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1. CONVEX FUNCTIONS ON NORMED LINEAR SPACES AND HILBERT
SPACES

We start with some results from [10] that will help us in our main constructions:

Proposition 1. A linear functional, having its domain contained in a normed linear
space, is continuous < it is bounded.

Following is the well known “Riesz Representation Theorem”:

Proposition 2. There is an inner product representation for each linear functional V

which is bounded on a Hilbert space H and is written as:
T(6) = (8, 9) (1

here 9 depending upon V has unique value that is evaluated through V. The norm of ¥
is
[V (9)]
Wl =¥l = sup —-r=.
ozoenw) |0

In [13, p. 128] we see an interesting result that if V' is a normed linear space and U
be an open convex subset in V' then a convex function ¥ on U generates a supporting
hyperplane at every point say ay € U. This implies the presence of a linear functional
h which in conituous on V' and is charectarized as

U(0) > V(ag) +h(@ —ag) VO eU. (2)
Such functionals 5 are said to be the support of W at ay and the subdifferential of ¥ at

the point ay is established through the set 0W(ay) of all these functionals A.

Now if V' is a Hilbert space then we have a unique representation of all such functionals
h as h(f) = (0,9) for § € V such that ||| = |[¥| by using Riesz representation
theorem.

In this case inequality (2) becomes

U(0) > U(ag) + (f — ap,9) forall 6e€U (3)

all these vectors ¢/ are usually termed as subgradients and the set of all vectors o
constitute the subdifferential OV (ay).

Using these facts we state our first main result:
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Theorem 1. If V is a convex function on an open convex subset U of a Hilbert space
H, then forall 0, ay € U

W (0) — W(ao) — (0 — ao,¥) > [[T(0) — U(ao)| — [|T] |6 — aoll
where ¥ € 0¥ (ay).

)

Proof. Using (3) we have that for all 6, aq € U
\11(9) — \Il((lo) — <0 — CL(),’I9> = |\Ij(¢9) — \If(ao) — <Q — CL0719>|
|[W(0) = W(ag)| — (8 — ao, V)|

v

Using Cauchy-Schwartz inequality (6, y)|| < ||0]|||y||, we have

W(0) — ¥(ao) — (0 — ao,¥) > [[T(0) — U(ao)| — (|6 — aoll| V]|

Since ||9]| = ||¥|| by Riesz representation theorem, so we are done. O

Let U be an open subset of a Banach space F. Then the real valued function ¥, defined
on U, have one-sided directional derivatives (left(right) Gateaux derivatives) at ay € U
relative to (or may say in the direction of) v. These Gateaux derivatives are defined
through limits as:

_ U (ag + tv) — VU (ag)
Vi) ¥ (ag;v) 1= t—}é-r:%—) ;

It is worth mentioning that both of the one-sided directional derivatives V_W (ag; v)
and V. U (ag; v) are subadditive as well as positively homogenous and their existence
and equivalence gives us the directional derivative of W relative to v at a(, written as
U’(ag; v), which is nothing but the common value of V_V (ag;v) and V¥ (ag;v).
We infer that V_V (ag;v) and VW (ag;v) are linear when they exist and obey the
expression

V¥ (ag;v) = =V_V (ag; —v)
To be more specific, the directional derivatives are actually the partial derivatives when
taken in connection to canonical basis of R™. For the sake of simplicity we will
denote right directional derivative by ¥’, and left directional derivative by ¥’ and for
directional derivative by W’ if exist.
Following is another important result from [14, p. 12—-13]

Proposition 3. Let U be convex function on an open set U of a real normed linear space
R". Then for all 6,0, € U the inequality

U(0) — W (by) > (¥, (6o), 0 — bo)

holds, where (-, -) represent usual inner product on R".
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Now let us recall an important result from literature by Levinson [11].

Proposition 4. For a real valued function V with nonnegative third derivative and
defined on |0, 2a] € R, the inequality
2 i 60 U (Z?l Qigz’) < > i 6V () U (Z?l qmz-)
@n @n B @n @n
holds for 0 < 0; < a,n; =2a—0;, forie{l,...,n} ¢ >0andQ, =" q.

4)

2. FUNCTIONS WITH NONDECREASING INCREMENTS

In [2], H. D. Brunk introduced an important class of functions namely functions with
nondecreasing increments. In order to properly define this class here we have some
assumptions.

Let R* is a k—dimensional vector lattice and the partial ordering for x,y € R” is given
asx = (x1,...,2,) <y = (v1,...,yx) if and only if z; < y;, where z;, y; are real for
eachi € {1,...,k}. Furthermore a set {z € R* : x < z < y} is called an interval
[x,y] and O shows the k—tuple (0,...,0). Also for any r, s € R

X 4 sy = (roy + sy1, ..., v + SYk).

Throughout this article, functions with nondecreasing increments will be abbreviated as
F.W.N.D.I. We also suppose that U is an interval in R¥ and for real weights q1, ..., ¢,
we define

Q; = qu, ie€{l,...,n} andclearly @, = Z%v
i=1 =

In [2], we see the following definition of a FW.N.D.I.:

Definition 1. A real-valued function ¥ defined on U is said to have nondecreasing
increments if

Ul +1n) — ¥(a) < U(B+n) — ¥(B) (5)
whenevera € U, B+n €U, 0<necRF a<B.

