

Study on Maximum – Cut Via Metric Vertex Weight Tree and its Density

Hend El- Morsy

*Common First Year Deanship, Department Of mathematics ,
Umm Al-Qura University , Mecca , Kingdom Of Saudi Arabia.
Email: heebrahim@uqu.edu.sa , hendelmorsy@yahoo.com*

Abstract

In this paper we will compute maximum-cut for metric tree, then we will illustrate the density of such cuts of metric tree.

Keywords: Maximum-cut , metric tree , density of graph.

1. INTRODUCTION

For V is set , a distance function on Y is a map $\lambda : Y \times Y \rightarrow \mathbb{R}^+$ is symmetric, and satisfies the condition $d(i, i) = 0 \forall i \in X$.

The distance is said to be a metric if the triangle inequality holds, i.e., $d(i, j) \leq d(i, k) + d(k, j) \forall i, j, k \in X$.

Definition1 :A metric M on V is a cut metric, if \exists

$S \subseteq V \exists$ for all $i, j \in V$,

$d_{ij} = 1$ if $\{i, j\} \in \partial S$,

$d_{ij} = 0$, otherwise . δS is metric.

Note that: Every metric tree is metric if and only if satisfying triangle inequality.

2. MAIN RESULTS

For connected weighted tree $T(V, E)$ a vertex weight function

$W: V \rightarrow R_+$ for two vertices $v_1, v_2, v_1 - v_2$ cut problem we take maximum weight cut that separates v_1 and v_2 in separated metrics, that, $v_1 - v$ maximum cut is:

$$\text{Max} \{ \sum W_v t_v, t \text{ is elementary cut metric } \exists t_{v1} v_2 \geq 1 \text{ and } v \in V \}$$

Theorem 2.1:

For metric tree of n -vertices, the maximum-cut obtained by taking the maximum absolute difference between two cuts t_1, t_2, \dots, t_n contains at least two vertices connected by one edge.

Lemma 2.2:

If T is nontrivial connected metric-tree of order n , then T has at most $(n-2)$ cuts vertices.

Proof:

For metric – tree of order n : it has at least two vertices, these vertices are not splittable vertices(namely leaves, then any sub-tree t_1 has at most $(n-2)$ cut vertices.

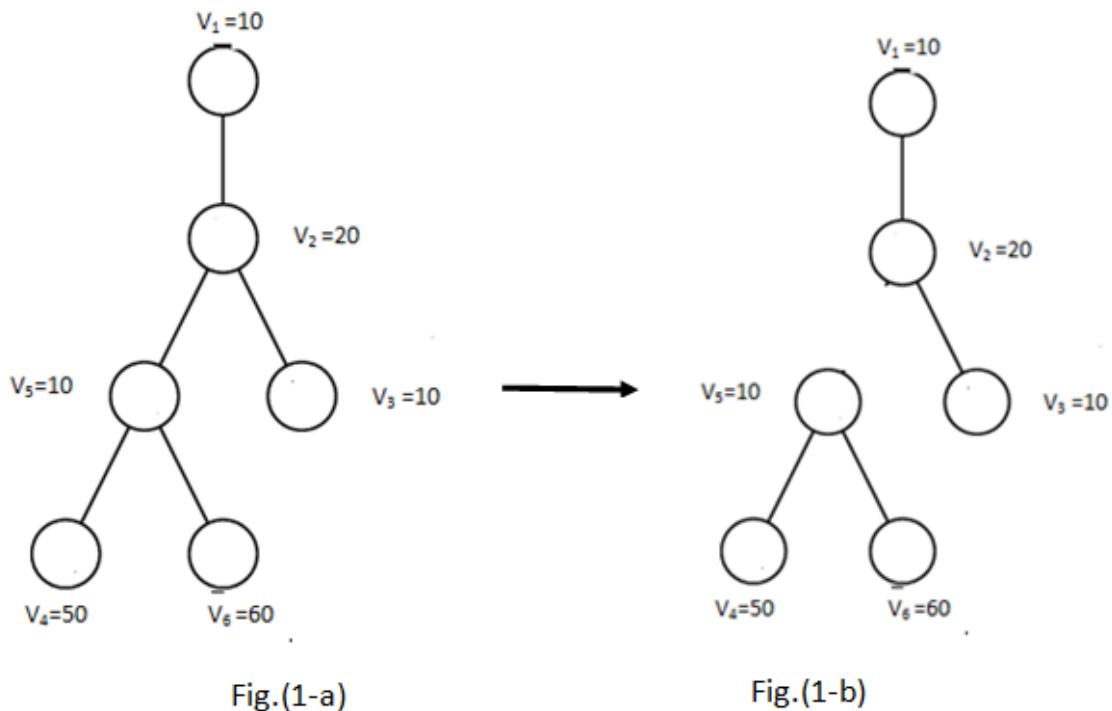
Example 2.3:

For metric-tree in Fig.(1-a) with 6 vertices, to compute maximum cut of vertices we follow the following steps:

1. Edge $1 \leftrightarrow 2$ results in $d_{1-2} = 150 - 10 = 140$
2. Edge $2 \leftrightarrow 3$ results in $d_{2-3} = 150 - 10 = 140$
3. Edge $2 \leftrightarrow 5$ results in $d_{2-5} = 120 - 40 = 80$
4. Edge $4 \leftrightarrow 5$ results in $d_{4-5} = 110 - 50 = 60$
5. Edge $5 \leftrightarrow 6$ results in $d_{5-6} = 100 - 60 = 40$

Since max. absolute difference is 140 makes only one vertex separated (v_1 or v_3) then

The maximum cut allowed is 80 (cuts of v_2, v_5) and the output cut shown in Fig.(1-b).



