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Abstract 

In this paper we will introduce the Laplacian matrix of graph with doubly 

weights.We put a perception for the matrix of doubly weighted graph. 

Finally we express a polynomial as determinant of Laplacian matrix. 
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1. INTRODUCTION 

In graph theory, Laplace matrix can be get for un weighted graph , and weighted 

graph, 

The traditional weighted graph consists of weights on edge only. In this paper we 

compute it for doubly weighted graph, in which both edges and vertices are weighted. 

We know that (Kirchoff’s Matrix-Tree Theorem, 1847). If G(V, E) is an undirected 

graph and L is its graph Laplacian, then the number NT of spanning trees contained in 

G is given by the following computation. 

 (1) Choose a vertex vj and eliminate the j-th row and column from L to get a new 

matrix Lj; (2) Compute NT = det(Lj)                                                            Eqn. (1)                                            

The number NT in Eqn. (1) counts spanning trees that are distinct as subgraphs of G: 

equivalently, we regard the vertices as distinguishable. Thus some of the trees that 

contribute to NT may be isomorphic. 

 

2. DEFINITIONS: 

Doubly-Weighted Graph: Define a doubly-weighted graph G = (V (G), ωV , E(G), 

ωE). The set V (G) is called the vertex set of G, and elements of this set are called 
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vertices. The vertex weight function ωV : V (G) → R maps all vertices onto the set of 

real numbers. We denote the weight of a vertex v as ωV (v). The set E(G) is called the 

edge set of G, and elements of this set are called edges. Each edge ei is defined by two 

vertices, vjand vk, such that ei = vjvk. We say that this edge ei is incident to vertices vi 

and vj , and we denote this by ei α vj and ei α vk respectively. Let δ(v) be the degree of 

vertex v—that is the number of edges incident to v. The edge weight function ωE : 

E(G) → R maps all edges onto the set of real numbers. We denote the weight of an 

edge e as ωE(e). Vertex-Weighted Graph. Let graph G = (V (G), ωV , E(G), ωE), and 

let ωE be defined 

Vertex-Weighted Graph. Let graph G = (V (G), ωV , E(G), ωE), and let ωE be 

defined such that for all edges e in E(G), ωE(e) = 0. Since all the weights of the edges 

are zero, it is as if the edges are not weighted at all. Thus we say that graph G is a 

vertex-weighted graph and its edge weights are not counted when considering 

weights. 1 Edge-Weighted Graph. Let graph G = (V (G), ωV , E(G), ωE), and let ωV 

be defined such that for all vertices v in V (G), vw(v) = 0. Since all the weights of the 

vertices are zero, it is as if the vertices are not weighted at all. Thus we say that graph 

G is an edge-weighted graph and its vertex weights are not counted when considering 

weights. 

Edge-Weighted Graph. Let graph G = (V (G), ωV , E(G), ωE), and let ωV be 

defined such that for all vertices v in V (G), vw(v) = 0. Since all the weights of the 

vertices are zero, it is as if the vertices are not weighted at all. Thus we say that graph 

G is an edge-weighted graph and its vertex weights are not counted when considering 

weights. 

 

3. MAIN RESULTS: 

Definition 3.1:   

The doubly weighted matrix Aij 

Is n × n matrix with raws and column for vertices where entry  

Aij =      {
𝑊𝑣𝑖 𝑣𝑗       𝑣𝑒𝑟𝑡𝑒𝑥 𝑤𝑒𝑖𝑔ℎ𝑡   𝑖𝑓 𝑖 = 𝑗

𝑊𝑣𝑖 𝑣𝑗      𝑒𝑑𝑔𝑒 𝑤𝑒𝑖𝑔ℎ𝑡    𝑖𝑓 𝑖 ≠ 𝑗           

The Laplace matrix of G is: L =NAN-1   where N is vertex-edge incident  matrix with 

one row for each vertex and one column for each edge , the entry Nv,e  is: 

Nv,e = {
1  𝑖𝑓 𝑣 𝑖𝑠 𝑎 ℎ𝑒𝑎𝑑.