Brunk observed that inequality (5) does not imply continuity even for £ = 1. It is
very interesting to notice that for positively oriented lines these functions are convex.
These are lines having nonnegative direction cosines and expressed as X(t) = at + [
where 0 < « and «, § € U. Furthermore, these functions are said to be Wright-convex
for £ = 1 and from [14, p. 7] we know that the class of convex functions is properly
contained in class of Wright-convex functions while class of Wright-convex itself is a
proper subclass of .J—convex functions. For some more properties and results regarding
FW.N.D.I. [2], [5], [6], [7] and [15] can be seen.
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2.1 Some Inequalities for Functions with Nondecreasing
Increments

Lets start with Jensen-Steffensen type inequality for EW.N.D.I. from [15].
Proposition 5. Let a function of bounded variations B : [a,b] — R, such that
B(a) < B(z) < B(b), B(b) > Ba), (6)

and a continuous nondecreasing map X from a real interval [a,b] to U. Then for
continuous FW.N.D.I., U : U — R, we have

o [JXWAB®Y _ [7v (X (1) dB(1)
JoaBw ) f B
where ff Y dB is the vector (ff TidB,..., fab Yy dB).

JPX(1)dB()
J2 dB(t)

then the reverse inequality in (5) holds.

; (7)

Remark 1. If € U and we have either B(x) < B(a) or B(z) > B(b),

The following proposition is the Jensen-Boas type inequality for functions with
nondecreasing increments and it is proved in [6].

Proposition 6. Letr Y : [a,b] — U be a continuous and monotonic (either
nonincreasing or nondecreasing) map in each of the | intervals (b;_1,b;). Let B :

la, b] — R is continuous or of bounded variation satisfying
B(a) < B(a1) < B(b1) < B(az) < -+ < B(bi-1) < B(a) < B(b) (8)

forall a; € (bi—1,b;) (bg = a, by = b), and B(b) > B(a). If ¢ is continuous function
having nondecreasing increments in each of the l intervals (b;_1,b;), then we have the
following inequality

o [ XWAB@)Y _ f; U (1)dB()
[PaBwy )~ [fdB@)

9)

=

J2X(1)dB(t)

JYdB(t)
and we have either B(z) > B(b) or B(x) < B(a), then the reverse inequality in (9)

holds.

Remark 2. If € UandVz € a; > (b;j_1,b;)(by = a,b, = b)
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Following is the Neizgoda’s integral inequality for EW.N.D.I. from [4].

Proposition 7. Let (Y, 3, i) be a measure space with positive finite measure . and
consider the weight functionw : T — [0, +00). Let © : [a,b] = Uand ¥ : T x[a, b] —
U be two nondecreasing continuous mappings such that for each s € T

b b
/\I/(s,t)dB(t) < /@(s,t)dB(t), foreach x € (a,b), (10)

and /b\If(s,t)dB(t) = /bG)(s,t)dB(t), (11)

where B : [a,b] — R is of bounded variation. Moreover, let I = |J5_ (a;, b)),
I° = [a,b\I = Ut [bio1, ai) and |I°] = S (a; — bi_y) where a = by < a; <
by < ag < by <...<ap<by <agy1 = bisapartition of the interval [a,b]. Then for

every continuous function ¢ : U — R with nondecreasing increments the inequality

0 (ﬁ (/:@(t)dB(t) 5 // (s, £)dp(s )dB(t))) <

T </ab9”(@<t)>d3(t) ierrel / W(s.1))dn )dB(t)) (12)

holds for each s € Y.

Remark 3. It is interesting to notice that (12) still holds if the corresponding
assumptions of Proposition 7 is replaced by the following:

Let© : [a,b] > Uand ¥ : T X [a, b] — U be two nonincreasing continuous mappings
such that foreach s € T

/x\If(s,t)dB(t) < /xG)(s,t)dB(t), foreach z € (a,b),
and /b\Il(s,t)dB(t) = /bG(s,t)dB(t).

Now we state a result namely generalized Levinson inequality from [7].

Proposition 8. Ler B : [a,b] — R be a function of bounded variation such that (8)

holds and let X be a continuous and nondecreasing map from [a,b] C R to an interval
I=1[0,d] C R¥, d > 0. If ¥ is a continuous FW.N.D.L. of order 3 on J = [0,2d], then

Jy U (0() dBE) (ffT(t) dB(t))
[*dB [*dB
_ L ved-Te >> aB(t) (ff@d - T(t»dB(t))
[P dB(t
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Proposition 9. Let B : [a,b] — R be a function of bounded variation such that
(6) holds, and let U be a continuous EW.N.D.I. of order 3 on [c,d] C RF. Let
0O<a<d-c IfY(t) : [a,b] — [c,d — a] is a continuous and nondecreasing

map, then
v (C@) dB@) ([0 dB()
J, dB(t) 7 dB(t)
_ v Y@ dBw) ([t X(0)dB)
- J; dB(®) 7 dB(1) |
holds.

