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Abstract

A non empty subset S of V is said to be an external vertex edge (eve)
dominating set for the graphG if and only if for each uv inG, there is a vertex
w ∈ S − {u, v} such that uw or vw is an edge in G. An eve dominating set
of a graph G of minimum cardinality is said to be a minimum eve dominating
set and its cardinality, eve domination number of G, denoted by γeve(G). By
a γeve(G) − set, we mean an eve dominating set of minimum cardinality.
Bounds for this parameter in terms of various graph theoretic parameters are
obtained. We proved that for a tree of order p ≥ 3 having l leaves and s support
vertices, p − 2l − s + 8

3 ≤ γeve(T ) ≤ 2p
3 and characterized the trees attaining

the bounds. We obtained the necessary and sufficient condition for all the
trees with diameter at least 6 to have the same γve(T ), γstve(T ), γeve(T ) and
γcve(T ) numbers.
Subject Classification: 05C69
Key Words: vertex edge domination, semi total domination,connected vertex
edge domination.

1. INTRODUCTION AND PRELIMINARIES

A graph G consists of a finite non empty set V of p vertices together with a set
E of q edges joining pairs of distinct vertices in V . By the open neighbourhood
of a vertex v of G, we mean the set NG(v) = {u ∈ V : uv ∈ E}. The closed
neighbourhood of a vertex v of G, NG[v] = {u ∈ V : uv ∈ E} ∪ {v}. The degree
dG(v) of a vertex v in a graph G is the number of edges of G incident with v.
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We denote by δ(G) and ∆(G) the minimum and maximum degrees of the vertices ofG,
respectively. The distance between two vertices u and v inG, denoted by dG(u, v) is the
length of the shortest u−v path in G. The diameter of a graph G, denoted by diam(G),
is the maximum of eccentricities of the vertices in G. A leaf is a vertex of degree one,
while a support vertex is a vertex adjacent to a leaf. Finally, a support vertex is said
to be strong, if it is adjacent to at least two leaves, else it is said to be weak. Graph
theoretic terminology not defined here can be found in [3].

A set S(⊆ V ) is called a dominating set forG, provided each vertex of V −S is adjacent
to a member of S. The domination number of G, denoted by γ(G), is the cardinality of
the smallest dominating set in G. For a comprehensive survey of domination in graphs,
refer [10].

A set D ⊆ V is said to be a total global neighbourhood dominating set(tgnd -
set) of G if and only if D is a total dominating set for G and GN . The total
global neighbourhood domination number is the minimum cardinality of a total global
neighbourhood dominating set of G and is denoted by γtgn(G) [7].

In [2], connected domination number has been introduced. Analogous to connected
domination in graphs, connected vertex edge domination has been introduced in [8].

A subset S of the vertex set V is said to be a vertex edge dominating set of the graph G
if for each edge uv in G there is a vertex w in S such that w ∈ {u, v} or w dominates
at least one of u, v. The vertex edge domination number γve(G) is the minimum
cardinality of the vertex edge dominating set of G. Vertex edge domination in graphs
was introduced in [5], and further studied in [4].

A set S of vertices in a graph G without isolated vertices is said to be semi total
dominating set, if S is a dominating set and each vertex in S is within a distance two
of another vertex in S. The semi total domination number of G, denoted by γt2(G),
is the minimum cardinality of a semi total dominating set of G [11]. Analogous to
semi total domination, semi total vertex edge domination has been introduced in [9] as
follows. A set S of vertices in a graph G without isolated vertices is said to be semi
total vertex edge dominating set, if S is a vertex edge dominating set and each vertex in
S is within a distance two of another vertex in S. The semi total vertex edge domination
number of G, denoted by γstve(G), is the minimum cardinality of a semi total vertex
edge dominating set of G.

