

Q-Cubic bi-quasi Ideals of Semigroups

Natthinee Deetae¹ and Pannawit Khamrot ^{*, 2}

¹*Department of Statistics, Faculty of Science and Technology, Pibulsongkram Rajabhat University, Phitsanulok 65000, Thailand.*

²*Department of Mathematics, Faculty of Sciences and Agricultural Technology, Rajamangala University of Technology Lanna, Phitsanulok 65000, Thailand.*

Abstract

In this paper, we introduce the notion of a Q-cubic bi-quasi ideal of semigroup and we characterize the regular semigroup in terms of a Q-cubic bi-quasi ideal of a semigroup.

AMS subject classification: 16Y60, 08A72, 03G25, 03E72.

Keywords: semigroup, regular semigroup, Q-cubic ideal, Q-cubic bi-quasi ideal.

1. INTRODUCTION

In 1965, the fundamental concept of fuzzy sets was introduced by Zadeh [17]. At present, it is an important tool in science, engineering, computer science, control engineering, etc. In 1979, Kuroki [8, 9, 10] was given the idea of fuzzy ideal, fuzzy bi-ideals, and fuzzy interior ideals in semigroups. Later, concepts were expanded about interval-valued fuzzy sets that have many applications such as approximate reasoning, image processing, decision making, medicine, and mobile networks, etc. In 2006 [15], Narayanan and Manikanran initiated the notion of interval valued fuzzy ideal in semigroup. In 2012, Jun [6], introduced a new notion, called a cubic set, and investigated several properties and introduced cubic subsemigroups and cubic left (right) ideals of semigroups. Later, in 2015 Sadaf et al. [16], discussed cubic bi-ideal of a semigroup. In later years V. Chinnadurai and K. Bharathivelan[3], studied cubic ideal in Γ -semigroup and PO- Γ -semigroup.

*Corresponding author's E-mail: pk_g@rmutl.ac.th

The idea of an intuitionistic Q-fuzzy set was first discussed by Atanassov [1, 2], as a generalization of the notion of a fuzzy set. Kyung Ho Kim[7] introduced on intuitionistic Q-Fuzzy semiprime ideals in Semigroups. Thillaigovindan et al.[12] discussed on interval-valued fuzzy quasi-ideals of semigroups. In 2020, the concept of fuzzy semigroups has been discussed in research on the prime fuzzy m-bi ideals in semigroups[14], Manahon et al. [13] studied on BF-semigroups and fuzzy BF-semigroups, and T. Gaktem[5] introduced cubic interior ideals in semigroups, etc.

The aim of this paper we define definition of Q-cubic bi-quasi ideal in semigroup and properties of Q-cubic bi-quasi ideals are investigated. Then we characterized regular semigroup in terms of Q-cubic bi-quasi ideal.

2. PRELIMINARIES

In this section, we give definitions that are used in this paper. By a subsemigroup of a semigroup S we mean a non-empty subset A of S such that $A^2 \subseteq A$, and by a left (right) ideal of S we mean a non-empty subset A of S such that $SA \subseteq A$ ($AS \subseteq A$). By a two-sided ideal or simply an ideal, we mean a non-empty subset of a semigroup S that is both a left and a right ideal of S . A non-empty subset A of S is called an interior ideal of S if $SAS \subseteq A$. A subsemigroup A of a semigroup S is called a bi-ideal of S if $ASA \subseteq A$. A non-empty subset A of a semigroup S is called a quasi-ideal of S if $AS \cap SA \subseteq A$. A subsemigroup A of a semigroup of a semigroup S is said to be left (right) bi-quasi ideal of S if $SA \cap ASA \subseteq A$ ($AS \cap ASA \subseteq A$). A subsemigroup A of a semigroup S is said to be bi-quasi ideal of S if it is both a left bi-quasi and right bi-quasi ideal of S .

Definition 1. Let X and Q be non-empty sets. A mapping $f : X \times Q \rightarrow [0, 1]$ is called a Q-fuzzy set of X over Q .

Definition 2. let X and Q be a non-empty set. A mapping $\bar{f} : X \times Q \rightarrow D[0, 1]$ is called interval Q-fuzzy set over Q , where $D[0, 1]$ denote the family of all closed sub interval of $[0, 1]$ and $\bar{f} = [f^-, f^+]$, where f^- and f^+ are Q-fuzzy sets of X such that $f^-(x, q) \leq f^+(x, q)$ for all $x \in X, q \in Q$.

Definition 3. Let X and Q be a non-empty sets. A Q-cubic set A is an object having the form $A = \{((x, q), \bar{f}(x, q), \omega(x, q)) : x \in X, q \in Q\}$ which is briefly denoted by $A = (\bar{f}, \omega)$ with respect to Q , where $\bar{f} : X \times Q \rightarrow D[0, 1]$ is an interval Q-fuzzy set over Q and $\omega : X \times Q \rightarrow [0, 1]$ is a Q-fuzzy set over Q .

Definition 4. Let $A = (\bar{f}_A, \omega_A)$ be a Q-cubic set in X . Define $U(A; \bar{t}, n) = \{x \in X | \bar{t} \subseteq \bar{f}(x, q), \omega(x, q) \leq n\}$, where $\bar{t} \in D[0, 1]$ and $n \in [0, 1]$ is called the Q-cubic level set of A .

For any non-empty subset I of a set X , the characteristic function of I is defined to be a structure $\chi_I = \{(x, \bar{f}_{\chi_I}(x, q), \omega_{\chi_I}(x, q)) : x \in X, q \in Q\}$ which is briefly denoted by $\chi_I = (\bar{f}_{\chi_I}, \omega_{\chi_I})$ where,

$$\bar{f}_{\chi_I} : X \rightarrow [0, 1], x \mapsto \bar{f}_{\chi_I}(x, q) := \begin{cases} [1, 1], & x \in I; \\ [0, 0], & x \notin I. \end{cases}$$

$$\omega_{\chi_I} : X \rightarrow [0, 1], x \mapsto \omega_{\chi_I}(x, q) := \begin{cases} 0, & x \in I; \\ 1, & x \notin I. \end{cases}$$

The whole cubic set S in a semigroup S is defined to be a structure

$$\chi_S = \{(x, \bar{f}_{\chi_S}(x, q), \omega_{\chi_S}(x, q)) : x \in S, q \in Q\},$$

with $\bar{f}_{\chi_S}(x, q) = [1, 1]$ and $\omega_{\chi_S}(x, q) = 0$. It will be briefly denoted by $\chi_S = (\bar{f}_{\chi_S}, \omega_{\chi_S})$.

