

α^* -Local Closure Functions in Ideal Topological Spaces

1 P Periyasamy and 2 P Rock Ramesh

*1 Assistant Professor, 9555, Department of Mathematics,
Kamaraj College, Thoothukudi-3. Tamilnadu, India.
e-Mail : periyasamyvpp@gmail.com*

*2 Research Scholar, Reg. No: 19112102091003, Department of Mathematics,
Kamaraj College, Thoothukudi-3. Manonmaniam Sundaranar University,
Abishekappatti, Tirunelveli -12. Tamilnadu, India.
e-Mail : rockramesh83@gmail.com.*

Abstract

In this paper we define an operator $[.]_{\alpha^*}$ called the α^* - local closure function of A with respect to the ideal ϑ and topology τ by: $[A]_{\alpha^*}(\vartheta, \tau) = \{x \in X : \text{Int}(\text{cl}_{\alpha}(U)) \cap A \notin \vartheta \text{ for every } U \in \tau(x)\}$ in an ideal topological space (X, τ, ϑ) . We investigate the basic properties and characterizations of $[A]_{\alpha^*}(\vartheta, \tau)$. Also we investigate an operator $\Phi : P(X) \rightarrow \tau$ satisfying $\Phi(A) = X - [X - A]_{\alpha^*}$ for each $A \in P(X)$. Also we proved the closure operator defined as $\text{cl}_{\alpha^*}(A) = [A]_{\alpha^*} \cup A$ is a Kuratowski closure operator and the topology obtained is $\tau_{\alpha^*} = \{U \subseteq X / \text{cl}_{\alpha^*}(X - U) = X - U\}$.

Keywords: Ideal Topology, Local Function, α^* -local closure function

1. Introduction and Preliminaries

In [5] and [10] Kuratowski and vaidhyanathaswamy was studied the notion of ideal topological spaces, J.Dontchev, M.Ganster [3], M.Navaneethakrishnan, P.Paulraj Joseph [8], D.Jankovic, T.R.Hamlett [4], M.N.Mukherjee, R.Bishwambhar, R.Sen [6], A.A.Nasef, R.A.Mahmond [7] etc., were investigated applications to various fields of ideal topology. In a topological space (X, τ) with no separation properties assumed, for a subset A of X, $\text{cl}(A)$ the closure of A

denotes intersection of all closed set containing A and $\text{Int}(A)$ denotes the union of all open set contained in A of (X, τ) . An ideal ϑ is a non empty collection of subsets of X which satisfies: (i) $A \in \vartheta$ and $B \subseteq A$ implies $B \in \vartheta$, and (ii) $A \in \vartheta$ and $B \in \vartheta$ implies $A \cup B \in \vartheta$. Given a topological space (X, τ) with an ideal ϑ on X called ideal topological space denoted by (X, τ, ϑ) and if $P(X)$ is the collection of all subsets of X a set operator $(\cdot)^* : P(X) \rightarrow P(X)$ called a local function [4, 5] for any subset A of X with respect to ϑ and τ is defined as, $A^*(\vartheta, \tau) = \{x \in X : U \cap A \notin \vartheta \text{ for every } U \in \tau(x)\}$, where $\tau(x) = \{U \in \tau / x \in U\}$. A kuratowski closure operator $\text{cl}^*(A)$ for a topology $\tau^*(\vartheta, \tau)$ called * -topology finer than τ is defined by $\text{cl}^*(A) = A \cup (A)^*(\vartheta, \tau)$. In [9] O.Njasted investigated the notation of α -closed sets. A subset A of X is said to be α -open (resp. α -closed) set if $A \subseteq \text{Int}(\text{cl}(\text{Int}(A)))$ (resp. $\text{cl}(\text{Int}(\text{cl}(A))) \subseteq A$). The set of all α -open sets forms topology and it is denoted by τ^α . The closure operator defined on τ^α for a subset A of X is denoted by cl_α . In [11] N.Velicko investigated the operator $\text{cl}_\theta(A)$ for a subset A of X , defined as $\text{cl}_\theta(A) = \{x \in X : \text{cl}(U) \cap A \neq \emptyset, \text{ for each } U \in \tau(x)\}$. A subset A of X is said to be a θ -closed [11] set if $\text{cl}_\theta(A) = A$. A subset A of X is said to be δ -closed [11] set if $\text{cl}_\delta(A) = A$, where $\text{cl}_\delta(A) = \{x \in X : \text{Int}(\text{cl}(U)) \cap A \neq \emptyset, \text{ for every } U \in \tau(x)\}$. The complement of δ -closed set is δ -open set. Ahmad Al-Omari and Takashi Noiri [1] introduced and investigated the operator $\Gamma(A)(\vartheta, \tau) = \{x \in X : \text{cl}(U) \cap A \notin \vartheta, \text{ for every } U \in \tau(x)\}$. When there is no confusion, denote A^* for $A^*(\vartheta, \tau)$ and $\Gamma(A)$ for $\Gamma(A)(\vartheta, \tau)$. In this paper we introduce and investigate an operator $[A]_\alpha^*(\vartheta, \tau)$ called α^* -local closure function of A with respect to ϑ and τ . Also, investigate a kuratowski closure operator $\text{cl}_\alpha^*(A)$ and an operator $\Phi : P(X) \rightarrow \tau$ using $[A]_\alpha^*(\vartheta, \tau)$.