Suppose two people are in friendship or handling a business jointly. To avoid confusions
or misunderstandings between them, it’s always better to have an advisor (probably an
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elderly person) with whom both the partners involved in business or friendship have
familiarity. Motivated by this, the concept of external vertex edge domination has been
introduced in this paper. An edge between two vertices denotes friendship or business
between two people. A vertex which externally dominates the edge is supposed to be the
advisor for the two people involved in business or friendship.

A vertex edge dominating set S(⊆ V ) is said to be an external vertex edge dominating
set of G, if and only if for each uv in G, there is a vertex w ∈ S − {u, v} such that uw
or vw is an edge in G. An eve dominating set of the graph G of minimum cardinality is
said to be minimum eve dominating set and its cardinality, eve domination number of
G, denoted by γeve(G). By a γeve(G)−set, we mean an eve dominating set of minimum
cardinality.

In this paper, we obtained the bounds for eve domination number in terms of various
other graph theoretic parameters. For a tree with order at least 3 and having l leaves
and s support vertices, we proved that p − 2l − s + 8

3
≤ γeve(T ) ≤ 2p

3
. We obtained that

γve(T )+γstve(T ) ≤ γve(T )+γeve(T ) ≤ p and as a consequence shown that γve(T ) ≤ p
2
.

By the definition, it is obvious that for any graph to have an eve dominating set, it should
be of size at least 2. So, throughout this paper, by a graph, we mean a connected graph
of size 2. Note that for such graphs order is at least 3.

2. RESULTS

We give the eve domination numbers of some standard graphs.

Proposition 2.1. 1. For a cycle Cn,

γeve(Cn) =

n
2
, n is even

n+1
2
, n is odd

2. For a complete graph Kn, γeve(Kn) = 3.

3. For a complete bipartite graph Km,n, γeve(Km,n) = 2.

4. For a star graph K1,n, γeve(K1,n) = 2.

5. For a wheel graph Wn,

γeve(Wn) =

2, n = 5

3, n 6= 5
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6. For a petersen graph P , γeve(P ) = 3.

Now, we give a necessary and sufficient condition for an eve dominating set to be a
minimal eve dominating set.

Theorem 2.2. Suppose that S is an eve dominating set for the graph G. Then, S is
minimal eve dominating set for G if and only if for each vertex v ∈ S, there is a private
edge (w.r.t S) which is not incident with v.

Proof. Assume that S is a minimal eve dominating set for G. Then, for each v ∈ S,
S − {v} is not an eve dominating set for G. This implies, for each v ∈ S, there is an
edge xy(x, y ∈ V −{v}) which is uniquely dominated by v. Thus for each v in S, there
is a private neighbour w.r.t. S, which is not incident with v.

Assume that the converse holds. If S is not minimal, then there is a vertex v in S such
that S − {v} is an eve dominating set for G. This implies that any edge that is eve
dominated by v is also eve dominated by a vertex in S − {v}. Thus for v ∈ S there is
no private edge(w.r.t S), which is not incident with v. �

Observe that, 2 ≤ γeve(G) ≤ p. Now, we characterize the graphs attaining these
bounds.

Theorem 2.3. For a graph G, γeve(G) = p if and only if G = K3.

Proof. Assume that γeve(G) = p.

Suppose p ≥ 4. Let S = V − {v}, where v is an end vertex in a diammeteral path
of G. Observe that S is an eve dominating set of G of cardinality p − 1, which is a
contradiction. Hence G = K3.

The converse part is clear. �

Theorem 2.4. For a tree T , γeve(T ) = 2 if and only if T = K1,n(n ≥ 2).