For two Q-cubic sets $A = (\bar{f}, \omega)$, $B = (\bar{g}, v)$ in a semigroup S , we define $A \sqsubseteq B$ if and only if $\bar{f} \bar{\sqsubseteq} \bar{g}$ and $\omega \succeq v$, where $\bar{f} \bar{\sqsubseteq} \bar{g}$ means that $\bar{f}(x, q) \subseteq \bar{g}(x, q)$ and $\omega \succeq v$ means that $\omega(x, q) \geq v(x, q)$ for all $x \in S, q \in Q$.

The Q-cubic product of $A = (\bar{f}, \omega)$ and $B = (\bar{g}, v)$ is defined to be a Q-cubic set $A \circ B = \{((x, q), (\bar{f} \circ \bar{g})(x, q), (\omega \circ v)(x, q)) : x \in S, q \in Q\}$

$$(\bar{f} \circ \bar{g})(x, q) = \begin{cases} \bigcup_{x=yz} \{\bar{f}(y, q) \cap \bar{g}(z, q)\} & \text{for some } x, y, z \in S, q \in Q; \\ 0 & \text{otherwise.} \end{cases}$$

$$(\omega \circ v)(x, q) = \begin{cases} \bigwedge_{y=yz} \{\omega(y, q) \vee v(z, q)\} & \text{for some } x, y, z \in S, q \in Q; \\ 1 & \text{otherwise.} \end{cases}$$

Let $A = (\bar{f}, \omega)$ and $B = (\bar{g}, v)$ be two Q-cubic sets in S . The intersection of A and B denoted by $A \sqcap B$ is the Q-cubic set. $A \sqcap B = (\bar{f} \bar{\sqcap} \bar{g}, \omega \curlyvee v)$ with respect to Q , where $(\bar{f} \bar{\sqcap} \bar{g})(x, q) = \bar{f}(x, q) \cap \bar{g}(x, q)$ and $(\omega \curlyvee v)(x, q) = \omega(x, q) \vee v(x, q)$.

The union of A and B denoted by $A \sqcup B$ is the Q-cubic set. $A \sqcup B = (\bar{f} \bar{\sqcup} \bar{g}, \omega \curlywedge v)$ with respect to Q , where $(\bar{f} \bar{\sqcup} \bar{g})(x, q) = \bar{f}(x, q) \cup \bar{g}(x, q)$ and $(\omega \curlywedge v)(x, q) = \omega(x, q) \wedge v(x, q)$.

Definition 5. A Q-cubic set $A = (\bar{f}, \omega)$ of S is called a Q-cubic subsemigroup of S if it satisfies the following conditions:

1. $\bar{f}(x, q) \cap \bar{f}(y, q) \subseteq \bar{f}(xy, q),$
2. $\omega(xy, q) \leq \omega(x, q) \vee \omega(y, q)$

for all $x, y \in S$ and $q \in Q$.

Definition 6. A Q-cubic set $A = (\bar{f}, \omega)$ of S is called a Q-cubic left(resp.right) ideal of S if it satisfies the following conditions:

1. $\bar{f}(y, q) \subseteq \bar{f}(xy, q) (\bar{f}(x, q) \subseteq \bar{f}(xy, q)),$
2. $\omega(xy, q) \leq \omega(y, q) (\omega(xy, q) \leq \omega(x, q))$

for all $x, y \in S$ and $q \in Q$.

A Q-cubic set $A = (\bar{f}, \omega)$ of S is called a Q-cubic ideal of S if it is both Q-cubic left ideal and Q-cubic right ideal of S .

3. Q-CUBIC BI-QUASI IDEALS OF SEMIGROUPS

In this section we define Q-cubic bi-quasi ideals in semigroup and investigation properties of Q-cubic bi-quasi ideals.

Definition 7. A Q-cubic subsemigroup $A = (\bar{f}, \omega)$ of S is called a Q-cubic left(right) bi-quasi ideal of S if it satisfies the following conditions:

1. $\bar{f}_{\chi_S} \circ \bar{f} \bar{\cap} \bar{f} \circ \bar{f}_{\chi_S} \circ \bar{f} \bar{\subseteq} \bar{f} (\bar{f} \circ \bar{f}_{\chi_S} \bar{\cap} \bar{f} \circ \bar{f}_{\chi_S} \circ \bar{f} \bar{\subseteq} \bar{f}),$
2. $\omega \preceq \omega_{\chi_S} \circ \omega \vee \omega \circ \omega_{\chi_S} \circ \omega (\omega \preceq \omega \circ \omega_{\chi_S} \vee \omega \circ \omega_{\chi_S} \circ \omega),$

A Q-fuzzy set $A = (\bar{f}, \omega)$ of semigroup S is called a Q-cubic bi-quasi ideal if it is both Q-cubic left bi-quasi ideal and Q-cubic right bi-quasi ideal of S .

Theorem 8. Every Q-cubic left ideal of a semigroup S is a Q-cubic left bi-quasi ideal of S .

Proof. Let $A = (\bar{f}, \omega)$ be a Q-cubic left ideal of a semigroup S . Let $x \in S$ and $q \in Q$. Then

$$\begin{aligned}
 (\bar{f}_{\chi_S} \circ \bar{f})(x, q) &= \bigcup_{x=yz} \{\bar{f}_{\chi_S}(y, q) \cap \bar{f}(z, q)\} \\
 &= \bigcup_{x=yz} \{\bar{f}(z, q)\} \\
 &\subseteq \bigcup_{x=yz} \{\bar{f}(yz, q)\} \\
 &= \bigcup_{x=yz} \{\bar{f}(x, q)\} \\
 &= \bar{f}(x, q).
 \end{aligned}$$

Thus $\bar{f}_{\chi_S} \circ \bar{f} \bar{\cap} \bar{f} \circ \bar{f}_{\chi_S} \circ \bar{f} \bar{\subseteq} \bar{f}$.

And

$$\begin{aligned}
 (\omega_{\chi_S} \circ \omega)(x, q) &= \bigwedge_{x=yz} \{\omega_{\chi_S}(y, q) \vee \omega(z, q)\} \\
 &= \bigwedge_{x=yz} \{\omega_{\chi_S}(y, q) \vee \omega(z, q)\} \\
 &= \bigwedge_{x=yz} \{\omega(z, q)\} \\
 &\geq \bigwedge_{x=yz} \{\omega(yz, q)\} \\
 &= \bigwedge_{x=yz} \{\omega(x, q)\} \\
 &= \omega(x, q).
 \end{aligned}$$

Then $\omega_{\chi_S} \circ \omega \vee \omega \circ \omega_{\chi_S} \circ \omega \succeq \omega$.