Lemma 1.1.[1] Let (X, τ, ϑ) be an ideal topological space and A a subset of X . Then

- (i) If A is open, then $\text{cl}(A) = \text{cl}_\theta(A)$.
- (ii) If A is closed, then $\text{Int}(A) = \text{Int}_\theta(A)$.

2. α^* -Local Closure Functions

Definition 2.1. Let (X, τ, ϑ) be an ideal topological space and A a subset of X . Then $[A]_\alpha^*(X, \tau) = \{x \in X : \text{Int}(\text{cl}_\alpha(U)) \cap A \notin \vartheta \text{ for every } U \in \tau(x)\}$ is called α^* -local closure function of A with respect to the ideal ϑ and topology τ , where $\tau(x) = \{U \in \tau / x \in U\}$. Simply denote $[A]_\alpha^*$ for $[A]_\alpha^*(\vartheta, \tau)$.

Remark 2.2. In general neither $A \subseteq [A]_{\alpha^*}$ nor $[A]_{\alpha^*} \subseteq A$. Theorem 2.3 deals the basic properties of α^* -local closure function.

Theorem 2.3. Let (X, τ, ϑ) be an ideal topological space and A, B subsets of X . Then for α^* -local closure functions the following properties hold.

- (i) $[\phi]_{\alpha^*} = \phi$.
- (ii) If $A \in \vartheta$ then $[A]_{\alpha^*} = \phi$.
- (iii) $A \subseteq B$ then $[A]_{\alpha^*} \subseteq [B]_{\alpha^*}$.
- (iv) $[A]_{\alpha^*} = \text{cl}([A]_{\alpha^*}) \subseteq \text{cl}_\theta(A)$ and $[A]_{\alpha^*}$ is closed.
- (v) $[[A]_{\alpha^*}]_{\alpha^*} \subseteq [A]_{\alpha^*}$.
- (vi) $[A \cup B]_{\alpha^*} = [A]_{\alpha^*} \cup [B]_{\alpha^*}$.
- (vii) $[A]_{\alpha^*} - [B]_{\alpha^*} = [A - B]_{\alpha^*} - [B]_{\alpha^*} \subseteq [A - B]_{\alpha^*}$.
- (viii) If $U \in \tau$ then $U \cap [A]_{\alpha^*} = U \cap [U \cap A]_{\alpha^*} \subseteq [U \cap A]_{\alpha^*}$.
- (ix) If $U \in \vartheta$, then $[A - U]_{\alpha^*} = [A]_{\alpha^*}$.
- (x) If $A \subseteq [A]_{\alpha^*}$ and A is open, then $[A]_{\alpha^*} = \text{cl}([A]_{\alpha^*}) = \text{cl}_\theta(A)$.
- (xi) $[A \cap B]_{\alpha^*} \subseteq [A]_{\alpha^*} \cap [B]_{\alpha^*}$.

Proof. (i) and (ii) is obvious.

(iii) Let $A \subseteq B$ and $x \notin [B]_{\alpha^*}$. Then there exists $U \in \tau(x)$ such that $\text{Int}(\text{cl}_\alpha(U)) \cap B \in \vartheta$. Since $A \subseteq B$, $\text{Int}(\text{cl}_\alpha(U)) \cap A \in \vartheta$ and hence $x \notin [A]_{\alpha^*}$.

(iv) We have $[A]_{\alpha^*} \subseteq \text{cl}([A]_{\alpha^*})$. Let $x \in \text{cl}([A]_{\alpha^*})$. Then $[A]_{\alpha^*} \cap U_x \neq \phi$ for every $U_x \in \tau(x)$ and hence $[A]_{\alpha^*} \cap \text{Int}(\text{cl}_\alpha(U_x)) \neq \phi$. Therefore, there exists $y \in [A]_{\alpha^*} \cap \text{Int}(\text{cl}_\alpha(U_x))$ and $y \in \text{Int}(\text{cl}_\alpha(U_x))$. Since $y \in [A]_{\alpha^*}$, $A \cap \text{Int}(\text{cl}_\alpha(V_{xy})) \notin \vartheta$ and hence $x \in [A]_{\alpha^*}$ where $V_{xy} = \text{Int}(\text{cl}_\alpha(U_x))$. Now, let $x \in [A]_{\alpha^*}$, then $\text{Int}(\text{cl}_\alpha(U)) \cap A \notin \vartheta$, for every $U \in \tau(x)$. Hence, $\text{cl}(U) \cap A \neq \phi$ for every $U \in \tau(x)$. Hence $x \in \text{cl}_\theta(A)$.

(v) Let $x \in [[A]_{\alpha^*}]_{\alpha^*}$. Then for every $U_x \in \tau(x)$, $\text{Int}(\text{cl}_\alpha(U_x)) \cap [A]_{\alpha^*} \notin \vartheta$ and hence $\text{Int}(\text{cl}_\alpha(U_x)) \cap [A]_{\alpha^*} \neq \phi$. Let $y \in \text{Int}(\text{cl}_\alpha(U_x)) \cap [A]_{\alpha^*}$. Then $y \in \text{Int}(\text{cl}_\alpha(U_x))$ and $y \in A_{\alpha^*}$. Therefore, $\text{Int}(\text{cl}_\alpha(V_{xy})) \notin \vartheta$ and hence $x \in [A]_{\alpha^*}$ where $V_{xy} = \text{Int}(\text{cl}_\alpha(U_x))$.

