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Abstract

The main aim of this research is to introduce a new class BT, (m, A, @)
defined by Salagean differential operator involving function Q(z) € 4,, and
important results are indicated.
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1 INTRODUCTION AND DEFINITIONS

We indicate by T, the subclass of the class of function 4,, which is of the form

Q(z)=z+ Z ajz/ (1)

j=n+1

consisting of function which are holomorphic in the open unit disk U =
{z € C : |z| < 1} and H(U) the space of analytic functionin U,n € N = {1,2,3, ... }.

By S, (a) denote a subclass of A,, consisting of starlike functions of order @, 0 < a <

zQ'(2)
R<Q(Z)>>a (z e U).

1 which satisfies
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Furthermore, a function Q(z) associated with T;, is said to be convex of order a in U,
if and only if

zQ0"(z)
R(Q’(z) +1>>a (z€el),

for some 0 < a < 1. We denote by K,, (@) the class of functions in T,, which are convex
of order @ in U and denote by R,,(«) the class of function in A4,, which satisfy

R(Q'(2) >« (z € U).
We also known that K,,(@) c S, (a) c T,,.

Let D™ be Salagean differential operator [2] ,
Dm:An_)An, nENI

D0(z) = O(2)
D'Q(z) = DQ(z) = 2z (2), ...,
D™Q(z) = D(D™0(2)) = z(D™*0(2))".
For Q(2) given by (1), then

D™O(z) =z + z j™a;z’ (2)

j=n+1

Where m € Ny = N U {0} ={0,1,2,3 ... }.

Lemma 1.1[1]
Let p be holomorphic in U with p(0) = 1 and if

zp'(2) 3a—1
R<1+ p(z)>> o (z e l).

Then R(p(z)) > a in U and %S a <l
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2 MAIN RESULTS
Definition 2.1
A function Q(z) € A,, is said to be a member of the class BT,,(m, 4, a) if

D™t10(2) (Dmﬂ(z)
z

A
)—1|<1—a,z€U,lZ—1and%Sa<1 3)

zZ
where D™ is the Salagean differential operator. Note that inequality
(2.1) implies that

. (Dm+1n(z) (Dmﬂ(z))l> o

Z V4

0<a<l.

Remark 2.2

The family BT, (m,A,a) is a new general class of holomorphic functions which
includes several new classes of holomorphic univalent functions along with some
important ones. Such as, BT,(0,—1,a) =S, (a), BT,(1,—1,a) = K, (a) and
BT,(0,0,a) = R,,(a). Another impressive subclass is the special case BT, (0,4, @)
which reduces to the Bazilevic function of order a which was studied by Singh [4].

Theorem 2.3

If Q(z) € A,, satisfies the condition

(z € U). (4)

D™*20(2) D™10(2) 3a—1
<Dm+1ﬂ(z) * A Dma) >

Then Q(z) € BT,(m, 4, a) .
Proof: For z € U, define an analytic function p(z) with p(0) = 1 by

Tn+lﬂ
p(2) =

VA

m A
—)

By simple differentiation it implies that
Inp(z) = In(D™*1Q(2)) — In(z) + 1 In(D™Q(2)) — A1n(2)

p'(2) (p™10(2))" 1 (p™a(z)) .1

p(»)  (D™10() z = (D™(2) z
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Multiply through by z,
zp'(2) z(D™1Q(2))’ B z(D™Q(2))’' B
p(z)  (D™1(2)) (D™Q(2))
zp'(2) z(D™1Q(2))’ z(D™Q(2))’ P
p@  (D™10(2)) (Dma(2))
zp'(z)  D™2Q0(2) D™10(2) 13
p(z) D™ " DA
So that
zp'(2)\ _ D™*20(2) D™10(2) 3a—1
R<1+ 2(2) >_R<1+Dm+1ﬂ(z)+ A D"O(2) —-1- >> a
zp'(2)\ _ _(D™*?0(2) D™10(2) 3a—1
R (1 ) > =R <Dm+1ﬂ(z) A Dmat) ’1> 2a
zp'(2)\ _ _(D™?0(2) D™10(2) 3a—1
g (1 o) > =R <Dm+ln<z) A Dmac) ) 2
Which by lemma (1.1), implies
m+ m A
(e,