Hence $A = (\bar{f}, \omega)$ be a Q-cubic left bi-quasi ideal of the semigroup S . \square

Theorem 9. *Every Q-cubic left ideal of a semigroup S is a Q-cubic right bi-quasi ideal of S .*

Proof. Let $A = (\bar{f}, \omega)$ be a Q-cubic left ideal of a semigroup S . Let $x \in S$ and $q \in Q$. We have $(\bar{f}_{\chi_S} \circ \bar{f})(x, q) \subseteq \bar{f}(x, q)$ and $(\omega_{\chi_S} \circ \omega)(x, q) \geq \omega(x, q)$. Then

$$\begin{aligned}
 (\bar{f} \circ \bar{f}_{\chi_S} \circ \bar{f})(x, q) &= \bigcup_{x=abc} \{\bar{f}(a, q) \cap (\bar{f}_{\chi_S} \circ \bar{f})(bc, q)\} \\
 &\subseteq \bigcup_{x=abc} \{\bar{f}(a, q) \cap \bar{f}(bc, q)\} \\
 &\subseteq \bar{f}(x, q).
 \end{aligned}$$

Thus $\bar{f} \circ \bar{f}_{\chi_S} \cap \bar{f} \circ \bar{f}_{\chi_S} \circ \bar{f} \subseteq \bar{f}$.

And

$$\begin{aligned}
 (\omega \circ \omega_{\chi_S} \circ \omega)(x, q) &= \bigwedge_{x=abc} \{\omega(a, q) \vee (\omega_{\chi_S} \circ \omega)(bc, q)\} \\
 &\geq \bigwedge_{x=abc} \{\omega(a, q) \vee \omega(bc, q)\} \\
 &\geq \omega(x, q).
 \end{aligned}$$

Now $\omega \circ \omega_{\chi_S} \vee \omega \circ \omega_{\chi_S} \circ \omega \succeq \omega$.

Hence $A = (\bar{f}, \omega)$ be a Q-cubic right bi-quasi ideal of the semigroup S . \square

Theorem 10. Every Q -cubic right ideal of a semigroup S is a Q -cubic right bi-quasi ideal of S .

Proof. Let $A = (\bar{f}, \omega)$ be a Q -cubic right ideal of a semigroup S . Let $x \in S$ and $q \in Q$. Then

$$\begin{aligned} (\bar{f} \circ \bar{f}_{\chi_S})(x, q) &= \bigcup_{x=yz} \{\bar{f}(y, q) \cap \bar{f}_{\chi_S}(z, q)\} \\ &= \bigcup_{x=yz} \{\bar{f}(y, q)\} \\ &\subseteq \bigcup_{x=yz} \{\bar{f}(yz, q)\} \\ &= \bigcup_{x=yz} \{\bar{f}(x, q)\} \\ &= \bar{f}(x, q). \end{aligned}$$

Thus $\bar{f} \circ \bar{f}_{\chi_S} \bar{\cap} \bar{f} \circ \bar{f}_{\chi_S} \circ \bar{f} \subseteq \bar{f}$.

And

$$\begin{aligned} (\omega \circ \omega_{\chi_S})(x, q) &= \bigwedge_{x=yz} \{\omega(y, q) \vee \omega_{\chi_S}(z, q)\} \\ &= \bigwedge_{x=yz} \{\omega(z, q)\} \\ &\geq \bigwedge_{x=yz} \{\omega(yz, q)\} \\ &= \bigwedge_{x=yz} \{\omega(x, q)\} \\ &= \omega(x, q). \end{aligned}$$

Then $\omega \circ \omega_{\chi_S} \curlyvee \omega \circ \omega_{\chi_S} \circ \omega \succeq \omega$.

Hence $A = (\bar{f}, \omega)$ be a Q -cubic right bi-quasi ideal of the semigroup S . \square

Corollary 11. Every Q -cubic right ideal of a semigroup S is a Q -cubic left bi-quasi ideal of S .

Corollary 12. Every Q -cubic right(left) ideal of a semigroup S is a Q -cubic bi-quasi ideal of S .

Theorem 13. Let S be a semigroup and $A = (\bar{f}, \omega)$ be a non-empty Q -fuzzy set of S . A Q -fuzzy set $A = (\bar{f}, \omega)$ is a Q -cubic left bi-quasi ideal of a semigroup S if and only if the Q -cubic level set $U(A; \bar{t}, n)$ of A is a left bi-quasi ideal of a semigroup S for every $\bar{t} \in D[0, 1]$, $n \in [0, 1]$, where $U(A; \bar{t}, n) \neq \emptyset$.

Proof. Assume that $A = (\bar{f}, \omega)$ is a Q-cubic left bi-quasi ideal of a semigroup S , $U(A; \bar{t}, n) \neq \emptyset$, $\bar{t} \in D[0, 1]$, $n \in [0, 1]$.

Let $x \in SU(A; \bar{t}, n) \cap U(A; \bar{t}, n)SU(A; \bar{t}, n)$. Then $x = ba = cde$ where $b, d \in S$ and $a, c, e \in U(A; \bar{t}, n)$. Then $\bar{t} \subseteq (\bar{f}_{\chi_S} \circ \bar{f})(x, q)$ and $\bar{t} \subseteq (\bar{f} \circ \bar{f}_{\chi_S} \circ \bar{f})(x, q)$ implies that $\bar{t} \subseteq \bar{f}(x, q)$ and $(\omega_{\chi_S} \circ \omega)(x, q) \leq n$ and $(\omega \circ \omega_{\chi_S} \circ \omega)(x, q) \leq n$ implies that $\omega(x, q) \leq n$. Then $x \in U(A; \bar{t}, n)$. Therefore $U(A; \bar{t}, n)$ is a left bi-quasi ideal of the semigroup S .