(vi) By (iii), $[A]_{\alpha}^* \cup [B]_{\alpha}^* \subseteq [A \cup B]_{\alpha}^*$. Now, let $x \in [A \cup B]_{\alpha}^*$. Then for every $U \in \tau(x)$, $(\text{Int}(\text{cl}_{\alpha}(U)) \cap A) \cup (\text{Int}(\text{cl}_{\alpha}(U)) \cap B) = \text{Int}(\text{cl}_{\alpha}(U)) \cap (A \cup B) \notin \vartheta$. Therefore, $\text{Int}(\text{cl}_{\alpha}(U)) \cap A \notin \vartheta$ or $\text{Int}(\text{cl}_{\alpha}(U)) \cap B \notin \vartheta$. Consequently, $x \in [A]_{\alpha}^* \cup [B]_{\alpha}^*$.

(vii) Since $A = (A - B) \cup (B \cap A)$, then by (vi), $[A]_{\alpha}^* = [A - B]_{\alpha}^* \cup [B \cap A]_{\alpha}^*$. Therefore, $[A]_{\alpha}^* - [B]_{\alpha}^* = [A]_{\alpha}^* \cap (X - [B]_{\alpha}^*) = (([A - B]_{\alpha}^* \cup [B \cap A]_{\alpha}^*) \cap (X - [B]_{\alpha}^*)) = ([A - B]_{\alpha}^* \cap (X - [B]_{\alpha}^*)) \cup ([B \cap A]_{\alpha}^* \cap (X - [B]_{\alpha}^*)) = [A - B]_{\alpha}^* - [B]_{\alpha}^* \cup \phi \subseteq [A - B]_{\alpha}^*$.

(viii) Let $U \in \tau$ and $x \in U \cap [A]_{\alpha}^*$. Then $x \in U$ and $x \in [A]_{\alpha}^*$. Since for every $V \in \tau(x)$, $U \cap W \in \tau(x)$ and thus $W \cap (U \cap A) = (U \cap W) \cap A \notin \vartheta$ where $W = \text{Int}(\text{cl}_{\alpha}(V))$. Hence $x \in [U \cap A]_{\alpha}^*$. Also $U \cap [A]_{\alpha}^* \subseteq U \cap [U \cap A]_{\alpha}^*$ and by (iii) $[U \cap A]_{\alpha}^* \subseteq [A]_{\alpha}^*$ and $U \cap [U \cap A]_{\alpha}^* \subseteq U \cap [A]_{\alpha}^*$.

(ix) Since $A \cap U \subseteq U \in \vartheta$, $A \cap U \in \vartheta$ by heredity of ϑ and by (ii) $[A \cap U]_{\alpha}^* = \phi$. Since $A = (A - U) \cup (A \cap U)$, $[A]_{\alpha}^* = [A - U]_{\alpha}^* \cup [A \cap U]_{\alpha}^* = [A - U]_{\alpha}^*$ by (vi).

(x) By (iv) for any $A \subseteq X$, we have $[A]_{\alpha}^* = \text{cl}([A]_{\alpha}^*) \subseteq \text{cl}_{\theta}(A)$. Since $A \subseteq [A]_{\alpha}^*$ and A is open, $\text{cl}_{\theta}(A) \subseteq \text{cl}_{\theta}([A]_{\alpha}^*) = \text{cl}([A]_{\alpha}^*)$ by Lemma 1.1. Therefore, $[A]_{\alpha}^* = \text{cl}([A]_{\alpha}^*) = \text{cl}_{\theta}(A)$.

(xi) Proof is clear by (iii).

The following Example shows that the reverse inclusion of Theorem 2.3(x) is not always hold. Let $X = \{a, b, c, d\}$, $\tau = \{X, \phi, \{a\}, \{b, c\}, \{a, b, c\}\}$ and $\vartheta = \{\phi, \{b\}\}$ and $A = \{a, d\}$, $B = \{b, c\}$ then $[A]_{\alpha}^* = \{a, d\}$, $[B]_{\alpha}^* = \{b, c, d\}$ and hence clear.

Theorem 2.4. Let (X, τ, ϑ) be a topological space with ideals ϑ_1 and ϑ_2 of X and $A \subseteq X$. Then the following properties hold.

- (i) If $\vartheta_1 \subseteq \vartheta_2$ then $[A]_{\alpha}^*(\vartheta_2) \subseteq [A]_{\alpha}^*(\vartheta_1)$
- (ii) $[A]_{\alpha}^*(\vartheta_1 \cap \vartheta_2) \subseteq [A]_{\alpha}^*(\vartheta_1) \cup [A]_{\alpha}^*(\vartheta_2)$.

Proof. (i) Let $\vartheta_1 \subseteq \vartheta_2$ and $x \in [A]_{\alpha}^*(\vartheta_2)$. Then $A \cap \text{Int}(\text{cl}_{\alpha}(U)) \notin \vartheta_2$ for every $U \in \tau(x)$ and hence $A \cap \text{Int}(\text{cl}_{\alpha}(U)) \notin \vartheta_1$. That is, $x \in [A]_{\alpha}^*(\vartheta_1)$.

