ , ω) andB = (ḡ, υ) are Q-cubic bi-quasi ideals of a semigroup
S, then A uB = (f̄ ∩̄ḡ, ω g υ) is a Q-cubic right bi-quasi ideal of a semigroup S.

Corollary 22. IfA = (f̄ , ω) andB = (ḡ, υ) are Q-cubic bi-quasi ideals of a semigroup
S, then A uB = (f̄ ∩̄ḡ, ω g υ) is a Q-cubic bi-quasi ideal of a semigroup S.

Theorem 23. If A = (f̄ , ω) and B = (ḡ, υ) are Q-cubic right ideals and a Q-cubic
left ideal of a semigroup S respectively. Then A u B = (f̄ ∩̄ḡ, ω g υ) is a Q-cubic left
bi-quasi ideal of a semigroup S.

Proof. It following Theorem 20.

Corollary 24. If A = (f̄ , ω) and B = (ḡ, υ) are Q-cubic right ideals and a Q-cubic
left ideal of a semigroup S respectively. Then A uB = (f̄ ∩̄ḡ, ω g υ)is a Q-cubic right
bi-quasi ideal of a semigroup S.

Corollary 25. IfA = (f̄ , ω) andB = (ḡ, υ) are Q-cubic right ideals and a Q-cubic left
ideal of a semigroup S respectively. Then A uB = (f̄ ∩̄ḡ, ω g υ) is a Q-cubic bi-quasi
ideal of a semigroup S.

Definition 26. A semigroup S is called regular if for all a ∈ S there exists x ∈ S such
that a = axa.

Definition 27. A Q-cubic subsemigroupA = (f̄ , ω) of S is called a Q-cubic quasi ideal
of S if it satisfies the following conditions:
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1. f̄χS
◦ f̄ ∩̄f̄ ◦ f̄χS

⊆̄f̄ ,

2. ω � ωχS
◦ ω g ω ◦ ωχS

.

Theorem 28. If A = (f̄ , ω) be a Q-cubic quasi ideal of a regular semigroup S. Then
A = (f̄ , ω) is a Q-cubic ideal of a semigroup S.

Proof. Assume that A = (f̄ , ω) is a Q-cubic quasi-ideal of S and let x, y ∈ S, q ∈ Q.
Then

f̄(xy, q) ⊇ (f̄ ◦ f̄χS
)(xy, q) ∩ (f̄χS

◦ f̄)(xy, q)

=
⋃
xy=ab

{f̄(a, q) ∩ f̄χS
(b, q)} ∩

⋃
xy=ij

{f̄χS
(i, q) ∩ f̄(j, q)}

⊇ f̄(x, q) ∩ f̄χS
(y, q) ∩ f̄χS

(x, q) ∩ f̄(y, q)

= f̄(x, q) ∩ f̄(y, q).

Thus f̄(xy, q) ⊇ f̄(x, q) ∩ f̄(y, q). And similarly we can show that ω(xy, q) ≤
ω(x, q) ∨ ω(y, q).
Hence A = (f̄ , ω) is a Q-cubic subsemigroup of S. Let x, y, z ∈ S, q ∈ Q. Then

f̄(xyz) ⊇ (f̄ ◦ f̄χS
)(xyz, q) ∩ (f̄χS

◦ f̄)(xyz, q)

=
⋃

xyz=ab

{f̄(a, q) ∩ f̄χS
(b, q)} ∩

⋃
xyz=ij

{f̄χS
(i, q) ∩ f̄(j, q)}

⊇ f̄(x, q) ∩ f̄χS
(yz, q) ∩ f̄χS

(xy, q) ∩ f̄(z, q)

= f̄(x, q) ∩ f̄(z, q).

Thus f̄(xyz, q) ⊇ f̄(x, q) ∩ f̄(z, q). And similarly we can show that ω(xyz, q) ≤
ω(x, q) ∨ ω(z, q). Hence A = (f̄ , ω) is a Q-cubic bi-ideal of S. Since S is regular,
A = (f̄ , ω) is a Q-cubic bi-ideal of S and x, y ∈ S we have xy ∈ (xSx)S ⊆ xSx. Thus
there exists k ∈ S such that xy = xkx. So

f̄(xy, q) = f̄(xkx, q) ⊇ f̄(x, q) ∩ f̄(x, q) = f̄(x, q).