Proof. Assume that γeve(T ) = 2. Let S = {u, v} be the γeve(T )− set. Observe that S
is independent, also dT (u, v) = 2. Let < uwv > be the u − v path in T . If there is a
vertex x ∈ V − {u, v, w} satisfying any one of the following properties:

1. adjacent to u or v

2. not adjacent to w
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then γeve(T ) > 2, a contrary to our assumption. This implies, dT (u) = dT (v) = 1 and
any vertex in V − {u, v, w} is adjacent to w. Also, if there is an edge between any two
neighbours of w, then S ∪ {w} is a γeve(T )− set, a contrary to the hypothesis. Hence
T = K1,n(n ≥ 2). �

Theorem 2.5. Let G be a cyclic graph. Then, γeve(G) = 2 if and only if there is a
pair of vertices u, v in G such that dG(u, v) = 2 and each x in V − {u, v} satisfies one
of the following conditions:

1. {u, v} ⊆ N(x)

2. for each y ∈ N(x), {u, v} ⊆ N(y)

Proof. Assume that γeve(G) = 2. Let S = {u, v} be the γeve(G) − set. It is easy to
observe that S is independent and dG(u, v) = 2. Let x ∈ V − S.

If x is adjacent to both u and v, then first condition holds.

Suppose x is adjacent to one of u, v. Without loss of generality assume that x is adjacent
to u. Since S is a γeve(G)− set, x is adjacent to v. Hence the first condition holds.

Suppose x is adjacent to neither of u, v. Let y ∈ N(x). Since S is a γeve(G)− set, y is
dominated by u and v. This implies, S ⊆ N(y). Hence the second condition holds.

The converse part is clear. �

Theorem 2.6. For a graph G, γeve(G) = p− 1 if and only if G = P3 or G = P4.

Theorem 2.7. For a graphG, γeve(G) = p−2 if and only ifG = P5 orG is obtained
from P3 by attaching a leaf to the internal vertex of P3 or G = K4 − {uv} or G = C4 .

Now, we give the bounds for eve domination number in terms of various other graph
theoretic parameters.

In [11], Wayne Goddard etal., proved that for a graph with n vertices and maximum
degree ∆, γt2(G) ≥ 2n

2∆+1
.

Theorem 2.8. For a graph G,⌈
3q

6(∆− 1)2 + 1

⌉
≤ γeve(G).
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Proof. Let S be an eve - dominating set for G. For edge uv in G, define f : E → [0, 1]

by

f(uv) =
1

l(u) +m(v)
,

where

l(u) = |N [u] ∩ S|,m(v) = |N [v] ∩ S|

Let v ∈ S. For S is an eve - dominating set of G, any arbitrary edge, av, in
< N [v] > is dominated by a vertex of S different from v. So,
f(av) ≤ 1

3
. Then,

∑
vx∈<N [v]>

f(vx) =
∑

vx∈<N [v]>−{va}

f(vx) + f(va)

≤
∑

vx∈<N [v]>−{va}

dG(vx) +
1

3

=
∑

vx∈<N [v]>−{va}

[dG(v) + dG(x)− 2] +
1

3

≤ 2(∆− 1)2 +
1

3
.

Hence, each vertex in S dominates atmost [6(∆− 1)2 + 1]/3 edges in G. So, S
dominates atmost |S|[6(∆− 1)2 + 1]/3 edges in G. This implies,

q ≤ |S|[6(∆− 1)2 + 1]/3.

Hence the result. �

Note: The bound is sharp, as it is attained in the case of C4.

Theorem 2.9. For a graph G,

q

∆(G)(∆(G)− 1)
≤ γeve(G).

Proof. Let S be an eve dominating set for G, then each vertex in S eve dominates
atmost ∆(G)(∆(G) − 1) edges. This implies, q ≤ | S | ∆(G)(∆(G) − 1). Hence the
result. �

Note: The bound is sharp as it is attained in the case of Ck, k is even.
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Theorem 2.10. If S is a γeve(G)− set having enclaves in S, then

δ(G) + 1 ≤ γeve(G).

Proof. By the given hypothesis, let v be an enclave in S. Then, N [v] ⊆ S. Hence the
proof.