(ii) We have $[A]_{\alpha}^*(\vartheta_1) \subseteq [A]_{\alpha}^*(\vartheta_1 \cap \vartheta_2)$ and $[A]_{\alpha}^*(\vartheta_2) \subseteq [A]_{\alpha}^*(\vartheta_1 \cap \vartheta_2)$ by

(i). Therefore, $[A]_{\alpha^*}(\vartheta_1) \cup [A]_{\alpha^*}(\vartheta_2) \subseteq [A]_{\alpha^*}(\vartheta_1 \cap \vartheta_2)$. Let $x \in [A]_{\alpha^*}(\vartheta_1 \cap \vartheta_2)$, for each $U \in \tau(x)$, $\text{Int}(\text{cl}_\alpha(U)) \cap A \notin \vartheta_1 \cap I_2$ and hence $\text{Int}(\text{cl}_\alpha(U)) \cap A \notin \vartheta_1$ or $\text{Int}(\text{cl}_\alpha(U)) \cap A \notin \vartheta_2$, and so $x \in [A]_{\alpha^*}(\vartheta_1)$ or $x \in [A]_{\alpha^*}(\vartheta_2)$. Therefore, $x \in [A]_{\alpha^*}(\vartheta_1) \cup [A]_{\alpha^*}(\vartheta_2)$.

Theorem 2.5. (i) $A^* \subseteq [A]_{\alpha^*}$, (ii) $[A]_{\alpha^*} \subseteq \text{cl}_\delta(A)$, (iii) $[A]_{\alpha^*} \subseteq \Gamma(A)$

Proof. The proof is clear by Definition.

The following Examples shows that Theorem 2.5 is true. (i) $X = \{a, b, c\}$, $\tau = \{X, \emptyset, \{a\}\}$ and $\vartheta = \{\emptyset, \{a\}\}$. Let $A = \{b\}$ then $A^* = \{b, c\}$ and $[A]_{\alpha^*} = X$. (ii) $X = \{a, b, c, d\}$, $\tau = \{X, \emptyset, \{a\}, \{b, c\}, \{a, b, c\}\}$ and $\vartheta = \{\emptyset, \{b\}\}$. Let $A = \{a, b, d\}$ then $[A]_{\alpha^*} = \{a, d\}$ and $\text{cl}_\delta(A) = \Gamma(A) = X$.

3. τ_{α^*} - open sets.

In this section we defined a closure operator $\text{cl}_\alpha^*(A) = A \cup [A]_{\alpha^*}$ and proved is a Kuratowski closure operator.

Theorem 3.1. Let (X, τ, ϑ) be an ideal topological space, $\text{cl}_\alpha^*(A) = A \cup [A]_{\alpha^*}$ and A, B subsets of X . Then

- (i) $\text{cl}_\alpha^*(\emptyset) = \emptyset$ and $\text{cl}_\alpha^*(X) = X$.
- (ii) $A \subseteq \text{cl}_\alpha^*(A)$.
- (iii) if $A \subseteq B$ then $\text{cl}_\alpha^*(A) \subseteq \text{cl}_\alpha^*(B)$.
- (iv) $\text{cl}_\alpha^*(A \cup B) = \text{cl}_\alpha^*(A) \cup \text{cl}_\alpha^*(B)$.
- (v) $\text{cl}_\alpha^*(A \cap B) \subseteq \text{cl}_\alpha^*(A) \cap \text{cl}_\alpha^*(B)$.
- (vi) $\text{cl}_\alpha^*(\text{cl}_\alpha^*(A)) = \text{cl}_\alpha^*(A)$.
- (vii) if $U \in \tau(x)$ then $U \cap \text{cl}_\alpha^*(A) \subseteq \text{cl}_\alpha^*(U \cap A)$.
- (viii) $\text{cl}^*(A) \subseteq \text{cl}_\alpha^*(A)$

Proof. (i) $\text{cl}_\alpha^*(\emptyset) = [\emptyset]_{\alpha^*} \cup \emptyset = \emptyset$ and $\text{cl}_\alpha^*(X) = [X]_{\alpha^*} \cup X = X$.

(ii) $A \subseteq A \cup [A]_{\alpha^*} = \text{cl}_\alpha^*(A)$.

(iii) Let $A \subseteq B$, $\text{cl}_a^*(A) = A \cup [A]_a^* \subseteq B \cup [B]_a^* = \text{cl}_a^*(B)$ by Theorem 2.3(iii).

(iv) By Theorem 2.3(vi), $\text{cl}_a^*(A \cup B) = [A \cup B]_a^* \cup (A \cup B) = ([A]_a^* \cup [B]_a^*) \cup (A \cup B) = ([A]_a^* \cup A) \cup ([B]_a^* \cup B) = \text{cl}_a^*(A) \cup \text{cl}_a^*(B)$.

(v) Since $A \cap B \subseteq A$ and $A \cap B \subseteq B$ then by (iii), $\text{cl}_a^*(A \cap B) \subseteq \text{cl}_a^*(A)$ and $\text{cl}_a^*(A \cap B) \subseteq \text{cl}_a^*(B)$ and hence $\text{cl}_a^*(A \cap B) \subseteq \text{cl}_a^*(A) \cap \text{cl}_a^*(B)$.

(vi) $\text{cl}_a^*(\text{cl}_a^*(A)) = \text{cl}_a^*([A]_a^* \cup A) = [[A]_a^* \cup A]_a^* \cup ([A]_a^* \cup A) = ([[A]_a^*]_a^* \cup [A]_a^*) \cup ([A]_a^* \cup A) = [A]_a^* \cup ([A]_a^* \cup A) = [A]_a^* \cup A = \text{cl}_a^*(A)$ by Theorem 2.3(vi) and (v).