We now prove another important result related to FW.N.D.IL.

3. INTEGRAL JENSEN-MERCER INEQUALITY FOR FUNCTIONS WITH
NONDECREASING INCREMENTS

The integral version of Jensen-Mercer inequality for EFW.N.D.I. under the condition of
Jensen-Boas inequality (8) is given below:

Theorem 2. Let B : [a,b] — R be a function of bounded variation satisfying
Bla) < Blar) < B(b) < B(az) < -+ < B(by-1) < Blar) < B(b)

forall a; € (b;—1,b;) (bp = a, by = b), and B(b) > B(a) and let X be a continuous
nondecreasing map from the real interval [a,b] to the interval U. If V : I — Risa
continuous FW.N.D.L., then

b b
Y(t)dB(t U (Y(t)) dB(t
o L4y LLXOBEO _ Jv0rw) dB()
[ dB(t) J, dB(t)
where fadeB is the vector (f;TldB,...,f:Tk dB), and L = (Ly,...,Ly) and

M = (M,..., My) are two k-tuples related to U such that L < Y(t) < M for all
t € la,b]

) < U(L)+ V(M) (13)

[y X(@)dB(?) .
Also if “4—————~ € UandVz € a; > (b;_1,b;)(by = a, b, = b) and we have either
J, dB(?)
B(x) > B(b) or B(x) < B(a), then the inequality (13) remains valid.

Proof. Under the conditions (8) for a continuous nondecreasing map Y from the real
interval [a, b] to the interval U, we have



952 M. Magsood Ali et al.

W<L+M—M):\P ! /b(L+M—T(t))dB(t)

Ji dB(t) J2 dB(t)

now if Y is a continuous nondecreasing map from the real interval [a, b] to the interval

U, then L + M — Y (¢) is also a continuous nondecreasing map for V¢ € [a, b].
Therefore by using Proposition 6 we have

[, dB() 1 b -
0 <L+M T aB0) ) < 7 dB(t)/a T(L+M-—"Y(t) dB(t)

now by using Lemma 1 of [1] we get

_ X dB e ) aB)
W<L+M J7 a0 )Swm+@@® JF 4B
now if M € Uand Vx € a; > (b;_1,b;)(bp = a,b, = b) and we have either
J, dB(1)
B(x) > B(b) or B(x) < B(a), then by using Lemma 1 of [1] and Remark 2 we have
v <L+M— M) <U(L)+ U(M) — U (M)
Jo dB(t) Jo dB(?)
 JPw(r() dB()

< U(L) + ¥(M) [ dB()

which completes the proof. ]

We now state the integral Jensen-Mercer inequality under the condition of
Jensen-Steffensen inequality (16) is given below:

Corollary 1. Let B : [a,b] — R be a function of bounded variation satisfying
B(a) < B(z) < B(b), B(b) > B(a)

and let X be a continuous nondecreasing map from the real interval [a, b] to the interval
U. IfV : I — Ris a continuous FW.N.D.L., then

SO () dB(1) P (r() dB()
J, dB(1) 1Y aB(t)

where fab Y dB is the vector (f; YTdB,..., fab Y.dB), and L = (L,...,Ly) and
M = (M,..., M) are two k-tuples related to U such that L < Y(t) < M for all

7 <L+M— ) < W(L) + f(M) (14)
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t € la, b].b
Also if—fa I;(t)dB<t>
J, dB(t)

inequality (14) still remains valid.

€ U and we have either B(x) > B(b) or B(x) < B(a), then the

Proof. 1t is nothing but a straight forward case of Theorem 2 for [ = 1. [

Following is the discrete version of the above inequality:

Theorem 3. Ler UV : U — R be a continuous EW.N.D.I. and let x®) € U,i €
{1,...,n} satisfy the condition

xD<.o<x™ o x>0 > M)

if q is a real n-tuple such that 0 < Q; < Q,, with @, >0 for i€ {l,...,n},
then we have

Z?:l qz'\Ij(X(i))
Qn

Z?:l gix"

n

v (L+M— ) < W(L) + U(M) — (15)
where L, M are two k—tuples in U such that L < x < M foralli € {1,...,n}. Also

Q; <0 andi < m and Qn — Qi1 < 0 fori > m then the inequality (15) still remains
valid.

€ U and there exist i € {1,...,n} such that for any m € {2,...,n}

Remark 4. (i) Theorem 1 of [1] becomes special case of our Theorem 3 if we first
take q as a nonnegative n-tuple with ),, > 0 and then as a real tuple such that
G >0,¢,<0,0€{2,...,n},Q, > 0.

(ii) Taking £ = 1 and q as a positive n-tuple with (),, = 1 then Theorem 1.2 of [12] and
all its related results become special cases of our Theorem 3.

In the rest of this article we assume that Y is a continuous nondecreasing map from the
real interval [a, b] to the interval I C R” of the form Y'(¢) = at + b where 0 < a and
a,b € R*. Hence a EFW.N.D.L ¥ along positively oriented lines with positive direction
cosines is convex over this domain U and we will call this function a EW.N.D.I. of
convex type.