−1  𝑖𝑓 𝑣 𝑖𝑠 𝑡𝑎𝑖𝑙 𝑜𝑓 𝑒.
  0  𝑜𝑡ℎ𝑒𝑤𝑖𝑠𝑒.           
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Example  3.2: 

Consider a graph with doubly weights , the Laplace matrix can be obtained as 

follows: 

 

Fig.(1) 

 

      

Then   L = NAN-1 

 

By deleting the first row and column we find: 

 

det L  =103. 

 

Theorem 3.3 : 

Doubly weighted Laplacian element is given by: 

 

(Where  Aij is the adjacency matrix element , wij is weight of vertices if  

 i= j and weight of edges if i≠ j) is not strictly positive definite. 
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Proof: 

The constant vector has eigen value 0.But it's non negative definite. 

Let D denote the diagonal matrix of total vertex weights , and denote the diagonal 

entries by di  for any vector v we have: 

Vt ( D – W) V = Vt D V – Vt W V 

                        = ∑i Vi
2 di - ∑ijWij Vi Vj. 

Assume that  Wii=0 , Wij=Wji. 

Then the second term equal to 2∑ijWij Vi Vj  , furthermore we can rewrite the first 

term as : 

  (∑i˂ j Wij   +  ∑i>j Wij)         ∑i Vi
2   

         =∑i>j Vi
2 Wij + ∑i>j Vj

2 Wij 

          =∑i˂ j ( Vi
2 + Vj

2  ) Wij 

Where the last inequality follow by interchanging  I , j in the second sum. 

Putting it together , we see : 

Vt L V = ∑i˂ j ( Vi
2 + Vj

2 - 2 Vi Vj  ) Wij 

            =∑i˂ j (Vi – Vj )
2   ≥ 0   As desired. 

 

Example 3.4 : 

For Fig. (2) we can compute Laplacian as follows: 

 

Fig.(2) 
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By deleting the first row and column:  

Then   L =  

 

 Then det L = -357 . 

 

4. EXPRESSING A POLYNOMIAL AS A DETERMINANT LAPLACIAN   

    MATRIX: 

Let Kirchoff's  matrix be n x n matrix A= aij , I , j 𝟄 { 1,2,3,…..n} where: 

atij  = {
∑ 𝑋𝑙𝑖𝑛

𝑙=1                                𝑖𝑓 𝑖 = 𝑗

−𝑋𝑖𝑗                                  𝑖𝑓 𝑖 ≠ 𝑗       

 

Then by matrix tree theorem we have: 

Corollary 4.1 : 

Fn = det A , let G be  a net on the set of vertices v with  conductivities gvw then 

polynomial  X fG( x1,x2, …….xn) = det B = det NN-1. 

Where B =( bij)         1≤ I,j ≤ n   is n x n matrix  

bij = {
𝑥 +  ∑ 𝑥𝑙 𝑔𝑙𝑖𝑛

𝑙=1          𝑖 = 𝑗
−𝑥𝑖 𝑔𝑖𝑗                   𝑖 ≠ 𝑗

 

Example 4.2: 

For graph in Fig.(1)  , we can express a polynomial as determinant of Laplacian 

matrix as follows: 

.31g 3+ x 21g 2+ x 11g 1x + x11 = b 

  1x -= 1x-=  12b         

2x -= 21 g2 x-= 13  b 

2x -=  21g 2x -=  21b 

3+ x1= x + x 32g 3+ x22g 2+ x 12g1 x + x22 = b 
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.2x -=  23g 2x -=  23b 

.3x- = 31g3x -=  31b 

.3.x-=  32g3x -=  32b 

.2+ x 1= x + x 33g3+ x 23g 2+ x13 g1+ x x33 = b 

 

Delete the first row and column and take the determinant: 

 

= 5   Then the determinant will be: 3=4 , X2=6 , X1From Fig.(1)   X 

 

       = (X +11) (X +10)   

+21 X +90. 2= X         

). 3, wx 2, wx 1= X f ( wx          
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