(vii) Since $U \in \tau(x)$. By Theorem 2.3(viii) we have, $U \cap \text{cl}_a^*(A) = U \cap ([A]_a^* \cup A) = (U \cap A) \cup (U \cap [A]_a^*) \subseteq (U \cap A) \cup [U \cap A]_a^* = \text{cl}_a^*(U \cap A)$.

(viii) The proof is clear by Definition.

Remark 3.2. By Theorem 3.1 (i), (ii), (iv) and (vi) $\text{cl}_a^*(A) = A \cup [A]_a^*$ is a Kuratoswki closure operator. The topology generated by $\text{cl}_a^*(A)$ is denoted and defined by $\tau_a^* = \{U \subseteq X : \text{cl}_a^*(X - U) = X - U\}$ the open sets in τ_a^* is called τ_a^* -open sets and its complement is called τ_a^* -closed sets.

The following Examples shows that (i) The reveres inclusion of Theorem 3.1 (v) is not always hold, $X = \{a, b, c, d\}$, $\tau = \{X, \emptyset, \{a\}, \{b, c\}, \{a, b, c\}\}$ and $\vartheta = \{\emptyset, \{b\}\}$. Let $A = \{b\}$ and $B = \{c\}$ then $\text{cl}_a^*(A) = \{b\}$ and $\text{cl}_a^*(B) = \{b, c, d\}$ then it clear and (ii) Theorem 3.1 (viii) is true, $X = \{a, b, c\}$, $\tau = \{X, \emptyset, \{a\}\}$ and $\vartheta = \{\emptyset, \{a\}\}$. Let $A = \{b\}$ then $\text{cl}^*(A) = \{b, c\}$ and $\text{cl}_a^*(A) = X$.

Corollary 3.3. Let (X, τ, ϑ) be an ideal topological space and A a subset of X . If $A \subseteq [A]_a^*$ and A is open then,

(i) $\text{cl}_\vartheta(A) = \text{cl}_a^*(A)$.

(ii) $\text{Int}_\vartheta(X - A) = \text{Int}_a^*(X - A)$.

Proof. (i) By Theorem 2.3 and by the Definition of $\text{cl}_a^*(A)$, since $A \subseteq [A]_a^*$ and A is open, $\text{cl}_\vartheta(A) = [A]_a^* = \text{cl}_a^*(A)$.

(ii) $\text{Int}_\vartheta(X - A) = X - \text{cl}_\vartheta(A) = X - \text{cl}_a^*(A) = \text{Int}_a^*(X - A)$, by (i).

Lemma 3.4. Let (X, τ, ϑ) be an ideal topological space and A, B subsets of X . Then $[A]_a^* - [B]_a^* = [A - B]_a^* - [B]_a^*$.

Proof. By Theorem 2.3, $[A]_{\alpha^*} = [(A - B) \cup (B \cap A)]_{\alpha^*} = [A - B]_{\alpha^*} \cup [A \cap B]_{\alpha^*} \subseteq [A - B]_{\alpha^*} \cup [B]_{\alpha^*}$. Thus $[A]_{\alpha^*} - [B]_{\alpha^*} \subseteq [A - B]_{\alpha^*} - [B]_{\alpha^*}$. Also by Theorem 2.3, $[A - B]_{\alpha^*} \subseteq [A]_{\alpha^*}$ since $A - B \subseteq A$, and hence $[A - B]_{\alpha^*} - [B]_{\alpha^*} \subseteq [A]_{\alpha^*} - [B]_{\alpha^*}$. Hence $[A]_{\alpha^*} - [B]_{\alpha^*} = [A - B]_{\alpha^*} - [B]_{\alpha^*}$.

Corollary 3.5. (X, τ, ϑ) be an ideal topological space and A, B subsets of X with $B \in \vartheta$. Then

$$[A \cup B]_{\alpha^*} = [A]_{\alpha^*} = [A - B]_{\alpha^*}.$$

Proof. Since $B \in \vartheta$, by Theorem 2.3(ii), $[B]_{\alpha^*} = \emptyset$. By Lemma 3.4 and by Theorem 2.3, $[A \cup B]_{\alpha^*} = [A]_{\alpha^*} \cup [B]_{\alpha^*} = [A]_{\alpha^*} = [A - B]_{\alpha^*}$.

4. α^* - Local Compatibility with an Ideal

Definition 4.1. Let (X, τ, ϑ) be an ideal topological space. We say that the topology τ is α^* -local compatible with the ideal ϑ , denoted by $\tau \sim [\vartheta]_{\alpha^*}$, if the following condition holds for every $A \subseteq X$, if for every $x \in A$ there exists a $U \in \tau(x)$ such that $\text{Int}(\text{cl}_{\alpha}(U)) \cap A \in \vartheta$, then $A \in \vartheta$.

Theorem 4.2. Let (X, τ, ϑ) be an ideal topological space then the following properties are equivalent:

- (i) $\tau \sim [\vartheta]_{\alpha^*}$.
- (ii) If a subset A of X has a cover of open sets each of whose interior α -closure intersection with A is in ϑ , then $A \in \vartheta$.
- (iii) For every $A \subseteq X$, $A \cap [A]_{\alpha^*} = \emptyset$ implies that $A \in \vartheta$.
- (iv) For every $A \subseteq X$, $A - [A]_{\alpha^*} \in \vartheta$.
- (v) For every $A \subseteq X$, if A contains no nonempty set B with $B \subseteq [B]_{\alpha^*}$ then $A \in \vartheta$.