Remark 2.4

When n = 1 and m = 0 in Theorem 2.3, we have the theorem below;

Theorem 2.5 [3]
If Q(z) € A satisfies

zQ" (2) zQ0'(2)
R((” @ )” @

Then R(p(z)) > a in U and %S a<l.

Joastot

3a—1

zeU
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We have the following interesting corollaries as a result of Theorem 2.3.
Corollary 2.6
If Q(z) € A,, and

R 220" (2) + 220" (2) zQ"(2)
( zQ"(z) + Q' (z) B Q'(z) > >

Then

zQ" (2) 1
(D)1

That is Q(z) is convex of order %

Proof: Puttingm = 1,A = —1land a = %into (4), it implies that

R D3Q(2) " D?Q(2) " 1
<D29(z) +(= )Dlﬂ(z)> ity
Then
zQ0'(2) 1

NELIE
Corollary 2.7
If Q(z) € A,, and

2220 (2) + 230" (2) 1
R< z2Q0"(2) + zQ'(2) > > X (z€0).

Then
R(zQ"(z) + Q' (2)) > %

Proof: Puttingm = 1,A=0and a = %into (4), it implies that

° <1 N D3Q(2) D?Q(2)

1
DZQ(Z)+(0)D19(Z)_1> >04=

2
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Then

R(zQ"(z) + Q' (2)) > %

Corollary 2.8
If Q(z) € A, and

R <ZQ”(Z) ZQ’(Z)) o 3 e

NOBNEG) 2’
Then

zQ'(2) 1
R(m@>>§

That is Q(z) is starlike of order %

Proof: Puttingm = 0,A = —1land a = %into (4), we get

D?%Q(2) " DO(2) " 1
R(Dln(z) +(= )DOQ(Z)> > D +g

Then

zQ'(2) 1
R(m@>>§

Corollary 2.9
If Q(z) € A,, and

zQ0'(2) 1
R<1+ Q(z))>§’ (z €eU).

Then
1
R(.Q,(Z)) > E

Hence, if the function Q(z) is convex of order % then Q(z) € BT, (0,0,a) = R, G)
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Proof: Puttingm = 0,A=0and a = % into (4), it implies that

D?Q(2) DQ(2)
<m+ (O)W(@) > (0) +5

Then

1
R(Q,(Z)) > E

Corollary 2.10

If Q(z) € A, and

zQ0"(2) zQ'(2)
R<2<Q’—(Z)+1>_ .Q(Z)>>0’ (ZEU).

Then

1
7220/ (z 1
(2) S

1
02(z)

That is Q(z) is Bazilevic of order %, type % inU.

Proof: Puttingm = 0,4 = — % and a = %into (4), we get

D?*Q(2) 1\ DQ(2) 1 1
R(m*(‘ﬁ%) >73%2
Then
Z%.Q'(Z) 1
> E

Q% (2)

529
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Corollary 2.11
If Q(z) € A,, and

zQ"(z) zQ'(2)
R(Z(Q,(Z) +1>+ Q(z)>>1' (z€l).

Then

1
020'(2) 1
>

Z% (2)

That is Q(z) is Bazilevic of order %, type % inU.

Proof: Puttingm = 0,1 = %and a = %into (4), it implies that

R(D 9 @)D Q(z)> >%+%

D1O(2) DOO(2)
Then
Qlﬂ 1
2 1A
0@\ 1
z2(z)
CONCLUSION

In this present paper, we describe new subclass of univalent functions applying
Salagean differential operator, and some of its properties were created. The obtained
results include the properties of certain subclasses of univalent functions.
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