Conversely suppose that $U(A; \bar{t}, n)$ is a left bi-quasi ideal of the semigroup S , for all $\bar{t} \in Im(\bar{f})$ and $n \in Im(\omega)$. Let $x, y \in S, q \in Q$. Then $\bar{f}(x, q) = \bar{t}_1, \bar{f}(y, q) = \bar{t}_2, \omega(x, q) = n_1, \omega(y, q) = n_2, \bar{t}_1 \supseteq \bar{t}_2$ and $n_1 \leq n_2$. Then $x, y \in U(A; \bar{t}, n)$. We have $SU(A; \bar{t}, m) \cap U(A; \bar{t}, m)SU(A; \bar{t}, m) \subseteq U(A; \bar{t}, m)$, for all $\bar{t} \in Im(\bar{f})$ and $m \in Im(\omega)$. Suppose $\bar{t} = \min\{Im(\bar{f})\}$ and $n = \max\{Im(\omega)\}$. Then $SU(A; \bar{t}, n) \cap U(A; \bar{t}, n)SU(A; \bar{t}, n) \subseteq U(A; \bar{t}, n)$. Therefor $\bar{f}_{\chi_S} \circ \bar{f} \bar{\cap} \bar{f} \circ \bar{f}_{\chi_S} \circ \bar{f} \subseteq \bar{f}$ and $\omega \preceq \omega_{\chi_S} \circ \omega \curlyvee \omega \circ \omega_{\chi_S} \circ \omega$. Hence $A = (\bar{f}, \omega)$ is a Q-cubic left bi-quasi ideal of a semigroup S . \square

Corollary 14. *Let S be a semigroup and $A = (\bar{f}, \omega)$ be a non-empty Q-fuzzy set of S . A Q-fuzzy set $A = (\bar{f}, \omega)$ is a Q-cubic right bi-quasi ideal of a semigroup S if and only if the Q-cubic level set $U(A; \bar{t}, n)$ of A is a right bi-quasi ideal of a semigroup S for every $\bar{t} \in D[0, 1], n \in [0, 1]$, where $U(A; \bar{t}, n) \neq \emptyset$.*

Corollary 15. *Let S be a semigroup and $A = (\bar{f}, \omega)$ be a non-empty Q-fuzzy set of S . A Q-fuzzy set $A = (\bar{f}, \omega)$ is a Q-cubic bi-quasi ideal of a semigroup S if and only if the Q-cubic level set $U(A; \bar{t}, n)$ of A is a bi-quasi ideal of a semigroup S for every $\bar{t} \in D[0, 1], n \in [0, 1]$, where $U(A; \bar{t}, n) \neq \emptyset$.*

Lemma 16. *For non-empty subsets G and H of a semigroup S , we have*

$$1. \bar{f}_{\chi_G} \circ \bar{f}_{\chi_H} = \bar{f}_{\chi_{GH}},$$

$$2. \bar{f}_{\chi_G} \bar{\cap} \bar{f}_{\chi_H} = \bar{f}_{\chi_{G \cap H}},$$

$$3. \omega_{\chi_G} \circ \omega_{\chi_H} = \omega_{\chi_{GH}},$$

$$4. \omega_{\chi_G} \curlyvee \omega_{\chi_H} = \omega_{\chi_{G \vee H}}.$$

Proof. It is straightforward. \square

Theorem 17. *Let I be a non-empty subset of a semigroup S and $\chi_I = (\bar{f}_{\chi_I}, \omega_{\chi_I})$ be the characteristic function of I . Then I is a left bi-quasi ideal of a semigroup S if and only if $\chi_I = (\bar{f}_{\chi_I}, \omega_{\chi_I})$ is a Q-cubic left bi-quasi ideal of a semigroup S .*

Proof. Suppose I is a left bi-quasi ideal of S . Then I is a subsemigroup of S and $SI \cap ISI \subseteq I$. Obviously $\chi_I = (\bar{f}_{\chi_I}, \omega_{\chi_I})$ is a Q-cubic subsemigroup of S . And

$$\begin{aligned} (\bar{f}_{\chi_S} \circ \bar{f}_{\chi_I} \bar{\cap} \bar{f}_{\chi_I} \circ \bar{f}_{\chi_S} \circ \bar{f}_{\chi_I})(x, q) &= (\bar{f}_{\chi_S} \circ \bar{f}_{\chi_I})(x, q) \cap (\bar{f}_{\chi_I} \circ \bar{f}_{\chi_S} \circ \bar{f}_{\chi_I})(x, q) \\ &= \bar{f}_{\chi_{SI}}(x, q) \cap \bar{f}_{\chi_{ISI}}(x, q) \\ &= \bar{f}_{\chi_{SI \cap ISI}}(x, q) \\ &\subseteq \bar{f}_{\chi_I}(x, q). \end{aligned}$$

Thus, $\bar{f}_{\chi_S} \circ \bar{f}_{\chi_I} \circ \bar{f}_{\chi_S} \bar{\cap} \bar{f}_{\chi_I} \circ \bar{f}_{\chi_S} \circ \bar{f}_{\chi_I} \subseteq \bar{f}_{\chi_I}$. Similarly, we can show that $\omega_{\chi_S} \circ \omega \circ \omega_{\chi_S} \curlyvee \omega \circ \omega_{\chi_S} \circ \omega \succeq \omega$. Hence $\chi_I = (\bar{f}_{\chi_I}, \omega_{\chi_I})$ is a Q-cubic left bi-quasi ideal of S .

Conversely suppose that $\chi_I = (\bar{f}_{\chi_I}, \omega_{\chi_I})$ is a Q-cubic left bi-quasi ideal of S . Then I is a subsemigroup of S . We have

$$\begin{aligned} &(\bar{f}_{\chi_S} \circ \bar{f}_{\chi_I})(x, q) \cap (\bar{f}_{\chi_I} \circ \bar{f}_{\chi_S} \circ \bar{f}_{\chi_I})(x, q) \subseteq \bar{f}_{\chi_I}(x, q) \\ &\Rightarrow \bar{f}_{\chi_{SI}}(x, q) \cap \bar{f}_{\chi_{ISI}}(x, q) \subseteq \bar{f}_{\chi_I}(x, q) \\ &\Rightarrow \bar{f}_{\chi_{SI \cap ISI}}(x, q) \subseteq \bar{f}_{\chi_I}(x, q). \end{aligned}$$

Thus $SI \cap ISI \subseteq I$. Hence I is a left bi-quasi ideal of a semigroup S . \square

Corollary 18. Let I be a non-empty subset of a semigroup S and $\chi_I = (\bar{f}_{\chi_I}, \omega_{\chi_I})$ be the characteristic function of I . Then I is a right bi-quasi ideal of a semigroup S if and only if $\chi_I = (\bar{f}_{\chi_I}, \omega_{\chi_I})$ is a Q-cubic right bi-quasi ideal of a semigroup S .