Proof. (i) \Rightarrow (ii). The proof is obvious by Definition.

(ii) \Rightarrow (iii). Let $A \subseteq X$ and $x \in A$. Then $x \notin [A]_{\alpha^*}$ and there exist $U_x \in \tau(x)$ such that $\text{Int}(\text{cl}_{\alpha}(U_x)) \cap A \in \vartheta$. Therefore we have, $A \subseteq \bigcup \{U_x : x \in A\}$ and $U_x \in \tau(x)$ and by

(ii), $A \in \vartheta$.

(iii) \Rightarrow (iv). For any $A \subseteq X$, $A - [A]_{\alpha^*} \subseteq A$. Then $[(A - [A]_{\alpha^*}) \cap [A - [A]_{\alpha^*}]_{\alpha^*}] \subseteq (A - [A]_{\alpha^*}) \cap [A]_{\alpha^*} = \emptyset$. Therefore by (iii), $A - [A]_{\alpha^*} \in \vartheta$.

(iv) \Rightarrow (v). By (iv), for every $A \subseteq X$, $A - [A]_{\alpha^*} \in \vartheta$. Let $A - [A]_{\alpha^*} = \vartheta^1 \in \vartheta$. Then $A = \vartheta^1 \cup (A \cap [A]_{\alpha^*})$, by Theorem 2.3 (vi) and by Theorem 2.3 (ii), $[A]_{\alpha^*} = [\vartheta^1]_{\alpha^*} \cup [A \cap [A]_{\alpha^*}]_{\alpha^*} = [A \cap [A]_{\alpha^*}]_{\alpha^*}$. Therefore, $A \cap [A]_{\alpha^*} = A \cap [A \cap [A]_{\alpha^*}]_{\alpha^*} \subseteq [A \cap [A]_{\alpha^*}]_{\alpha^*}$ and $A \cap [A]_{\alpha^*} \subseteq A$. By the assumption, $A \cap [A]_{\alpha^*} = \emptyset$ and hence $A = A - [A]_{\alpha^*} \in \vartheta$.

(v) \Rightarrow (i). Let $A \subseteq X$ and assume that for every $x \in A$, there exist $U \in \tau(x)$ such that $\text{Int}(\text{cl}_{\alpha}(U)) \cap A \in \vartheta$. Then $A \cap [A]_{\alpha^*} = \emptyset$. Suppose that $B \subseteq A$ such that, $B \subseteq [B]_{\alpha^*}$. Then $B = B \cap [B]_{\alpha^*} \subseteq A \cap [A]_{\alpha^*} = \emptyset$. Therefore, A contains no nonempty set B such that $B \subseteq [B]_{\alpha^*}$. Hence $A \in \vartheta$.

Theorem 4.3. Let (X, τ, ϑ) be an ideal topological space. If τ is α^* -local compatible with ϑ , then the following equivalent properties hold:

- (i) For every $A \subseteq X$, $A \cap [A]_{\alpha^*} = \emptyset$ implies that $[A]_{\alpha^*} = \emptyset$.
- (ii) For every $A \subseteq X$, $[A - [A]_{\alpha^*}]_{\alpha^*} = \emptyset$.
- (iii) For every $A \subseteq X$, $[A \cap [A]_{\alpha^*}]_{\alpha^*} = [A]_{\alpha^*}$.

Proof. First we prove that (i) holds if τ is α^* -local compatible with ϑ . Let A be any subset of X and $A \cap [A]_{\alpha^*} = \emptyset$, Then by Theorem 4.2, $A \in \vartheta$ and hence by Theorem 2.3, $[A]_{\alpha^*} = \emptyset$.

(i) \Rightarrow (ii). Assume that for every $A \subseteq X$, $A \cap [A]_{\alpha^*} = \emptyset$ implies that $[A]_{\alpha^*} = \emptyset$. Let $B = A - [A]_{\alpha^*}$. Then $B \cap [B]_{\alpha^*} = (A - [A]_{\alpha^*}) \cap [A - [A]_{\alpha^*}]_{\alpha^*}$. Now $B \cap [B]_{\alpha^*} = (A \cap (X - [A]_{\alpha^*})) \cap [A \cap (X - [A]_{\alpha^*})]_{\alpha^*} \subseteq (A \cap (X - [A]_{\alpha^*})) \cap ([A]_{\alpha^*} \cap [X - [A]_{\alpha^*}]_{\alpha^*}) = \emptyset$. Therefore by (i), $[B]_{\alpha^*} = \emptyset$.

(ii) \Rightarrow (iii). Assume that for every $A \subseteq X$, $[A - [A]_{\alpha^*}]_{\alpha^*} = \emptyset$. $A = (A - [A]_{\alpha^*}) \cup (A \cap [A]_{\alpha^*})$. Therefore, $[A]_{\alpha^*} = [A - [A]_{\alpha^*}]_{\alpha^*} \cup [A \cap [A]_{\alpha^*}]_{\alpha^*} = [A \cap [A]_{\alpha^*}]_{\alpha^*}$.

(iii) \Rightarrow (i). Assume that for every $A \subseteq X$, $A \cap [A]_{\alpha^*} = \emptyset$ and $[A \cap [A]_{\alpha^*}]_{\alpha^*} = [A]_{\alpha^*}$.