Theorem 2.4:

For vertex-weight metric tree $T_m = (V^l, E)$ is called metric max-cut tree if satisfies the condition, for any two vertices $v_1, v_2 \in T$

Then: $\lambda_T(v_1, v_2) = \max C_T(S_C)$ for $C \in P_{v_1, v_2}$ which is consider the unique path from v_1, v_2 ,

S_C is connected component of T containing S obtained by deleting e , $C_T(S_C)$ is the number of outgoing edges from S_C .

Lemma 2.5:

A vertex-weight cut metric tree $T(v^l, E, C^l)$ will be constructed by satisfying

$$C^l(v) = G_T(s_v) \quad \forall v \in V^l$$

The connectivity between v_1, v_2 can be obtained by computing $\max C^l(v)$ value over vertices $v \in P_{v_1, v_2}$.

Theorem 2.6:

For $n \geq 1$, any metric tree $T_m = (v_m, e_m)$ with at least n vertices, can be cut into $T_m = (T_{m1}, T_{m2}, \dots, T_{mn})$ of disjoint sub-trees,

$$T_{mi} = (v_{mi}, e_{mi}).$$

So, for each sub-tree contains at least n vertices, at most $3n$ vertices.

Proof:

We will prove $\forall h = 3n+1 \exists$ cuts into 2 sub-trees, each with at least n vertices and at most $2n$ vertices.

For $v \in T_m$, the maximum-cut of T contain one edge incident to V i.e :

$\exists v \in T$ so that v -sub-tree has at most $2n$ vertices.

Initially, root T has v vertices, then $\exists v$ -sub-tree with at least $2n+1$ vertices, then the max. number of vertices in v -sub-tree decrease at least 1 vertex.

If $\exists v$ -sub-tree with $n+1$ vertex, then v -sub-tree and union of v -sub-trees is cut into 2 parts.

Else, every v -sub-tree has at most n vertices, then \exists collection of n -sub-trees and the total number of vertices between $n, 2n$, The union of all and of other v -sub-trees is a cut of tree.

3. DENSITY OF MAX.-CUT OF METRIC TREE

If T_m is metric tree with v nodes and e edges $T_m(v, e)$, then the density of it can be computed by:

$$D_T = \frac{\sum e}{(n-2)} = \frac{\sum e}{|v|(|v|-1)},$$

if metric tree cuts into C_1, C_2 , cuts, then we can compute density for every individual cut.

Note- The density of graph $D \leq 1$.

Theorem 3.1:

For metric tree T_m , the density of T_m is less than the density of every individual cut C_1, C_2, \dots

and $D_T < D_{C1} + D_{C2} + \dots$

Proof:

For metric tree of v vertices, e edges $T_m(v, e)$, if we cut it into two metric trees $T_{m1}(v_1, e_1)$, $T_{m2}(v_2, e_2)$, then:

$$D_{Tm1} = \frac{\sum e_1}{|v_1|(|v_1|-1)}, \quad D_{Tm} = \frac{\sum e}{|v|(|v|-1)}$$

$$D_{Tm2} = \frac{\sum e_2}{|v_2|(|v_2|-1)}$$

$$\text{Since } \sum e > \sum e_1, \quad \sum e > \sum e_2,$$

$$I \vee I > v_1, \quad I \vee I > v_2,$$

$$\text{Then } D_{Tm} < D_{T1}, \quad D_{Tm} < D_{T2}$$

$$\text{and } D_{Tm} < D_{T1} + D_{T2}$$

Example 3.2:

For tree shown in Fig.(1-a), $= 1/6$

$$\text{The density } D_t = \frac{5}{6 \times 5}$$

For cut 1, $D_{c1} = 2/3 \times 2 = 1/3$.

For cut 2 $D_{c2} = 2/3 \times 2 = 1/3$.

Then $D_t < D_{c1} + D_{c2}$

REFERENCES

- [1] Jittat Fakcharoenphol, Satish B. Rao, and Kunal Talwar. A tight bound on approximating arbitrary metrics by tree metrics. In Proceedings of the 35th ACM Symposium on Theory of Computing (STOC), pages 448–455, 2003.
- [2] Nathan Linial, Eran London, and Yuri Rabinovich. The geometry of graphs and some of its algorithmic applications. *Combinatorica*, 15(2):215–245, 1995. Also in Proc. 35th FOCS, 1994, pp. 577–591.
- [3] Frank Thomson Leighton and Satish B. Rao. Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms. *Journal of the ACM*, 46(6):787–832, 1999.

- [4] Jiří Matoušek. Lectures on discrete geometry, volume 212 of Graduate Texts in Mathematics. Springer, New York, 2002.
- [5] D. J. Huang and A. B. Kahng. When clusters meet partitions: A new density objective for circuit decomposition. In ED&TC, pages 60–64, 1995.
- [6] J. M. Keil and T. B. Brecht. The complexity of clustering in planar graphs. *J. Combinatorial Mathematics and Combinatorial Computing*, 9:155–159, 1991.