And similarly ω(xy, q) ≤ ω(x, q). Thus, A = (f̄ , ω) is a Q-cubic right ideal of
S. Similarly, we can show that f̄(xy, q) ⊇ f̄(y, q) and ω(xy, q) ≤ ω(y, q). Thus
A = (f̄ , ω) is a Q-cubic left ideal of S. Hence A = (f̄ , ω) is a Q-cubic ideal of S.

Theorem 29. Let S be a regular semigroup. Then A = (f̄ , ω) is a Q-cubic left bi-quasi
ideal of S if and only if A = (f̄ , ω) is a Q-cubic quasi ideal of S.

Proof. Let A = (f̄ , ω) is a Q-cubic left bi-quasi ideal of S and x ∈ S, q ∈ Q. Thus,
(f̄χS

◦ f̄)(x, q) ∩ (f̄ ◦ f̄χS
◦ f̄)(x, q) ⊆ f̄(x, q) and ω(x, q) � (ωχS

◦ ω)(x, q) g (ω ◦
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ωχS
◦ω)(x, q). Suppose (f̄χS

◦ f̄)(x, q) ⊇ f̄(x, q). Since S is regular, there exists y ∈ S
such that x = xyx. Then

(f̄ ◦ f̄χS
◦ f̄)(x, q) =

⋃
x=xyx

{f̄(xy, q) ∩ (f̄χS
◦ f̄)(x, q)}

⊇
⋃

x=xyx

{f̄(x, q) ∩ f̄(x, q)}

= f̄(x, q).

Which is a contradiction. Therefore A = (f̄ , ω) is a Q-cubic quasi ideal of S. By
Theorem 28, converse is true.

Corollary 30. Let S be a regular semigroup. Then A = (f̄ , ω) is a Q-cubic right
bi-quasi ideal of S if and only if A = (f̄ , ω) is a Q-cubic quasi ideal of S.

Corollary 31. Let S be a regular semigroup. Then A = (f̄ , ω) is a Q-cubic bi-quasi
ideal of S if and only if A = (f̄ , ω) is a Q-cubic quasi ideal of S.

Theorem 32. Let S be a semigroup. S is a regular semigroup if and only if B =
SB ∩BSB, for every bi-quasi ideal of S.

Theorem 33. Let S be a semigroup. Then S is a regular if and only if f̄ =
f̄χS
◦ f̄ ∩̄f̄ ◦ f̄χS

◦ f̄ and ω = ωχS
◦ ω g ω ◦ ωχS

◦ ω, for any Q-cubic left bi-quasi
ideal of a semigroup S.

Proof. LetA = (f̄ , ω) be a Q-cubic left bi-quasi ideal of the regular semigroup S. Then
f̄χS
◦ f̄ ∩̄f̄ ◦ f̄χS

◦ f̄⊆̄f̄ and ω � ωχS
◦ ω g ω ◦ ωχS

◦ ω. Let x ∈ S, q ∈ Q. Since S is
regular, there exists a ∈ S such that x = xax. Thus

(f̄ ◦ f̄χS
◦ f̄)(x, q) =

⋃
x=xax

{f̄(x, q) ∩ (f̄χS
◦ f̄)(ax, q)}

=
⋃

x=xax

{f̄(x, q) ∩
⋃

ax=yz

{f̄χS
(y, q) ∩ f̄(z, q)}}

⊇
⋃

x=xax

{f̄(x, q) ∩ f̄(x, q)}

= f̄(x, q).

Similarly, (f̄χS
◦ f̄)(x, q) ⊇ f̄(x, q), ω(x, q) ≥ (ωχS

◦ ω)(x, q) and ω(x, q) ≥
(ω ◦ωχS

◦ω)(x, q). Therefore f̄ = f̄χS
◦ f̄ ∩̄f̄ ◦ f̄χS

◦ f̄ and ω = ωχS
◦ωgω ◦ωχS

◦ω.