Therefore, $[A]_{\alpha^*} = \emptyset$.

Corollary 4.4. Let (X, τ, ϑ) be an ideal topological space and $A \subseteq X$. If τ is α^* -local compatible with ϑ , then $[A]_{\alpha^*} = [A_{\alpha^*}]_{\alpha^*}$.

Proof. Let $A \subseteq X$, $[A]_{\alpha^*} = [A \cap [A]_{\alpha^*}]_{\alpha^*} \subseteq [A]_{\alpha^*} \cap [[A]_{\alpha^*}]_{\alpha^*} = [[A]_{\alpha^*}]_{\alpha^*}$ by Theorem 4.3 and by Theorem 2.3. Therefore, $[A]_{\alpha^*} = [[A]_{\alpha^*}]_{\alpha^*}$ again by Theorem 2.3.

Theorem 4.5. Let (X, τ, ϑ) be an ideal topological space and τ is α^* -local compatible with ϑ , A a τ_{α^*} -closed subset of X . Then $A = B \cup \vartheta^1$, where B is closed and $\vartheta^1 \in \vartheta$.

Proof. Let $A \subseteq X$ and A is τ_{α^*} -closed. Then $[A]_{\alpha^*} \subseteq A$ implies $A = (A - [A]_{\alpha^*}) \cup [A]_{\alpha^*}$ and hence by Theorem 4.2 and by Theorem 2.3(iv), proof completes.

Theorem 4.6. Let (X, τ, ϑ) be an ideal topological space then the following properties are equivalent:

- (i) $\tau \sim [\vartheta]_{\alpha^*}$,
- (ii) For every τ_{α^*} -closed subset A , $A - [A]_{\alpha^*} \in \vartheta$,

Proof. (i) \Rightarrow (ii). The proof is clear by Theorem 4.2.

(ii) \Rightarrow (i) Let $A \subseteq X$ and assume that for every $x \in A$, there exists an open set $U \in \tau(x)$ such that, $A \cap \text{Int}(\text{cl}_{\alpha}(U)) \in \vartheta$, then $A \cap [A]_{\alpha^*} = \emptyset$. Since $\text{cl}_{\alpha^*}(A)$ is τ_{α^*} -closed, $(A \cup [A]_{\alpha^*}) - [A \cup [A]_{\alpha^*}]_{\alpha^*} \in \vartheta$ and $(A \cup [A]_{\alpha^*}) - [A \cup [A]_{\alpha^*}]_{\alpha^*} = (A \cup [A]_{\alpha^*}) - ([A]_{\alpha^*} \cup [[A]_{\alpha^*}]_{\alpha^*}) = (A \cup [A]_{\alpha^*}) - [A]_{\alpha^*} = A$.

Theorem 4.7. Let (X, τ, ϑ) be an ideal topological space and τ be α^* -local compatible with ideal ϑ . Then for every $V \in \tau$ and any $A \subseteq X$, $[V \cap A]_{\alpha^*} = [V \cap [A]_{\alpha^*}]_{\alpha^*} = \text{cl}([V \cap [A]_{\alpha^*}]_{\alpha^*}) \subseteq \text{cl}_{\vartheta}(V \cap [A]_{\alpha^*})$.

Proof. Let $V \in \tau$. Then by Theorem 2.3(viii), $V \cap [A]_{\alpha^*} = V \cap [V \cap A]_{\alpha^*} \subseteq [V \cap A]_{\alpha^*}$ and therefore $[V \cap [A]_{\alpha^*}]_{\alpha^*} \subseteq [[V \cap A]_{\alpha^*}]_{\alpha^*} \subseteq [V \cap A]_{\alpha^*}$ again by Theorem 2.3. Also by Theorem 2.3 and Theorem 4.3 we obtain $[V \cap (A - [A]_{\alpha^*})]_{\alpha^*} \subseteq [V]_{\alpha^*} \cap [A - [A]_{\alpha^*}]_{\alpha^*} = [V]_{\alpha^*} \cap \emptyset = \emptyset$. Moreover, $[V \cap A]_{\alpha^*} - [V \cap [A]_{\alpha^*}]_{\alpha^*} \subseteq [(V \cap A) - (V \cap [A]_{\alpha^*})]_{\alpha^*} = [V \cap (A - [A]_{\alpha^*})]_{\alpha^*} = \emptyset$ and hence $[V \cap A]_{\alpha^*} \subseteq [V \cap [A]_{\alpha^*}]_{\alpha^*}$. Therefore we have, $[V \cap A]_{\alpha^*} = [V \cap [A]_{\alpha^*}]_{\alpha^*}$. Also by Theorem 2.3, $[V \cap A]_{\alpha^*} =$

$$[V \cap [A]_a^*]_a^* = \text{cl}([V \cap [A]_a^*]_a^*) \subseteq \text{cl}_\theta(V \cap [A]_a^*).$$

5. Φ -Operator

Definition 5.1. Let (X, τ, ϑ) be an ideal topological space. An operator $\Phi(A) : P(X) \rightarrow \tau$ is

defined as follows: for every $A \subseteq X$, $\Phi(A) = \{x \in X : \text{there exist } U \in \tau(x) \text{ such that } \text{Int}(\text{cl}_a(U)) - A \in \vartheta\}$ and observe that $\Phi(A) = X - [X - A]_a^*$.

