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Abstract

In this paper we will introduce the Laplacian matrix of graph with doubly
weights.We put a perception for the matrix of doubly weighted graph.
Finally we express a polynomial as determinant of Laplacian matrix.
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1. INTRODUCTION

In graph theory, Laplace matrix can be get for un weighted graph , and weighted
graph,

The traditional weighted graph consists of weights on edge only. In this paper we
compute it for doubly weighted graph, in which both edges and vertices are weighted.

We know that (Kirchoff’s Matrix-Tree Theorem, 1847). If G(V, E) is an undirected
graph and L is its graph Laplacian, then the number Nt of spanning trees contained in
G is given by the following computation.

(1) Choose a vertex vj and eliminate the j-th row and column from L to get a new
matrix Lj; (2) Compute Nt = det(L;) Eqgn. (1)

The number Nt in Egn. (1) counts spanning trees that are distinct as subgraphs of G:
equivalently, we regard the vertices as distinguishable. Thus some of the trees that
contribute to Nt may be isomorphic.

2. DEFINITIONS:

Doubly-Weighted Graph: Define a doubly-weighted graph G = (V (G), oV , E(G),
oE). The set V (G) is called the vertex set of G, and elements of this set are called
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vertices. The vertex weight function ®V : V (G) — R maps all vertices onto the set of
real numbers. We denote the weight of a vertex v as @V (v). The set E(G) is called the
edge set of G, and elements of this set are called edges. Each edge e is defined by two
vertices, vjand vk, such that ej = vjvk. We say that this edge e; is incident to vertices vi
and v;j , and we denote this by ej o vj and ei a vk respectively. Let 3(v) be the degree of
vertex v—that is the number of edges incident to v. The edge weight function ®E :
E(G) — R maps all edges onto the set of real numbers. We denote the weight of an
edge e as wE(e). Vertex-Weighted Graph. Let graph G = (V (G), oV , E(G), oE), and
let oE be defined

Vertex-Weighted Graph. Let graph G = (V (G), oV , E(G), ©E), and let oE be
defined such that for all edges e in E(G), wE(e) = 0. Since all the weights of the edges
are zero, it is as if the edges are not weighted at all. Thus we say that graph G is a
vertex-weighted graph and its edge weights are not counted when considering
weights. 1 Edge-Weighted Graph. Let graph G = (V (G), oV , E(G), ®E), and let oV
be defined such that for all vertices v in V (G), vw(v) = 0. Since all the weights of the
vertices are zero, it is as if the vertices are not weighted at all. Thus we say that graph
G is an edge-weighted graph and its vertex weights are not counted when considering
weights.

Edge-Weighted Graph. Let graph G = (V (G), oV , E(G), ®E), and let ®V be
defined such that for all vertices v in V (G), vw(v) = 0. Since all the weights of the
vertices are zero, it is as if the vertices are not weighted at all. Thus we say that graph
G is an edge-weighted graph and its vertex weights are not counted when considering
weights.

3. MAIN RESULTS:
Definition 3.1:
The doubly weighted matrix Ajj
Is n x n matrix with raws and column for vertices where entry
A {in vj  vertex weight ifi=j
"5 Wvivj edgeweight ifi#]j
The Laplace matrix of G is: L =NAN? where N is vertex-edge incident matrix with
one row for each vertex and one column for each edge , the entry Ny is:

—1 if vis tail of e.

1 if visa head.
Nv,e = {
0 othewise.
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Example 3.2:

Consider a graph with doubly weights , the Laplace matrix can be obtained as
follows:

1'.."'1:6
g; =4 e =1

W5=5 Vo=d4
g;=2
Fig.(1)
6 1 4 1 0 1
A = 1 4 2 N =—1 1 0
¢ 2 5 0 -1 -1

Then L =NAN!

19 -7 -—-12
= =7 8 -1
—-12 -1 13

By deleting the first row and column we find:

det L =103.

Theorem 3.3 :
Doubly weighted Laplacian element is given by:

L= Y Wi Ag) dij - Wi A
(Where Ajj is the adjacency matrix element , wij is weight of vertices if

i=j and weight of edges if i# ) is not strictly positive definite.
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Proof:
The constant vector has eigen value 0.But it's non negative definite.

Let D denote the diagonal matrix of total vertex weights , and denote the diagonal
entries by d; for any vector v we have:

VI(D-W)V=VIDV - VWV
=YiVid di - YiiWij Vi V.
Assume that Wii=0 , Wii=Wi;i.

Then the second term equal to 2 Wi Vi Vj , furthermore we can rewrite the first
term as :

CieiWij + Xy Wi) X Vi
=i Vi* Wij + Xioj Vi Wi
=Yi<i (Vi +Vi? ) Wi
Where the last inequality follow by interchanging 1, j in the second sum.
Putting it together , we see :
VILV ="icj (V2 + V-2 ViV ) Wijj
=Yi<j (Vi—Vj)? >0 As desired.

Example 3.4 :
For Fig. (2) we can compute Laplacian as follows:

W, =1 e, =10 Wo=3
g =d ga=2
Vi =6 8, =3 Vs =3
Fig.(2)

1 10 0 4 1 1 0 0
10 3 2 0 1 0 1 0
A= 0 2 5 3 N = 0 0 -1 1
4 0 3 6 0 -1 0 1
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24 -5 2 -17
-5 B -6 9
- 1 =
Then L =NAN 6 5 1
-17 9 -1 9

By deleting the first row and column:

7] -5 g
Then L= 6 5 -1
g -1 g

Then det L =-357 .

4. EXPRESSING A POLYNOMIAL AS A DETERMINANT LAPLACIAN
MATRIX:

Let Kirchoff's matrix be n x n matrix A= ajj, |, j € { 1,2,3,.....n} where:

. { nXli ifi=j
" -Xij ifi#j

Then by matrix tree theorem we have:
Corollary 4.1 :

Fn = det A, let G be a net on the set of vertices v with conductivities gvww then
polynomial X fo( X1,X2, ... Xn) = det B = det NN,

Where B =( bj)) I<Lj<n isnXxnmatrix
b___{x + Y1 xl gli i=j

VUL —xi gy i #j
Example 4.2:

For graph in Fig.(1) , we can express a polynomial as determinant of Laplacian
matrix as follows:

b11=X + X1 Q11 + X2 Q21 + X3 Q31.
b12 = -X1= - X1

b13 = -X2Q021=- X2

D21 =-X2 Qo1 =- X2

D22 =X + X1 012 + X2 Q22+ X3 g32 = X + X1+ X3
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b23 = - X2 023 = - X2.
b31 = - X3031 =-Xa.
b3z = - X3032 = -Xa..

b3z =X + X1013 + X2 23 + X3033 = X + X1 + X2.

Xt Mo+ X 2. =Xy
NN-1= -Xz Kt Hy+ s Kz
-¥z -¥3 MM+ M

Delete the first row and column and take the determinant:

XA Xy + Xa =KX=
=X X+ Xy + Xa

det

From Fig.(1) Xi:=6, X»>=4, X3=5 Then the determinant will be:

det

X+ 11 -4 ‘
-3 X+10
= (X +11) (X +10)

= X2 +21 X +90.

= X f(wxXy, WXz, WXs).
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