Conversely suppose that let B be a left bi-quasi ideal of a semigroup S. Then by
Theorem 17, χB = (f̄χB

, ωχB
) be a Q-cubic bi-interior ideal of the semigroup S. Thus

f̄χB
(x, q) = (f̄χS

◦ f̄χB
)(x, q) ∩ (f̄χB

◦ f̄χS
◦ f̄χB

)(x, q)

= f̄χSB
(x, q) ∩ f̄χBSB

(x, q)

= f̄χSB∩BSB
(x, q).

Therefore B = SB ∩BSB. By Theorem 32, S is regular semigroup.
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Corollary 34. Let S be a semigroup. Then S is a regular if and only if f̄ =
f̄χS
◦ f̄ ∩̄f̄ ◦ f̄χS

◦ f̄ and ω = ωχS
◦ ω g ω ◦ ωχS

◦ ω , for any Q-cubic right bi-quasi
ideal of a semigroup S.

Corollary 35. Let S be a semigroup. Then S is a regular if and only if f̄ =
f̄χS
◦ f̄ ∩̄f̄ ◦ f̄χS

◦ f̄ and ω = ωχS
◦ ω g ω ◦ ωχS

◦ ω or f̄ = f̄ ◦ f̄χS
∩̄f̄ ◦ f̄χS

◦ f̄
and ω = ω ◦ ωχS

g ω ◦ ωχS
◦ ω , for any Q-cubic bi-quasi ideal of a semigroup S.

Theorem 36. Let S be a semigroup. Then S is a regular if and only if f̄ ∩̄ḡ⊆̄ḡ ◦ f̄ ∩̄f̄ ◦
ḡ ◦ f̄ and ω g υ � υ ◦ ω g ω ◦ υ ◦ ω, for every Q-cubic left bi-quasi ideal A = (f̄ , ω)
and every Q-cubic ideal B = (ḡ, υ) of a semigroup S.

Proof. Let S be a regular semigroup and x ∈ S. Then there exists y ∈ S such that
x = xyx.

(f̄ ◦ ḡ ◦ f̄)(x, q) =
⋃

x=xyx

{(f̄ ◦ ḡ)(xy, q) ∩ f̄(x, q)}

=
⋃

x=xyx

{
⋃

xy=xyxy

{f̄(x, q) ∩ ḡ(yxy, q)} ∩ f̄(x, q)}

⊇ {f̄(x, q) ∩ ḡ(x, q)} ∩ f̄(x, q)

= f̄(x, q) ∩ ḡ(x, q)

= (f̄ ∩̄ḡ)(x, q).

And

(ḡ ◦ f̄)(x, q) =
⋃

x=xyx

{ḡ(xy, q) ∩ f̄(x, q)}

⊇ ḡ(x, q) ∩ f̄(x, q)

= (ḡ∩̄f̄)(x, q).

Similary we can prove (ω◦υ◦ω)(x, q) � (υgω)(x, q) and (υ◦ω)(x, q) � (υgω)(x, q).
Hence f̄ ∩̄ḡ⊆̄ḡ ◦ f̄ ∩̄f̄ ◦ ḡ ◦ f̄ and ω g υ � υ ◦ ω g ω ◦ υ ◦ ω.

Conversely suppose that the condition holds. Let A = (f̄ , ω) be a Q-cubic left bi-quasi
ideal. We have f̄ ∩̄f̄χS

⊆̄f̄χS
◦ f̄ ∩̄f̄ ◦ f̄χS

◦ f̄ and ω g ωχS
� ω ◦ ωχS

g ω ◦ ωχS
◦ ω

implies that f̄⊆̄f̄χS
◦ f̄ ◦ ∩̄f̄ ◦ f̄χS

◦ f̄ and ω � ω ◦ ωχS
g ω ◦ ωχS

◦ ω. By Theorem 33,
S is a regular semigroup.