Before going onto our main results we need the following important lemma with respect
to the Proposition 3.
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Lemma 1. Let ¥ : U — R be a EW.N.D.I. of convex type then ¥ x,x9 € U we have
W(x) — Wlxo) — (¥ (x0),X — x0) > [|W(x) — Wxo)| — ¥ (x0)]][x — x|

where (-,-) represent usual inner product on R" and V' (xq) represents the

right-directional derivative of V¥ at Xq.

Proof. Since V is continuous EW.N.D.I. of convex type, therefore V x,xo € U from
Theorem 3 we have

¥ (x) — ¥(xo) > (V' (x0),x — Xo)
which can be written as

W(x) — (xo) — (T, (x0),X — Xo) = [¥(x) — ¥(xo) — (¥, (x0). X — Xo)|
> [[W(x) — W(xo)| — | (W, (x0), X — o)

Now applying Cauchy-Schwartz Inequality [(¥’, (%), x — Xo)| < ||¥/, (%0)||[|x — o],
we conclude

W(x) — W(xo) — (W, (%0), X — Xo) > ||V (x) — ¥(xo0)| — ||, (x0)]|l|x — xoll|-
[]

4. IMPROVEMENTS OF THE JENSEN-BOAS INEQUALITY

Theorem 4. Let all the assumptions of Proposition 6 be valid for the FW.N.D.I. of

convex type. Then we have

Jo FOC@)ABE) (LX) dB()
J2 dB(t) Ji dB(t)

JPIw(X (1) — w(T)|dB(t)
Ji dB(t)

"X (t) - Y|dB(t)

1w (1
> anes] IRED

+

where

¥ T B0
J, aB(t)

Proof. Setting x = Y (t) and xo = Y forall t € [a,b] in Lemma 1 we get

WY (L) —W(X) — (T (), X(1) = X) > [[(X(t) — T(X)] — [ (D)) — )|
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By integrating with respect to function of bounded variation B over interval [a, b] we

/ rer —w(T) /de<>

/Hw ()|~ 1%, (DI (R) - T|aB(t)
> / WL (1) — U(D)B) — [,(T)] / I (t) - Y4B

and after dividing by f; dB(t) > 0 we get what we wanted. ]

Remark 5. Under the assumptions of Remark 2 the inequality in Theorem 4 get
reversed.

The following result gives the improvement of the Jensen-Steffensen inequality.

Corollary 2. Let all the assumptions of Proposition 5 be valid the FW.N.D.I. of convex
type. Then

J; (OB (ffT(t) dB<t>>

[PdB(t) [* dB(t)
<* NABW) _ g gy e IO YHdB(t)
f dB(t [P aB(t
where
< _ JXWaB()
[PaB@)
Proof. The Theorem 4 generates the desired result by using (8) for [ = 1. ]

Remark 6. (i)Under the assumptions of Remark 1 the inequality in Corollary 2 get
reversed.

(ii) If we take B as an increasing and bounded function with B(a) # B(b) then the
integral inequality of Theorem 2.1 of [3] becomes special case of our result for k£ = 1.

The analogous discrete inequality of the above result is given as

Theorem S. Let ¥ : U — R be a continuous FW.N.D.I. of convex type, let q be a
real n-tuple such that 0 < Q; < Q,, with Q, >0 for i€ {1,...,n} and let
x e U,i e {1,...,n} be such that

xD <o < xM gp x>0 > (™)
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then
YV (xY) (_2?1 q—ix(i)>
Qn Qn
| ) )] DX — %]
> — ¥ (%) ||
Qn Qn
where

Z?:l gix"
Qn

X =

no )
Remark 7. ()If iz 4%

me{2,...,n} Q; <0fori<mandQ, —Q;_1; <0 fori > m then the inequality in
Theorem 5 is reversed.

€ U and there exist i € {1,...,n} such that for any

(ii) If we take positive ¢; fori € {1,...,n} then the discrete inequality of Theorem 2.1
of [3] becomes a special case of our result for £ = 1.

S. IMPROVEMENTS OF THE JENSEN-MERCER INEQUALITY

Theorem 6. Let all the assumptions of Theorem 2 be valid for the EW.N.D.I. of convex
type. Then we have

w(L) + win) - o TONBE (L oo X0 dB(t))
Jo dB(1) Ja dB(1)
. fab UV(L+M —bT(t)) — U(Y)|dB(t) )] f: IL+M —b Y(t) — Y||dB(t)
Jo dB(1) Jo dB(2)
where L, M are two k — tuples in U such that L < Y (t) < M for all t € [a,b] with
_ [PY(t)dB(t)
YT=L4M- e 00
Ja dB(®)

Proof. Fort € [a,b],setx = L +M — Y (t) and xo = Y in Lemma 1 we have

(L +M — Y(t)) — U(T) — (¥, (T),L+M-Y(t) - T)
> [[W(L+M =Y (1) = (1) = W, (D)L +M—Y(t) - T
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by integrating with respect to function of bounded variation B over interval [a, b] we
get

b b
/ U(L+M—Y(t)dB(t) — ¥(Y) / dB(t)
b
> / (L +M = X(1) = U(T)] = [P (D)L +M = X (t) - T|||dB(t)