Corollary 19. Let I be a non-empty subset of a semigroup S and $\chi_I = (\bar{f}_{\chi_I}, \omega_{\chi_I})$ be the characteristic function of I . Then I is a bi-quasi ideal of a semigroup S if and only if $\chi_I = (\bar{f}_{\chi_I}, \omega_{\chi_I})$ is a Q-cubic bi-quasi ideal of a semigroup S .

Theorem 20. if $A = (\bar{f}, \omega)$ and $B = (\bar{g}, \nu)$ are Q-cubic bi-quasi ideals of a semigroup S , then $A \sqcap B = (\bar{f} \bar{\cap} \bar{g}, \omega \curlyvee \nu)$ is a Q-cubic left bi-quasi ideal of a semigroup S .

Proof. Let $A = (\bar{f}, \omega)$ and $B = (\bar{g}, \nu)$ be Q-cubic bi-quasi ideals of a semigroup S . Then

$$\begin{aligned} (\bar{f}_{\chi_S} \circ \bar{f} \bar{\cap} \bar{g})(x, q) &= \bigcup_{x=ab} \{\bar{f}_{\chi_S}(a, q) \cap (\bar{f} \cap \bar{g})(b, q)\} \\ &= \bigcup_{x=ab} \{\bar{f}_{\chi_S}(a, q) \cap \bar{f}(b, q) \cap \bar{g}(b, q)\} \\ &= \bigcup_{x=ab} \{\{\bar{f}_{\chi_S}(a, q) \cap \bar{f}(b, q)\} \cap \{\bar{f}_{\chi_S}(a, q) \cap \bar{g}(b, q)\}\} \\ &= \bigcup_{x=ab} \{\bar{f}_{\chi_S}(a, q) \cap \bar{f}(b, q)\} \cap \bigcup_{x=ab} \{\bar{f}_{\chi_S}(a, q) \cap \bar{g}(b, q)\} \\ &= (\bar{f}_{\chi_S} \circ \bar{f})(x, q) \cap (\bar{f}_{\chi_S} \circ \bar{g})(x, q) \\ &= (\bar{f}_{\chi_S} \circ \bar{f} \bar{\cap} \bar{f}_{\chi_S} \circ \bar{g})(x, q). \end{aligned}$$

Therefore $\bar{f}_{\chi_S} \circ \bar{f} \bar{\cap} \bar{g} = \bar{f}_{\chi_S} \circ \bar{f} \bar{\cap} \bar{f}_{\chi_S} \circ \bar{g}$.

$$\begin{aligned}
 (\bar{f} \bar{\cap} \bar{g} \circ \bar{f}_{\chi_S} \circ \bar{f} \bar{\cap} \bar{g})(x, q) &= \bigcup_{x=abc} \{(\bar{f} \cap \bar{g})(a, q) \cap (\bar{f}_{\chi_S} \circ \bar{f} \cap \bar{g})(bc, q)\} \\
 &= \bigcup_{x=abc} \{(\bar{f} \cap \bar{g})(a, q) \cap \{(\bar{f}_{\chi_S} \circ \bar{f} \cap \bar{f}_{\chi_S} \circ \bar{g})(bc, q)\}\} \\
 &= \bigcup_{x=abc} \{(\bar{f} \cap \bar{g})(a, q) \cap \{(\bar{f}_{\chi_S} \circ \bar{f})(bc, q) \cap (\bar{f}_{\chi_S} \circ \bar{g})(bc, q)\}\} \\
 &= \bigcup_{x=abc} \{\{\bar{f}(a, q) \cap (\bar{f}_{\chi_S} \circ \bar{f})(bc, q)\} \cap \{\bar{g}(a, q) \cap (\bar{f}_{\chi_S} \circ \bar{g})(bc, q)\}\} \\
 &= (\bar{f} \circ \bar{f}_{\chi_S} \circ \bar{f})(x, q) \cap (\bar{g} \circ \bar{f}_{\chi_S} \circ \bar{g})(x, q) \\
 &= (\bar{f} \circ \bar{f}_{\chi_S} \circ \bar{f} \bar{\cap} \bar{g} \circ \bar{f}_{\chi_S} \circ \bar{g})(x, q).
 \end{aligned}$$

Therefore $\bar{f} \bar{\cap} \bar{g} \circ \bar{f}_{\chi_S} \circ \bar{f} \bar{\cap} \bar{g} = \bar{f} \circ \bar{f}_{\chi_S} \circ \bar{f} \bar{\cap} \bar{g} \circ \bar{f}_{\chi_S} \circ \bar{g}$.

Then $\bar{f}_{\chi_S} \circ (\bar{f} \bar{\cap} \bar{g}) \bar{\cap} (\bar{f} \bar{\cap} \bar{g}) \circ \bar{f}_{\chi_S} \circ (\bar{f} \bar{\cap} \bar{g}) = \bar{f}_{\chi_S} \circ \bar{f} \bar{\cap} \bar{f} \circ \bar{f}_{\chi_S} \circ \bar{f} \bar{\cap} \bar{f}_{\chi_S} \circ \bar{g} \bar{\cap} \bar{g} \circ \bar{f}_{\chi_S} \circ \bar{g} \subseteq \bar{f} \bar{\cap} \bar{g}$.
Similarly, we can show that $\omega_{\chi_S} \circ \omega \vee v \vee \omega \vee v \circ \omega_{\chi_S} \circ \omega \vee v = \omega_{\chi_S} \circ \omega \circ \vee \omega_{\chi_S} \circ v \circ \vee \omega \circ \omega_{\chi_S} \circ \omega \vee v \circ \omega_{\chi_S} \circ v \succeq \omega \vee v$. Therefore $A \sqcap B = (\bar{f} \bar{\cap} \bar{g}, \omega \vee v)$ is a Q-cubic left bi-quasi ideal of a semigroup S . \square

Corollary 21. If $A = (\bar{f}, \omega)$ and $B = (\bar{g}, v)$ are Q-cubic bi-quasi ideals of a semigroup S , then $A \sqcap B = (\bar{f} \bar{\cap} \bar{g}, \omega \vee v)$ is a Q-cubic right bi-quasi ideal of a semigroup S .

Corollary 22. If $A = (\bar{f}, \omega)$ and $B = (\bar{g}, v)$ are Q-cubic bi-quasi ideals of a semigroup S , then $A \sqcap B = (\bar{f} \bar{\cap} \bar{g}, \omega \vee v)$ is a Q-cubic bi-quasi ideal of a semigroup S .