Corollary 37. Let S be a semigroup. Then S is a regular if and only if f̄ ∩̄ḡ ⊆
ḡ ◦ f̄ ∩̄f̄ ◦ ḡ ◦ f̄ and ω g υ � υ ◦ ω g ω ◦ υ ◦ ω, for every Q-cubic right bi-quasi
ideal A = (f̄ , ω) and every Q-cubic ideal B = (ḡ, υ) of a semigroup S.

Corollary 38. Let S be a semigroup. Then S is a regular if and only if f̄ ∩̄ḡ ⊆
ḡ ◦ f̄ ∩̄f̄ ◦ ḡ ◦ f̄ and ω g υ � υ ◦ ω g ω ◦ υ ◦ ω, for every Q-cubic bi-quasi ideal
A = (f̄ , ω) and every Q-cubic ideal B = (ḡ, υ) of a semigroup S.



Q-Cubic bi-quasi Ideals of Semigroups 565

REFERENCES

[1] Atanassov, K., 1986, ”Intuitionistic fuzzy sets”, Fuzzy Sets and Systems, 20(1),
pp.87–96.

[2] Atanassov K., 1994, ”New operations defined over the intuitionistic Q-fuzzy sets”,
Fuzzy Sets and Systems, 61, PP.137–142.

[3] Chinnadurai, C. and Bharathivelan, K., 2016, ”Cubic ideal of Γ-semigroups”,
International Journal of Current Research and Modern Education, 1(2),
pp.138–150.

[4] Chinram, R. and Panityakul, T., 2020, ”Rough Pythagorean fuzzy ideals in ternary
semigroups”, Journal of Mathematics and Computer Science, 20(4), pp.302–312.

[5] Gaketem T., ”Cubic Interior Ideal in Semigroups”, Azerbaijan Journal of
Mathematics, 10(2), pp.85-104.

[6] Jun, YB., Kim, C.S., and Yang, K.O, 2012, ”Cubic sets”, Annals of Fuzzy
Mathematics and Informatics, 6(1), pp.83–98.

[7] Kim, K.H., 2006, ”On Intuitionistic Q-Fuzzy Semiprime Ideals in Semigroups”,
Advances in Fuzzy Mathematics, 1(1), pp.15–21.

[8] Kuroki, N., 1981, ”On fuzzy ideals and fuzzy bi-ideals in semigroups”, Fuzzy Sets
and Systems, 5, pp.203—215.

[9] Kuroki, N., 1982, ”Fuzzy semiprime ideals in semigroups”, Fuzzy Sets and
Systems, 8, pp.71–79.

[10] Kuroki, N., 1991, ”On fuzzy semigroups”, Information Sciences, 53,
pp.203—236.

[11] Rao, M.M.K., 2017, ”Bi-quasi ideals an fuzzy bi-ideals of Γ- semigroups”,
Bulletion of the International Mathematical Virtual Instituste,7, pp.231–242.

[12] Thillaigovindan, N., and Chinnadurai, V., 2009, ”On interval valued fuzzy
quasi-ideals of semigroups”, East Asian mathematical journal, 25(4), pp.441–453.

[13] Manahon, M., Bantug, J., and Endam, J., 2020, ”On BF-semigroups and
Fuzzy BF-semigroups”, Journal of Mathematics and Computer Science, 20(4),
pp.325–333.

[14] Munir, M., Kausar, N., Salahuddin, and Tehreem, 2020, ”On the prime fuzzy
m-bi ideals in semigroups”, Journal of Mathematics and Computer Science, 20(4),
pp.357–365.



566 Natthinee Deetae, Pannawit Khamrot

[15] Naraynan, A.L. and Manikantan, T., 2006, ”Interval valued fuzzy ideal by an
interval valued fuzzy subset in semigroups”, Journal of Applied Mathematics and
Computing, 20(1-2), pp.455–464.

[16] Umar, S., Hadi, A., and Kham, A., 2015, ”On prime cubic bi-ideals of
semigroups”, Annals of Fuzzy Mathematics and Informatics, 9(6), pp.957–974.

[17] Zadeh, L.A, 1965, ”Fuzzy sets”, Information and Control, 8, pp.338–353.