> | [ BT M = X(0) ~ W(D)AB(E) ~ WD) [ L+ M =T - a5

and which leads to the desired result by applying Lemma 1 of [1] and dividing by
[PdB(t) > 0. O

The analogous discrete inequality for the above result is given as:

Theorem 7. Let f : U — R be a continuous FW.N.D.I. of convex type and let
x € U,i € {1,...,n} satisfy the condition

xD <oo<xM op x>0 > x™

if q be a real n-tuple such that 0 < Q; < Q,,, with Q, >0 for i€ {l,...,n},
then we have

n o (O S
(L) + (M) — 2= qup &%) g (L+1\/I— —Zﬁéq’x()) >

P |0 (LM —x®) - ¥ (x N 5 ”
Thia P e Mox0) vl ) S

IL+M—x® — x|
Qn

Y

whereic:L—i-M—Z?%?fx(i)andL: (ly,...,lg) and M = (my, ..., my) are two

k-tuples related to U such that L < x9 < M foralli € {1,...,n}.
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6. IMPROVEMENTS OF THE NEIZGODA’S INEQUALITY

Theorem 8. Let all the assumptions of Proposition 7 hold for EW.N.D.I. of convex type,
then we have

ﬁ(/b (O()dB () // (s, 1))du(s dB(t))
# (e ([ oom ”m—du//“ 0020

| el (i (Jr OOBE) — [, ¥is 0dB(D)) ) o(D)ld(s)
f ( )du(s)
el (5 (L @dB(t) - [, W(s,)dB()) ) = Tlldn(s)
= [l¢4 () fr ( V(s )
where
Y = (ﬁ (/abe)(t)dB( ) — T ol du // (s,t)du(s (t))) .
Proof. Setting X = ﬁ (fab — [, (s, t)dB(t ) andxog = Y foralls € Y

in Lemma 1 we get

<|]|(/@ naB(t) — [ (s B >)
w00 o= ([ eann - / (5.04B(0) 1) = H\If(ﬁ(/ab@u)dmw
- [wts.0a) ) -0 v x >||||ﬁ</be< (o)~ [ wisnas) x|
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multiplying by w(s) and integrating with respect j(s) over interval T we get

Lo (g (/] “o(aB() [ ws.0a50) Y auts) = o0) [ wlouts
> [l (o= ([ owann - [winizn)) - )
- ([ ewas - [ wtsnamn) - il
[wtonw (i35 ([ ewani - / B 04B(0) ) ) = BTl
— 19,0 [ i ([ ewas - [vs.na) Tl

and after dividing by [\ w(s)dpu(s) > 0 and using Lemma 1 of [8] we get our desired
result. 0

Remark 8. The above inequality still holds for the following assumptions:
Let© : [a,b] - Uand ¥ : T x [a,b] — U be two nonincreasing continuous mappings
such that foreach s € T

/x\If(s,t)dB(t) < /x@(t)dB(t), foreach x € (a,b),

and /b\I/(s,t)dB(t) - /b@(t)dB(t),

The analogous discrete inequality of the above theorem is given as:

Theorem 9. Suppose that ¥V : U — R be a continuous FW.N.D.I. of convex type.
Let there be m elements in & = (a'V,...,a"™) such that a9 € U is a k-tuple
for j € {1,...,m}. Also there are n x m elements represented as x'") € U s.t.
every x\") is a k-tuple for i € {1,...,n}, 7 € {1,...,m} and all these x") can
be arranged in a n x m matrix X = (x%)). Let q be a real n-tuple such that
0<Q; <Qpn, with Q, >0 for i¢c{l,...,n}andlIfamajorizes each row of
Y, that is,

x() = (x(“), o ,X(im)) < (a(l), o ,a(m)) =4 foreachi € {1,...,n},
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then we have the inequality

i\l}(a(j)) Zz 12] 1 v ( ”) _\I[ (ia@ Zl 1Z] 1 &X > -

= @ Qn
Z?:1 qi |V <Z§n:1 ald) — ZT:_ll X(ij)) U (X)‘
Qn
n m j m—1 _ (;
(| Zm 2 B < X
: Qn

where )
m z]
% = Z a(j) Zz 1 Zgg 1 ;X .

7. IMPROVEMENTS OF THE LEVINSON INEQUALITY FOR FUNCTIONS
WITH NONDECREASING INCREMENTS

Here we first state the improvement of the Levinson inequality by using Jesen-Boas
Inequality.