The bound is attained in the case of C6. �

For a tree T , δ(T ) = 1. Observe that γeve(K1,n) = 2 = δ(K1,n) + 1 and for all trees T
of diameter at least 3, γeve(T ) ≥ 3. Also, no vertex in γeve(K1,n) − set is an enclave
in γeve(K1,n) − set. Hence under the hypothesis of the above theorem, no tree attains
the bound in the above theorem. Likewise, there is no cyclic graph of minimum degree
one, which attains the bound.

Theorem 2.11. For a graph G with ∆′(G) ≥ 3,

γeve(G) ≤ p−∆′(G) + 3.

Proof. Let dG(uv) = ∆′(G) and A = {u, v, w}, where w is a neighbour of u or v.
Observe that A ∪ {V − {N [u] ∪ N [v]}} is an eve dominating set for G of cardinality
p−∆′(G) + 3. Hence the proof.

The bound is attained in the case of Kn(n ≥ 4). �

Theorem 2.12. If δ(G) ≥ 3 and g(G) > 4, then

γeve(G) ≤ p−∆(G) + 1.

Proof. Suppose that S is a total global neighborhood dominating set for G. Since
g(G) > 4, S is an eve dominating set for G. By Theorem 2.11 in [7], the result
follows. �

Observe that under the given hypothesis,

γve(G) ≤ γstve(G) ≤ γeve(G) ≤ γtgn(G)

Theorem 2.13. Let G be a graph for which δ(G) ≥ 2. If S is a γeve(G) − set such
that < S > is a null graph, then γeve(G) ≤ p

2
.
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Proof. Suppose that the hypothesis holds. Let A be the set of all vertices in V − S that
dominate the vertices in S.

By the nature of S and Theorem 2.2, each vertex v in S has private edge(w.r.t. S), which
is not incident with v. This implies, | S |≤| A |.

If | S |> p

2
, then | A |> p

2
. This implies,

| S ∪ A |=| S | + | A |>
p

2
+
p

2
= p

a contradiction. Hence |S| ≤ p

2
.

The bound is sharp, as it is attained in the case of C4. �

Theorem 2.14. If G is a bipartite graph with δ(G) > 1, then

γeve(G) ≤ p

2
.

Proof. By the given hypothesis, any partite set in G, is an eve dominating set for G.
Hence the result follows. �

The bound is attained in the case of C4.

Open Problem: Characterize the class of all bipartite graphs satisfying the hypothesis
of the above theorem and having eve domination number p

2
.

Note:

1. Any eve dominating set is a semi total vertex edge dominating set.

2. Any connected vertex edge dominating set of cardinality at least three is an eve
dominating set.

Thus ,
γve(G) ≤ γstve(G) ≤ γeve(G) ≤ γcve(G).

For the purpose of giving necessary and sufficient condition for a tree T of diameter at
least 6, to have equal ve, cve, stve, eve domination numbers, we denote I(T ) to be the
set of all internal vertices in T and
S(T ) = {v |
v is a support vertex in T for whichT − {v}has exactly one non trivial component}
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In [6], S. Arumugam and J. Paulraj Joseph proved the following. For a tree of order
p ≥ 3, γ = γc if and only if every internal vertex of T is support.

Theorem 2.15. If T is a tree with diam(T ) ≥ 6, then γve(T ) = γcve(T ) if and only
if for each vertex v in I(T )−S(T ), there is a non trivial component Ci in T −{v} such
that < V (Ci) ∪ {v} > is isomorphic to K1,n.

Proof. Observe that I(T )− S(T ) is a unique minimum γcve(T )− set.

Assume that γve(T ) = γcve(T ). Choose a vertex v from I(T ) − S(T ). Then, T − {v}
has at least two non trivial components. If possible, suppose that none of the non trivial
components is isomorphic to K1,n. Then, {I(T ) − S(T )} − {v} is a ved - set of T ′ of
cardinality γcve(T )− 1, which is a contradiction to our assumption.