Theorem 23. If $A = (\bar{f}, \omega)$ and $B = (\bar{g}, v)$ are Q-cubic right ideals and a Q-cubic left ideal of a semigroup S respectively. Then $A \sqcap B = (\bar{f} \bar{\cap} \bar{g}, \omega \vee v)$ is a Q-cubic left bi-quasi ideal of a semigroup S .

Proof. It following Theorem 20. \square

Corollary 24. If $A = (\bar{f}, \omega)$ and $B = (\bar{g}, v)$ are Q-cubic right ideals and a Q-cubic left ideal of a semigroup S respectively. Then $A \sqcap B = (\bar{f} \bar{\cap} \bar{g}, \omega \vee v)$ is a Q-cubic right bi-quasi ideal of a semigroup S .

Corollary 25. If $A = (\bar{f}, \omega)$ and $B = (\bar{g}, v)$ are Q-cubic right ideals and a Q-cubic left ideal of a semigroup S respectively. Then $A \sqcap B = (\bar{f} \bar{\cap} \bar{g}, \omega \vee v)$ is a Q-cubic bi-quasi ideal of a semigroup S .

Definition 26. A semigroup S is called regular if for all $a \in S$ there exists $x \in S$ such that $a = axa$.

Definition 27. A Q-cubic subsemigroup $A = (\bar{f}, \omega)$ of S is called a Q-cubic quasi ideal of S if it satisfies the following conditions:

1. $\bar{f}_{\chi_S} \circ \bar{f} \cap \bar{f} \circ \bar{f}_{\chi_S} \subseteq \bar{f}$,
2. $\omega \preceq \omega_{\chi_S} \circ \omega \vee \omega \circ \omega_{\chi_S}$.

Theorem 28. If $A = (\bar{f}, \omega)$ be a Q -cubic quasi ideal of a regular semigroup S . Then $A = (\bar{f}, \omega)$ is a Q -cubic ideal of a semigroup S .

Proof. Assume that $A = (\bar{f}, \omega)$ is a Q -cubic quasi-ideal of S and let $x, y \in S, q \in Q$. Then

$$\begin{aligned} \bar{f}(xy, q) &\supseteq (\bar{f} \circ \bar{f}_{\chi_S})(xy, q) \cap (\bar{f}_{\chi_S} \circ \bar{f})(xy, q) \\ &= \bigcup_{xy=ab} \{\bar{f}(a, q) \cap \bar{f}_{\chi_S}(b, q)\} \cap \bigcup_{xy=ij} \{\bar{f}_{\chi_S}(i, q) \cap \bar{f}(j, q)\} \\ &\supseteq \bar{f}(x, q) \cap \bar{f}_{\chi_S}(y, q) \cap \bar{f}_{\chi_S}(x, q) \cap \bar{f}(y, q) \\ &= \bar{f}(x, q) \cap \bar{f}(y, q). \end{aligned}$$

Thus $\bar{f}(xy, q) \supseteq \bar{f}(x, q) \cap \bar{f}(y, q)$. And similarly we can show that $\omega(xy, q) \leq \omega(x, q) \vee \omega(y, q)$.

Hence $\mathcal{A} = (\bar{f}, \omega)$ is a Q -cubic subsemigroup of S . Let $x, y, z \in S, q \in Q$. Then

$$\begin{aligned} \bar{f}(xyz) &\supseteq (\bar{f} \circ \bar{f}_{\chi_S})(xyz, q) \cap (\bar{f}_{\chi_S} \circ \bar{f})(xyz, q) \\ &= \bigcup_{xyz=ab} \{\bar{f}(a, q) \cap \bar{f}_{\chi_S}(b, q)\} \cap \bigcup_{xyz=ij} \{\bar{f}_{\chi_S}(i, q) \cap \bar{f}(j, q)\} \\ &\supseteq \bar{f}(x, q) \cap \bar{f}_{\chi_S}(yz, q) \cap \bar{f}_{\chi_S}(xy, q) \cap \bar{f}(z, q) \\ &= \bar{f}(x, q) \cap \bar{f}(z, q). \end{aligned}$$

Thus $\bar{f}(xyz, q) \supseteq \bar{f}(x, q) \cap \bar{f}(z, q)$. And similarly we can show that $\omega(xyz, q) \leq \omega(x, q) \vee \omega(z, q)$. Hence $A = (\bar{f}, \omega)$ is a Q -cubic bi-ideal of S . Since S is regular, $A = (\bar{f}, \omega)$ is a Q -cubic bi-ideal of S and $x, y \in S$ we have $xy \in (xSx)S \subseteq xSx$. Thus there exists $k \in S$ such that $xy = xkx$. So

$$\bar{f}(xy, q) = \bar{f}(xkx, q) \supseteq \bar{f}(x, q) \cap \bar{f}(x, q) = \bar{f}(x, q).$$

And similarly $\omega(xy, q) \leq \omega(x, q)$. Thus, $A = (\bar{f}, \omega)$ is a Q -cubic right ideal of S . Similarly, we can show that $\bar{f}(xy, q) \supseteq \bar{f}(y, q)$ and $\omega(xy, q) \leq \omega(y, q)$. Thus $A = (\bar{f}, \omega)$ is a Q -cubic left ideal of S . Hence $A = (\bar{f}, \omega)$ is a Q -cubic ideal of S . \square

Theorem 29. Let S be a regular semigroup. Then $A = (\bar{f}, \omega)$ is a Q -cubic left bi-quasi ideal of S if and only if $A = (\bar{f}, \omega)$ is a Q -cubic quasi ideal of S .

Proof. Let $A = (\bar{f}, \omega)$ is a Q -cubic left bi-quasi ideal of S and $x \in S, q \in Q$. Thus, $(\bar{f}_{\chi_S} \circ \bar{f})(x, q) \cap (\bar{f} \circ \bar{f}_{\chi_S} \circ \bar{f})(x, q) \subseteq \bar{f}(x, q)$ and $\omega(x, q) \preceq (\omega_{\chi_S} \circ \omega)(x, q) \vee (\omega \circ$

$\omega_{\chi_S} \circ \omega)(x, q)$. Suppose $(\bar{f}_{\chi_S} \circ \bar{f})(x, q) \supseteq \bar{f}(x, q)$. Since S is regular, there exists $y \in S$ such that $x = xyx$. Then

$$\begin{aligned} (\bar{f} \circ \bar{f}_{\chi_S} \circ \bar{f})(x, q) &= \bigcup_{x=xyx} \{\bar{f}(xy, q) \cap (\bar{f}_{\chi_S} \circ \bar{f})(x, q)\} \\ &\supseteq \bigcup_{x=xyx} \{\bar{f}(x, q) \cap \bar{f}(x, q)\} \\ &= \bar{f}(x, q). \end{aligned}$$