Theorem 10. Let B : [a,b] — R be a function of bounded variation such that (8)
holds, and let X be a continuous and nondecreasing map from |a,b|] C R to an interval
I=1[0,d c R d > 0. If ¥ is a continuous FW.N.D.1. of convex type of order 3 on
J =0, 2d], then

17 f(2d - Y(H)B@) (2 T) /! f(’:‘(t))dB(t) o (D)
Jo dB(t) RER
S Ji 1 (2d = Y() = ¥(X(t) - ¥(2d — T) +0(Y)|dB(t)
B [PdB(t)

Jy I ﬂmmy

=¥ (2d = 0)| + ¥, (1)] R0

where
S UL.0)
J, aB(t)

Proof. If U is a EW.N.D.L of order 3 on J, then

ApAAT(x) >0 (x,x+h+t+seJ, 0<h t,seRY,
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1.e.,
ApAy(U(x +8) — ¥(x)) > 0. (16)
If x e Tand s = 2d — 2x, we have

ApAg(¥(2d —x) — U(x)) >0

i.e. the function x — ¥(2d —x)— ¥(x) isa EW.N.D.I. of order 2, i.e., itis a EW.N.D.L
Now, by replacing ¥(x) by ¥(2d—x)—W¥(x) in Theorem 4, we obtain Theorem 10. [J

Theorem 11. Let B : [a,b] — R be a function of bounded variation such that (8)
holds, and let U be a continuous FEW.N.D.I. of convex type of order 3 on [r,d] C RF.
Let 0 <p<d—r. IfY(t) : [a,b] = [r,d — p] is a continuous and nondecreasing

map, then
i fp+X®)dB(t) o [T (Y()dB() }
Pasw O gy P
>tHW®+T®%4Wﬂm—W®+T%HWﬂMBm
- [ dB(t)
e ;o SR () — TdB(t)
1V, (p+ 1) + || (1) B :
where

T_gfwﬂm;
Ja 4B(?)

Proof. Using (16) fors = ¢ = constant € R* , we have ¥ (p+x)—¥(x)isaEW.N.D.L,
now applying Theorem 4 to get the Theorem 11. [

We now give the improvement of the Levinson inequality in accordance to
Jensen-Steffensen inequality.

Corollary 3. Let B : [a,b] — R be a function of bounded variation such that (6)
holds, and let X be a continuous and nondecreasing map from |a,b] C R to an interval
I=[0,d] c R¥ d > 0. If ¥V is a continuous FW.N.D.I. of convex type of order 3 on
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J = [0, 2d], then we have

L 7@A=TWNBO g o gy LYTOMBO o
Jo dB(1) Jo dB(t)
oL @d =Y (1) - U(0(#) ~ ¥(2d = 1) + W(Y)|dB(H)
- S dB(1)
i o ey e () = Y[|dB(t)
W (2d = X)) + ([ (1) [P dB)
where
5 [P dB(t)
I, dB(?)
Proof. Tt can be directly obtained from Theorem 10 by taking [ = 1 in (). [

The analogues discrete result for the above corollary is given as

Theorem 12. Let q be a real n-tuple such that 0 < Q; < Q,, with @, >
0 for i€{l,...,n}x® €[0,d]" C Uwith (d > 0) be such that

X(I)S...S <™ or X(I)Z"'ZX(”)

then for a continuous EW.N.D.I. of convex type V of order three on J = [0,2d], we
have

>iny ¥ (2d —xV) S @ (x) +

0 —¥(2d—-x) — 0 U (x) >
S|P (2d —x@) — ¥ (xD) — ¥ (2d — %) + VU (%)]
Qn
_ i llxY = x|
—[|¥, (2d = %) || + ||V, (%) | == 0 ,
where o
% = Zz‘:1 g;X
Qn

Remark 9. For k£ = 1, the Theorem 4.1 of [9] becomes a special case of our Theorem
12.
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Corollary 4. Let B : [a,b] — R be a function of bounded variation such that (6) holds,
and let W be a continuous EW.N.D.I. of order 3 on [r,d] CR*. Let0 <p <d —r. If
Y(t) : [a,b] — [r,d — p] is a continuous and nondecreasing map, then

J2w(p + X ()dB(t) o [Per@)aBw)
R R 7 TR
|19+ (@) — WX (@) — ¥(p+ 1) + U(T)|dB(?)
B S, dB(®)

S - Y||dB(1)

(1% (p + D)l + ¥, (1)

JrdB(t) ’
where ,
1 [ X(t) dB(t)
JraB)
Proof. Tt is a straight forward result from Theorem 11 with [ = 1 in (8). O

The analogues discrete result for the above Corollary is given as

Theorem 13. Let w be a nonnegative n-tuple such that q be a real n-tuple such that
0< Qi <Qn with Q,>0 for ic{l,....n}x% € [r,d—p|* C U with
0 < p <d —r be such that

xV << x® op x> . > x™

then for a continuous FW.N.D.I. V of convex type of order 3 on J = [r,d], we have

"o (0 n (x)
Z“qz\l}Q(p+X ) — VU (p+x)— Z“qu () + U (%)
| Za ]V (p+x0) — v (x) U (p+ %) + V()]
B @n

|| Z?:l quX(Z) — i”
Qn

=W (p+x) | + [V, (%)

where .
> iy 4%

@n

X =

We now give the improvement of the Levinson inequality in accordance to
Jensen-Mercer inequality.
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Theorem 14. Let B : [a,b] — R be a function of bounded variation such that (6)
holds, and let X be a continuous and nondecreasing map from |a,b|] C R to an interval
I=[0,d] C R¥, d > 0. If ¥ is a continuous FW.N.D.I. of convex type having order 3
onJ =10,2d], then

L w(C()dB(t) [ f(2d = Y(1))dB(t)

S, dB(t) J, dB(t)
L@ M —2d + Y () ~ UL M =Y () ~ ¥(2d - 1) + U(Y)|dB(Y)
B J, dB(?)