Assume that the converse holds. Clearly γve(T ) ≥| I(T ) − S(T ) |= γcve(T ). Thus,
γve(T ) = γcve(T ). �

Corollary 2.16. If T is a tree with diam(T ) ≥ 6, then

γve(T ) = γstve(T ) = γeve(T ) = γcve(T )

if and only if for each vertex v in I(T ) − S(T ), there is a non trivial component Ci in
T − {v} such that < V (Ci) ∪ {v} > is isomorphic to K1,n.

Proof. Since γve(G) ≤ γstve(G) ≤ γeve(G) ≤ γcve(G), by Theorem 2.16, the proof
follows. �

Theorem 2.17. If S is a γeve(G) − set such that for each vertex v in S, there is a
non trivial component Ci in G−{v} such that < V (Ci)∪{v} > is isomorphic to K1,n,
then

γeve(G) ≤ p

3
.

Furthermore, equality holds if and only if for each vertex v in S, there is a non trivial
component Ci in G− {v} such that < V (Ci) ∪ {v} > is isomorphic to P3.

Proof. Assume that the hypothesis holds. Let A be the smallest set of vertices in V −S
that dominate the vertices in S and B = V − S − A. Observe that A is a dominating
set for G. By hypothesis, for each vertex in S, there is a vertex in A that dominates the
former. Hence | S |≤| A |. Also by hypothesis corresponding to each vertex in A, there
is at least one vertex in B, so | A |≤| B |. Also, observe that V = S ∪ A ∪ B. This
implies,

| V |= | S | + | A | + | B | ≥ | S | + | A | + | A | ≥ | S | + | S | + | S |
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Hence the Result. �

3. BOUNDS ON THE EVE DOMINATION NUMBER OF TREES

In [1], B. Krishnakumari etal., proved that for every tree of order p ≥ 3 and having l
leaves and s support vertices, p−s−l+3

4
≤ γve(T ) ≤ p

3
.

Theorem 3.1. If T is a tree of order p ≥ 3, then γeve(T ) ≤
⌈

2p
3

⌉
.

Proof. If diam(T ) = 2, then T = K1,p−1(p ≥ 2). Observe that,

γeve(T ) = 2 ≤ 2p

3
.

Suppose that diam(T ) ≥ 3. Then T is of order p ≥ 4. We prove the result by using
induction on the order p of the tree T . Assume that the result is true for all trees of order
p′ < p.

Assume that a support vertex, say v, in T is strong. Then, observe that γeve(T )− set is
also a γeve(T − x)− set, where x is a leaf adjacent to v. Hence,

γeve(T ) ≤ γeve(T − x) ≤ 2p′

3
≤ 2p

3

Assume that no support vertex in T is strong.

Suppose that dT (r, t) = diam(T ). Now root the tree at r and let Tx denote the subgraph
induced by x and all its descendents in the rooted tree T . Let u, v, w be the parents of
t, v, u respectively.

By our assumption u can have adjacency with atmost one leaf, say x. Clearly
the γeve(T ) − set is also an eve dominating set of < (T − Tu) ∪ {u} >. Also,
< (T − Tu) ∪ {u} > has atmost p− 5 vertices. Hence

γeve(T ) ≤ γeve((T − Tu) ∪ {u}) ≤ 2(p− 5)

3
<

2p

3
.

By the principle of mathematical induction, the result is true for any tree with p vertices.
Also, the bound is sharp, as it is attained in the case of P3. �

In [1], Krishnakumari etal., have defined a family F of trees T = Tk, as follows. Let
T1 = P3. If k is a positive integer, then Tk+1 can be obtained recursively from Tk by
attaching a path P3 by joining one of its leaves to a vertex of Tk adjacent to a path P2 or
P3.
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Corollary 3.2. For any tree T of order p ≥ 3,

γstve(T ) + γve(T ) ≤ γeve(T ) + γve(T ) ≤ p.

Furthermore, equality holds if and only if T = P3.

Proof. Assume that

γstve(T ) + γve(T ) = γeve(T ) + γve(T ) = p.