Which is a contradiction. Therefore $A = (\bar{f}, \omega)$ is a Q-cubic quasi ideal of S . By Theorem 28, converse is true. \square

Corollary 30. *Let S be a regular semigroup. Then $A = (\bar{f}, \omega)$ is a Q-cubic right bi-quasi ideal of S if and only if $A = (\bar{f}, \omega)$ is a Q-cubic quasi ideal of S .*

Corollary 31. *Let S be a regular semigroup. Then $A = (\bar{f}, \omega)$ is a Q-cubic bi-quasi ideal of S if and only if $A = (\bar{f}, \omega)$ is a Q-cubic quasi ideal of S .*

Theorem 32. *Let S be a semigroup. S is a regular semigroup if and only if $B = SB \cap BSB$, for every bi-quasi ideal of S .*

Theorem 33. *Let S be a semigroup. Then S is a regular if and only if $\bar{f} = \bar{f}_{\chi_S} \circ \bar{f} \bar{\cap} \bar{f} \circ \bar{f}_{\chi_S} \circ \bar{f}$ and $\omega = \omega_{\chi_S} \circ \omega \vee \omega \circ \omega_{\chi_S} \circ \omega$, for any Q-cubic left bi-quasi ideal of a semigroup S .*

Proof. Let $A = (\bar{f}, \omega)$ be a Q-cubic left bi-quasi ideal of the regular semigroup S . Then $\bar{f}_{\chi_S} \circ \bar{f} \bar{\cap} \bar{f} \circ \bar{f}_{\chi_S} \circ \bar{f} \subseteq \bar{f}$ and $\omega \preceq \omega_{\chi_S} \circ \omega \vee \omega \circ \omega_{\chi_S} \circ \omega$. Let $x \in S, q \in Q$. Since S is regular, there exists $a \in S$ such that $x = xax$. Thus

$$\begin{aligned} (\bar{f} \circ \bar{f}_{\chi_S} \circ \bar{f})(x, q) &= \bigcup_{x=xax} \{\bar{f}(x, q) \cap (\bar{f}_{\chi_S} \circ \bar{f})(ax, q)\} \\ &= \bigcup_{x=xax} \{\bar{f}(x, q) \cap \bigcup_{ax=yz} \{\bar{f}_{\chi_S}(y, q) \cap \bar{f}(z, q)\}\} \\ &\supseteq \bigcup_{x=xax} \{\bar{f}(x, q) \cap \bar{f}(x, q)\} \\ &= \bar{f}(x, q). \end{aligned}$$

Similarly, $(\bar{f}_{\chi_S} \circ \bar{f})(x, q) \supseteq \bar{f}(x, q)$, $\omega(x, q) \geq (\omega_{\chi_S} \circ \omega)(x, q)$ and $\omega(x, q) \geq (\omega \circ \omega_{\chi_S} \circ \omega)(x, q)$. Therefore $\bar{f} = \bar{f}_{\chi_S} \circ \bar{f} \bar{\cap} \bar{f} \circ \bar{f}_{\chi_S} \circ \bar{f}$ and $\omega = \omega_{\chi_S} \circ \omega \vee \omega \circ \omega_{\chi_S} \circ \omega$.

Conversely suppose that let B be a left bi-quasi ideal of a semigroup S . Then by Theorem 17, $\chi_B = (\bar{f}_{\chi_B}, \omega_{\chi_B})$ be a Q-cubic bi-interior ideal of the semigroup S . Thus

$$\begin{aligned} \bar{f}_{\chi_B}(x, q) &= (\bar{f}_{\chi_S} \circ \bar{f}_{\chi_B})(x, q) \cap (\bar{f}_{\chi_B} \circ \bar{f}_{\chi_S} \circ \bar{f}_{\chi_B})(x, q) \\ &= \bar{f}_{\chi_{SB}}(x, q) \cap \bar{f}_{\chi_{BSB}}(x, q) \\ &= \bar{f}_{\chi_{SB \cap BSB}}(x, q). \end{aligned}$$

Therefore $B = SB \cap BSB$. By Theorem 32, S is regular semigroup. \square

Corollary 34. Let S be a semigroup. Then S is a regular if and only if $\bar{f} = \bar{f}_{\chi_S} \circ \bar{f} \bar{\cap} \bar{f} \circ \bar{f}_{\chi_S} \circ \bar{f}$ and $\omega = \omega_{\chi_S} \circ \omega \curlyvee \omega \circ \omega_{\chi_S} \circ \omega$, for any Q -cubic right bi-quasi ideal of a semigroup S .

Corollary 35. Let S be a semigroup. Then S is a regular if and only if $\bar{f} = \bar{f}_{\chi_S} \circ \bar{f} \bar{\cap} \bar{f} \circ \bar{f}_{\chi_S} \circ \bar{f}$ and $\omega = \omega_{\chi_S} \circ \omega \curlyvee \omega \circ \omega_{\chi_S} \circ \omega$ or $\bar{f} = \bar{f} \circ \bar{f}_{\chi_S} \bar{\cap} \bar{f} \circ \bar{f}_{\chi_S} \circ \bar{f}$ and $\omega = \omega \circ \omega_{\chi_S} \curlyvee \omega \circ \omega_{\chi_S} \circ \omega$, for any Q -cubic bi-quasi ideal of a semigroup S .

Theorem 36. Let S be a semigroup. Then S is a regular if and only if $\bar{f} \bar{\cap} \bar{g} \bar{\subseteq} \bar{g} \circ \bar{f} \bar{\cap} \bar{f} \circ \bar{g} \circ \bar{f}$ and $\omega \curlyvee v \succeq v \circ \omega \curlyvee \omega \circ v \circ \omega$, for every Q -cubic left bi-quasi ideal $A = (\bar{f}, \omega)$ and every Q -cubic ideal $B = (\bar{g}, v)$ of a semigroup S .