+ =W (2d = D)W, (1)

U(2d-70)+ ¥ (Y)

JUIIL + M — Y (1) - Y||dB(t)
J2dB(t) |

S22 (t)dB(t)

[P aB()
L<Y(t) <Mforallt € [a,b]

Where ¥ = L+ M — and L, M are two k — tuples in Usuch that

Proof. Adopting the Theorem 10 and replacing ¥ (x) by ¥(2d —x) — ¥(x) in Theorem
6 we get the desired result. ]

The analogues discrete inequality of the above result is given as

Theorem 15. Let q be a real n-tuple such that 0 < Q; < Q,, with Q, >
0 for i€{l,....,n}yandletforic {1,...,n},x% €[0,d]"” c U with (d > 0) be
such that

D << x® o x> s 5™

then for a continuous FW.N.D.I., V of order three on J = [0, 2d|, we have

noy (x0) noo — X
Zizl chp (X ) o @(2(1_)—() o Zi:l %\11652(1 X ) —F\I’()_()
. S g |V (L+M=-2d+x%) - U (L+M-x9) - ¥ (2d —x) + ¥ (X)|
a @n

> it gillL — M —x — x|

+ ([ (2d = x) ||V (%) | 0 ,

where X = L + M — Z?%ZixmandL = (l1,...,lg) and M = (my, ..., my) are two
k-tuples related to U such that L < x9 < M foralli € {1,...,n}.



Improvement of Jensen and Levinson Type Inequalities for Functions... 965

Theorem 16. Let B : [a, b] — R be a function of bounded variation such that (6) holds,
and let W be a continuous EW.N.D.I. of order 3 on [r,d] CR*. Let0 <p <d —r. If
Y(t) : [a,b] — [r,d — p] is a continuous and nondecreasing map, then

o w(x dB() [P u(p+ Y (1)dB(?)
fa dB f dB(t)

N f;’rqu—p—r(>>—w<L+M—r<t>> U(p+T) + U(T)|dB(1)

- [PdB(t)

e PV (Y f||L+M Y(t) — X[ dB(t)
+ =V (p + )WL ()] IREG

~U(p+7Y)+¥(Y)

Y

J20() dB(1)
J; dB(t)
L<Y(t)<Mforallt € [a,b].

where ¥ = L + M — and L, M are two k — tuples in U such that

Proof. Adopting Theorem 11 and replacing ¥ (x) by ¥(p + x) — ¥(x) in Theorem 6
we get the desired result. ]

The analogous discrete inequality of the above result is given as

Theorem 17. Let q be a real n-tuple such that 0 < Q; < Q,, with Q, >
0 for i € {1,...,n} and let for i € {1,...,n},x% € [r,d — p]” C U with
0 < p <d —r be such that

then for a continuous FW.N.D.I. V of order three on J = [r,d], we have

nog (@) no (4)
Zi:lqu(x >—\If(p+i)—2i:1qquQ(p+X )—l-\lf()_()Z
S V(L 4AM-p-x9) ¥ (L-M-xD) - (p+x)+ ¥ ()]
Qn
"Gl =M —x® —x
0 (o0 | () e = =

where x = L+ M — Z?éqixm ndL = (l,...,lx) and M = (my, ..., my) are two

k-tuples related to Usuch that L < x9 < M foralli € {1,... n}.
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We now state improvement of the Levinson inequality by using Neizgoda’s inequality
of Theorem 7.

Theorem 18. Let (1,3, 1) be a measure space with positive finite measure | and
consider the weight function w : T — [0,400). Let © and V be two nondecreasing
continuous mappings from [a,b] C R to an interval 1 = [0,d] C R¥, d > 0 such that
foreachs € Y

/b\lf(s,t)dB(t) < /b@(t)dB(t), foreach x € (a,b),
and /b\If(s,t)dB(t) _ /b@(t)dB(t)

where B : [a,b] — R is of bounded variation. Moreover, let I = |J\_ (a;, b)),

I° = [a,b\I = Ut [bior,ai) and |I°] = S (a; — bi_y) where a = by < a; <
by < ag < by < ...<ag < by < agy1 = bisa partition of the interval [a,b]. Then
for every continuous function p with nondecreasing increments of convex type having
order 3 on J = [0, 2d], the following inequality holds.

7 (oo [, oo naeasn)

_ ﬁ <Ms)du(s) /1 /T p(2d - \Il(s,t))d,u(s)dB(t)) —¢(2d-T) +¢(T)

1 1 b
> W [/T w(s)|e <|IC| (/a O(t)dB(t) — ‘/I(2d — W(&t))dB(t)))
1 b B )
¥ (F </ O(t)dB(t) — / \I/(s,t)dB(t)>> —p (2(1 — ’r) + o(T)|du(s)

s o e (7 (1 eaB JI (2d - % H)dB(1)) ) = Flldu(s)
— ¢, (D)) fT .