This implies,
γstve(T ) = γeve(T ) = p− γve(T ).

From Theorem 5[1] and Theorem 3.1, it follows that,

2p

3
≥ γeve(T ) = γstve(T ) = p− γve(T ) ≥ 2p

3
.

This implies,

γstve(T ) = γeve(T ) =
2p

3
.

By our assumption, γve(T ) = p
3
. From Theorem 5 [1], T ∈ F . If T = P3, then we are

through.

Suppose T 6= P3. Then T = Tk+1(k ≥ 1). Observe that in T = Tk+1(k ≥ 2),

S = {v |v externally dominates a pendant edge}

is an γeve(T ) − set and γstve(T ) − set, as well. Also, |S| = γeve(T ) = γstve(T ) =
p
3
< 2p

3
, a contradiction. If T = T2 = P6, then 3 = γeve(T ) 6= γstve(T ) = 2, again

contradiction.

The converse is clear. �

Corollary 3.3. For any tree T of order p ≥ 3,

γeve(T ) + γve(T ) ≤ p.

Furthermore, equality holds if and only if T = P3 or T = P4.

Corollary 3.4. For any tree T of order p ≥ 3,

γve(T ) ≤ p

2
.
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Proof. By Corollary 3.2, we have,

2γve(T ) ≤ γeve(T ) + γve(T ) ≤ p.

This implies,
γve(T ) ≤ p

2
.

�

For the purpose of giving a lower bound for a tree with p ≥ 3, we denote s, l to be the
number of support vertices, leaves, respectively.

Theorem 3.5. For a tree with p ≥ 3 vertices,

p− 2l − s+ 8

3
≤ γeve(T )

Furthermore, equality holds if and only if T = P7.

Proof. By hypothesis, diam(T ) ≥ 2.

If d(T ) = 2, then T = K1,p−1. For p − 1 = 2, T = P3. Observe that γeve(T ) = 2 =
3−2(2)−1+8

3
.

Suppose that diam(T ) ≥ 3. Clearly p ≥ 4. By using induction on the order p of T , the
result will be proved. Assume that the result is true for all trees T ′ of order p′ < p and
let s′, l′ be the number of support vertices, leaves in T ′, respectively.

Suppose that there is a strong support vertex, say x, in T and y be a leaf adjacent to x.
For the tree, T ′ = T − y, p′ = p− 1, l′ = l − 1, s′ = s. Observe that γeve(T )− set is a
γeve(T

′)− set. Thus,

γeve(T ) ≥ γeve(T
′) ≥ p′ − 2l′ − s′ + 8

3
=
p− 2l − s+ 9

3
>
p− 2l − s+ 8

3
.

Assume that T has no strong support vertices.

Suppose that dT (r, t) = diam(T ). Root the tree at the vertex r. Let t, u, v be
the children of u, v, w, respectiely and Tx denotes the tree induced by x and all its
descendents in T .

Assume that dT (v) ≥ 3. Let x be the leaf adjacent to v. For the tree, T ′ = T − x,
p′ = p− 1, l′ = l− 1, s′ = s− 1. Observe that γeve(T )− set is a γeve(T ′)− set. Thus,

γeve(T ) ≥ γeve(T
′) ≥ p′ − 2l′ − s′ + 8

3
=
p− 2l − s+ 10

3
>
p− 2l − s+ 8

3
.
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Suppose that x is a support vertex adjacent to v. For the tree, T ′ = T − Tx,
p′ = p − 2, l′ = l − 1, s′ = s − 1. Observe that γeve(T ) − set is a γeve(T ′) − set.
Thus,

γeve(T ) ≥ γeve(T
′) ≥ p′ − 2l′ − s′ + 8

3
=
p− 2l − s+ 9

3
>
p− 2l − s+ 8

3
.