Proof. Let S be a regular semigroup and $x \in S$. Then there exists $y \in S$ such that $x = xyx$.

$$\begin{aligned} (\bar{f} \circ \bar{g} \circ \bar{f})(x, q) &= \bigcup_{x=xyx} \{(\bar{f} \circ \bar{g})(xy, q) \cap \bar{f}(x, q)\} \\ &= \bigcup_{x=xyx} \{ \bigcup_{xy=xyx} \{\bar{f}(x, q) \cap \bar{g}(yxy, q)\} \cap \bar{f}(x, q)\} \\ &\supseteq \{\bar{f}(x, q) \cap \bar{g}(x, q)\} \cap \bar{f}(x, q) \\ &= \bar{f}(x, q) \cap \bar{g}(x, q) \\ &= (\bar{f} \bar{\cap} \bar{g})(x, q). \end{aligned}$$

And

$$\begin{aligned} (\bar{g} \circ \bar{f})(x, q) &= \bigcup_{x=xyx} \{\bar{g}(xy, q) \cap \bar{f}(x, q)\} \\ &\supseteq \bar{g}(x, q) \cap \bar{f}(x, q) \\ &= (\bar{g} \bar{\cap} \bar{f})(x, q). \end{aligned}$$

Similary we can prove $(\omega \circ v \circ \omega)(x, q) \preceq (v \curlyvee \omega)(x, q)$ and $(v \circ \omega)(x, q) \preceq (v \curlyvee \omega)(x, q)$. Hence $\bar{f} \bar{\cap} \bar{g} \bar{\subseteq} \bar{g} \circ \bar{f} \bar{\cap} \bar{f} \circ \bar{g} \circ \bar{f}$ and $\omega \curlyvee v \succeq v \circ \omega \curlyvee \omega \circ v \circ \omega$.

Conversely suppose that the condition holds. Let $A = (\bar{f}, \omega)$ be a Q -cubic left bi-quasi ideal. We have $\bar{f} \bar{\cap} \bar{f}_{\chi_S} \bar{\subseteq} \bar{f}_{\chi_S} \circ \bar{f} \bar{\cap} \bar{f} \circ \bar{f}_{\chi_S} \circ \bar{f}$ and $\omega \curlyvee \omega_{\chi_S} \preceq \omega \circ \omega_{\chi_S} \curlyvee \omega \circ \omega_{\chi_S} \circ \omega$ implies that $\bar{f} \bar{\subseteq} \bar{f}_{\chi_S} \circ \bar{f} \circ \bar{\cap} \bar{f} \circ \bar{f}_{\chi_S} \circ \bar{f}$ and $\omega \succeq \omega \circ \omega_{\chi_S} \curlyvee \omega \circ \omega_{\chi_S} \circ \omega$. By Theorem 33, S is a regular semigroup. \square

Corollary 37. Let S be a semigroup. Then S is a regular if and only if $\bar{f} \bar{\cap} \bar{g} \subseteq \bar{g} \circ \bar{f} \bar{\cap} \bar{f} \circ \bar{g} \circ \bar{f}$ and $\omega \curlyvee v \succeq v \circ \omega \curlyvee \omega \circ v \circ \omega$, for every Q -cubic right bi-quasi ideal $A = (\bar{f}, \omega)$ and every Q -cubic ideal $B = (\bar{g}, v)$ of a semigroup S .

Corollary 38. Let S be a semigroup. Then S is a regular if and only if $\bar{f} \bar{\cap} \bar{g} \subseteq \bar{g} \circ \bar{f} \bar{\cap} \bar{f} \circ \bar{g} \circ \bar{f}$ and $\omega \curlyvee v \preceq v \circ \omega \curlyvee \omega \circ v \circ \omega$, for every Q -cubic bi-quasi ideal $A = (\bar{f}, \omega)$ and every Q -cubic ideal $B = (\bar{g}, v)$ of a semigroup S .

REFERENCES

- [1] Atanassov, K., 1986, "Intuitionistic fuzzy sets", *Fuzzy Sets and Systems*, 20(1), pp.87–96.
- [2] Atanassov K., 1994, "New operations defined over the intuitionistic Q-fuzzy sets", *Fuzzy Sets and Systems*, 61, PP.137–142.
- [3] Chinnadurai, C. and Bharathivelan, K., 2016, "Cubic ideal of Γ -semigroups", *International Journal of Current Research and Modern Education*, 1(2), pp.138–150.
- [4] Chinram, R. and Panityakul, T., 2020, "Rough Pythagorean fuzzy ideals in ternary semigroups", *Journal of Mathematics and Computer Science*, 20(4), pp.302–312.
- [5] Gaketem T., "Cubic Interior Ideal in Semigroups", *Azerbaijan Journal of Mathematics*, 10(2), pp.85-104.
- [6] Jun, YB., Kim, C.S., and Yang, K.O, 2012, "Cubic sets", *Annals of Fuzzy Mathematics and Informatics*, 6(1), pp.83–98.
- [7] Kim, K.H., 2006, "On Intuitionistic Q-Fuzzy Semiprime Ideals in Semigroups", *Advances in Fuzzy Mathematics*, 1(1), pp.15–21.
- [8] Kuroki, N., 1981, "On fuzzy ideals and fuzzy bi-ideals in semigroups", *Fuzzy Sets and Systems*, 5, pp.203—215.
- [9] Kuroki, N., 1982, "Fuzzy semiprime ideals in semigroups", *Fuzzy Sets and Systems*, 8, pp.71–79.
- [10] Kuroki, N., 1991, "On fuzzy semigroups", *Information Sciences*, 53, pp.203—236.
- [11] Rao, M.M.K., 2017, "Bi-quasi ideals an fuzzy bi-ideals of Γ - semigroups", *Bulletion of the International Mathematical Virtual Institutste*,7, pp.231–242.
- [12] Thillaigovindan, N., and Chinnadurai, V., 2009, "On interval valued fuzzy quasi-ideals of semigroups", *East Asian mathematical journal*, 25(4), pp.441–453.
- [13] Manahon, M., Bantug, J., and Endam, J., 2020, "On BF-semigroups and Fuzzy BF-semigroups", *Journal of Mathematics and Computer Science*, 20(4), pp.325–333.
- [14] Munir, M., Kausar, N., Salahuddin, and Tehreem, 2020, "On the prime fuzzy m-bi ideals in semigroups", *Journal of Mathematics and Computer Science*, 20(4), pp.357–365.

- [15] Narayanan, A.L. and Manikantan, T., 2006, "Interval valued fuzzy ideal by an interval valued fuzzy subset in semigroups", *Journal of Applied Mathematics and Computing*, 20(1-2), pp.455–464.
- [16] Umar, S., Hadi, A., and Kham, A., 2015, "On prime cubic bi-ideals of semigroups", *Annals of Fuzzy Mathematics and Informatics*, 9(6), pp.957–974.
- [17] Zadeh, L.A, 1965, "Fuzzy sets", *Information and Control*, 8, pp.338–353.