Theorem 5.2. Let (X, τ, ϑ) be an ideal topological space. Then the following properties hold:

- (i) For every $A \subseteq X$, $\Phi(A)$ is open.
- (ii) If $A \subseteq B$ then $\Phi(A) \subseteq \Phi(B)$.
- (iii) If $A, B \in P(X)$, then $\Phi(A \cap B) = \Phi(A) \cap \Phi(B)$.
- (iv) If $A \subseteq X$, then $\Phi(A) = \Phi(\Phi(A))$ iff $[X - A]_a^* = [[X - A]_a^*]_a^*$.
- (v) If $A \in \vartheta$, then $\Phi(A) = X - [X]_a^*$.
- (vi) If $A \subseteq X$, $\vartheta^1 \in \vartheta$, then $\Phi(A - \vartheta^1) = \Phi(A)$.
- (vii) If $A \subseteq X$, $\vartheta^1 \in \vartheta$, then $\Phi(A \cup \vartheta^1) = \Phi(A)$.
- (viii) If $(A - B) \cup (B - A) \in \vartheta$, then $\Phi(A) = \Phi(B)$.

Proof. (i) Proof is clear from Theorem 2.3(iv).

(ii) Proof follows from Theorem 2.3(iii).

(iii) $\Phi(A \cap B) = X - [X - (A \cap B)]_a^* = X - [(X - A) \cup (X - B)]_a^* = X - ([X - A]_a^* \cup [X - B]_a^*) = (X - [X - A]_a^*) \cap (X - [X - B]_a^*) = \Phi(A) \cap \Phi(B)$.

(iv) Let $A \subseteq X$. Since $\Phi(A) = X - [X - A]_a^*$ and $\Phi(\Phi(A)) = X - [X - \Phi(A)]_a^* = X - [X - (X - [X - A]_a^*)]_a^* = X - [[X - A]_a^*]_a^*$ proof follows.

(v) By Corollary 3.5, if $A \in \vartheta$, $[X - A]_a^* = [X]_a^*$.

(vi) By Corollary 3.5, $\Phi(A - \vartheta^1) = X - [X - (A - \vartheta^1)]_a^* = X - [(X - A) \cup \vartheta^1]_a^* = X - [X - A]_a^* = \Phi(A)$.

(vii) $\Phi(A \cup \vartheta^1) = X - [X - (A \cup \vartheta^1)]_{\alpha^*} = X - [(X - A) - \vartheta^1]_{\alpha^*} = X - [X - A]_{\alpha^*} = \Phi(A)$.

(viii) Assume that, $(A - B) \cup (B - A) \in \vartheta$. Let $A - B = \vartheta^1$ and $B - A = \vartheta^{11}$. Observe that $\vartheta^1, \vartheta^{11} \in \vartheta$ by heredity. Also observe that $B = (A - \vartheta^1) \cup \vartheta^{11}$. Thus $\Phi(A) = \Phi(A - \vartheta^1) = \Phi[(A - \vartheta^1) \cup \vartheta^{11}] = \Phi(B)$, by (vi) and (vii).

Corollary 5.3. Let (X, τ, ϑ) be an ideal topological space. Then $U \subseteq \Phi(U)$ for every θ -open set $U \subseteq X$.

Proof. We know that $\Phi(U) = X - [X - U]_{\alpha^*}$. Now $[X - U]_{\alpha^*} \subseteq \text{cl}_\theta(X - U) = (X - U)$, Since

$(X - U)$ is θ -closed. Therefore, $U = X - (X - U) \subseteq X - [X - U]_{\alpha^*} = \Phi(U)$.

REFERENCES

- [1] Ahmad Al-Omari and Takashi Noiri, (2013) Local Closure Functions in Ideal Topological Spaces, *Novi Sad J. Math.* Vol.43, No.2, PP 139-149.
- [2] Arenas F.G, J.Dontchev, M.L.Puertas, (2000), Idealization of Some Weak Separation Axioms, *Acta. Math. Hungar.* 89(1-2) PP. 47-53.
- [3] Dontchev J, M.Ganster., D.Rose, (1999), Ideal Resolvability. *Topology and its Appl.* 93, PP 1-16.
- [4] Jonkovic D, T.R.Hamlett, (1990), New Topologies from old via Ideals, *Amer.Math. Monthly* 97, PP 295-310.
- [5] Kuratowski K, (1996), *Topology*, Vol. I. New York: Academic Press.
- [6] Mukherjee M.N, R. Bishwambhar, R.Sen, (2007), On Extension of Topological Spaces in terms of Ideals. *Topology and its Appl.* 154, PP 3167-3172.
- [7] Nasef A.A, R.A.Mahmond, (2002), Some Applications via Fuzzy ideals. *Chaos, Solitons and Fractals* 13, PP 825-831.
- [8] Navaneethakrishnan M, J Paulraj Joseph, g-closed sets in ideal Topological Spaces, *Acta. Math. Hungar.* DOI.10.107/s10474-007-7050-1.
- [9] Njastad O, (1965), On Some Classes of Nearly Open Sets, *Pacific J. Math.*, 15(3),PP 961-970 .
- [10] Vaidyanathaswamy V, (1945), The Localization Theory in set Topology, *Proc. Indian. Acad. Sci.* 20.
- [11] Velicko N.V, (1996), H-Closed Topological Spaces , *Math. Sb.*,70, PP 98-112.