Assume that dT (v) = 2 and dT (w) ≥ 3. Let x be the leaf adjacent to w. For the tree,
T ′ = T − x, p′ = p − 1, l′ = l − 1, s′ = s − 1. Observe that γeve(T ) − set is a
γeve(T

′)− set. Thus,

γeve(T ) ≥ γeve(T
′) ≥ p′ − 2l′ − s′ + 8

3
=
p− 2l − s+ 9

3
>
p− 2l − s+ 8

3
.

Suppose that w is adjacent to a support vertex, say x. For the tree, T ′ = T − Tx,
p′ = p− 2, l′ = l− 1, s′ = s− 1. Observe that γeve(T )− set is a γeve(T ′)− set. Thus,

γeve(T ) ≥ γeve(T
′) ≥ p′ − 2l′ − s′ + 8

3
=
p− 2l − s+ 9

3
>
p− 2l − s+ 8

3
.

Suppose that< wxyz > is a path in T , where {x, y, z} ∈ V (T )−{v, u, t}. Observe that
γeve(T )− set, say S, contains v, w, x. Now, for the tree, T ′ = T − Tx, p′ = p− 3, s′ =

s−1, l′ = l−1. It is straight forward to see that, (S−{x})∪{a}, where a ∈ (N(w)−v),
is an eve dominating set for T ′. This implies, γeve(T ′) ≤ |(S − {x})∪ {a}| = γeve(T ).
Thus,

γeve(T ) ≥ γeve(T
′) ≥ p′ − 2l′ − s′ + 8

3
=
p− 2l − s+ 8

3
.

Suppose that s is the parent of w in T and dT (w) = 2 and dT (s) ≥ 3. Observe that a
γeve(T ) − set, say S, contains {u, v, w}. It suffices to consider that s is adjacent to P3

and P4.

Assume that s is adjacent to < xyz >, {x, y, z} ∈ V (T ) − {w, u, v}. Observe
that γeve(T ) − set, say S, contains v, w, x, s. Now, for the tree, T ′ = T − Tx,
p′ = p − 3, s′ = s − 1, l′ = l − 1. Clearly, S − {x} is an eve dominating set of
T ′. This implies,

γeve(T ) ≥ γeve(T
′) + 1 ≥ p′ − 2l′ − s′ + 8

3
+ 1 =

p− 2l − s+ 11

3
>
p− 2l − s+ 8

3
.

Assume that s is adjacent to < xyzm >, {x, y, z,m} ∈ V (T ) − {w, u, v, t}. Observe
that γeve(T ) − set, say S, contains v, w, x, y, s. Now, for the tree, T ′ = T − Tx,
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p′ = p − 4, s′ = s − 1, l′ = l − 1. Clearly, S − {x, y} is an eve dominating set of T ′.
This implies,

γeve(T ) ≥ γeve(T
′) + 2 ≥ p′ − 2l′ − s′ + 8

3
+ 1 =

p− 2l − s+ 13

3
>
p− 2l − s+ 8

3
.

Suppose that q is the parent of s in T , dT (s) = 2 and dT (q) ≥ 3. It suffices to show
that q is adjacent to P5. Assume that q is adjacent to < xyzmn >, {x, y, z,m, n} ∈
V (T )−{s, w, u, v, t}. Observe that γeve(T )− set, say S, contains z, v, w, x, y, s. Now,
for the tree, T ′ = T − Tx, p′ = p− 5, s′ = s− 1, l′ = l− 1. Clearly, S −{x, y, z} is an
eve dominating set of T ′. This implies,

γeve(T ) ≥ γeve(T
′) + 3 ≥ p′ − 2l′ − s′ + 8

3
+ 1 =

p− 2l − s+ 15

3
>
p− 2l − s+ 8

3
.

Suppose that h is the parent of q in T , dT (q) = 2. If dT (h) = 1, then T = P7 and also,
{v, w, s} is an γeve(T )− set. This implies,

γeve(T ) = 3 =
7− 2(2)− 2 + 8

3
.

Thus, equality holds for T = P7.

�
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