+ll¢y (2d = X))

A7)

where

T = (ﬁ (/ab@(t)dB(t) // (5. £)dp(s )dB(t))) |

Proof. Following Theorem 10 and replacing ¢ (¥) by ¢ (2d — ¥) — ¢ (V) in the
Theorem 8 we get the desired result.

O
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Remark 10. The above inequality still holds for the following assumptions:
Let© : [a,0] > Uand f : T x [a,b] — U be two nonincreasing continuous mappings
such that foreach s € T

/x\lf(s,t)dB(t) < /m@(t)dB(t), foreach z € (a,b),

and /b\I/(s,t)dB(t) _ /@(t)dB(t),

a
The discrete analogous inequality for the above result is given as

Theorem 19. Let there are m elements in & = (a(l), e ,a(m)) in a way that every
aV) € Iis a k-tuple for j € {1,...,m}. Also there be n x m elements represented as
x(@) € [0,d]” C U with (d > 0) such that every x") is a k-tuple fori € {1,...,n},
j€{l,...,m} and all these x") can be arranged in a n x m matrix X = (x(). Let
q be a real n-tuple such that 0 < Q; < Q,, with @, >0 for i€ {l,....,n} If
a majorizes each row of Y, that is,

x() = (x(“), . ,X(im)) =< (a(l), . ,a(m)) =4 foreachi € {1,...,n},

then for a continuous EW.N.D.I. V of order three on J = |0, 2d], we have the inequality

S i 6 (x ) S X i (2d —x @)

Q +\IJ(2d—i)— 0 +\I/(i)2
Sy [ (S a®) - £ (2d - x ) ) - w (S, al) - 7S X0 ) — v (2d - %) + 0 (%)
Qn
< N gl Al — x|
I (2d = )| 4 () R S ,

where

— nooyemel (i)
Jj=1 Qn

Theorem 20. Let (Y,%, 1) be a measure space with positive finite measure |1 and
consider the weight function w : T — [0,400). Let © and V be two nondecreasing
continuous mappings from [a,b] C R to an interval [r,d—p|] C R¥, with0 < p <d-—r
such that for each s € T

/b\lf(s,t)dB(t) < /b@(t)dB(t), foreach =z € (a,b),

and /b\I/(s,t)dB(t) - /@(t)dB(t),

a
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where B : [a,b] — R is of bounded variation. Moreover, let I = |J\_ (a;, b)),
I¢ = [a,b]\I = Ufill[bi_l,ai] and |I°| = Zkﬂ(al — b;_1) where a = by < a1 <
by < ag < by <...<ap <by < agy1 = bisa partition of the interval [a,b]. Then
for every continuous function p with nondecreasing increments of convex type having

order 3on J = [r,d] C RF, the following inequality holds.

1 (Frevam / JRIETIEE0)

—|Ilc ( // (p+ U(s,t)du(s )dB()>—sO(2P+T)+%0(T)

1 b
[ el <p ( | ewanw- [ <p+\1/<s,t>>dB<t>>>

= | Ty w(3)ds)

1 b . . . _
: (m ([ ewasr- | wsvdea))) oo+ 1)+ A9 + I, - T
fT ) (7 (7 e — [ o+ U(s,0)dB(®)) ) — Tldu(s)
~ e fTw(smu(s) ’
(18)
where

T = (ﬁ (/abG(t)dB(t) // (s,t)du(s )dB(t>>)

Proof. Following Theorem 11 and replacing ¢ (f) by ¢ (p + ) — ¢ (f) in Theorem 8
we get the desired result. [

Remark 11. The above inequality still holds for the following assumptions:
Let© : [a,b] > Uand f : T X [a,b] — U be two nonincreasing continuous mappings
such that foreach s € T

/x\If(s,t)dB(t) < /x@(t)dB(t), foreach =z € (a,b),
and /b\If(s,t)dB(t) _ /b®(t)dB(t)

The analogous discrete inequality for the above result is given as:

Theorem 21. Let there are m elements in & = (a(l), . ,a(m)) in a way that every
a) € ILis a k-tuple for j € {1,...,m}. Also there are n x m elements represented
as x € [r,d — p|" € Uwith0 < p < d — r such that every x) is a k-tuple
fori € {1,...,n}, j € {1,...,m} and all these x") can be arranged in a n x m
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matrix X = (x'")). Let q be a real n-tuple such that 0 < Q; < Q,,, with @Q, >
0 for ie{l,...,n}. If & majorizes each row of Y, that is,

x() = (X(“), o ,X(im)> < (a(l), e ,a(m)) =4 foreachi € {1,...,n},
then for a continuous EW.N.D.I. VU of order three on J = J = [r,d|, we have the

inequality

i S @ (x) S Y g (p+ x()

0 +¥(p+x)— 0 + ¥ (x)>
S g |w (Z;ﬁzl ali) Z;ﬁ;ll (p+ X(z‘j))) _ (Z;ﬁ:l ali) Z;-n;ll X(u‘)) —U(p+x) + V()
Qn
/ e Ll X al) — ) — x|

I )+ (| a = :

where
i Ez 1 ZJ 1 X )
— Q@n
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