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1. CONVEX FUNCTIONS ON NORMED LINEAR SPACES AND HILBERT
SPACES

We start with some results from [10] that will help us in our main constructions:

Proposition 1. A linear functional, having its domain contained in a normed linear
space, is continuous⇔ it is bounded.

Following is the well known “Riesz Representation Theorem”:

Proposition 2. There is an inner product representation for each linear functional Ψ

which is bounded on a Hilbert space H and is written as:

Ψ(θ) = 〈θ, ϑ〉 (1)

here ϑ depending upon Ψ has unique value that is evaluated through Ψ. The norm of ϑ
is

‖ϑ‖ = ‖Ψ‖ = sup
06=θ∈D(Ψ)

|Ψ(θ)|
‖θ‖

.

In [13, p. 128] we see an interesting result that if V is a normed linear space and U
be an open convex subset in V then a convex function Ψ on U generates a supporting
hyperplane at every point say a0 ∈ U . This implies the presence of a linear functional
h which in conituous on V and is charectarized as

Ψ(θ) ≥ Ψ(a0) + h(θ − a0) ∀ θ ∈ U. (2)

Such functionals h are said to be the support of Ψ at a0 and the subdifferential of Ψ at
the point a0 is established through the set ∂Ψ(a0) of all these functionals h.

Now if V is a Hilbert space then we have a unique representation of all such functionals
h as h(θ) = 〈θ, ϑ〉 for θ ∈ V such that ‖Ψ‖ = ‖ϑ‖ by using Riesz representation
theorem.

In this case inequality (2) becomes

Ψ(θ) ≥ Ψ(a0) + 〈θ − a0, ϑ〉 for all θ ∈ U (3)

all these vectors ϑ are usually termed as subgradients and the set of all vectors ϑ
constitute the subdifferential ∂Ψ(a0).

Using these facts we state our first main result:
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Theorem 1. If Ψ is a convex function on an open convex subset U of a Hilbert space
H , then for all θ, a0 ∈ U

Ψ(θ)−Ψ(a0)− 〈θ − a0, ϑ〉 ≥
∣∣|Ψ(θ)−Ψ(a0)| − ‖Ψ‖ ‖θ − a0‖

∣∣,
where ϑ ∈ ∂Ψ(a0).

Proof. Using (3) we have that for all θ, a0 ∈ U

Ψ(θ)−Ψ(a0)− 〈θ − a0, ϑ〉 = |Ψ(θ)−Ψ(a0)− 〈θ − a0, ϑ〉|
≥

∣∣|Ψ(θ)−Ψ(a0)| − |〈θ − a0, ϑ〉|
∣∣

Using Cauchy-Schwartz inequality |〈θ, y〉‖ ≤ ‖θ‖‖y‖, we have

Ψ(θ)−Ψ(a0)− 〈θ − a0, ϑ〉 ≥
∣∣|Ψ(θ)−Ψ(a0)| − ‖θ − a0‖‖ϑ‖

∣∣
Since ‖ϑ‖ = ‖Ψ‖ by Riesz representation theorem, so we are done.

Let U be an open subset of a Banach space E. Then the real valued function Ψ, defined
on U , have one-sided directional derivatives (left(right) Gâteaux derivatives) at a0 ∈ U
relative to (or may say in the direction of) v. These Gâteaux derivatives are defined
through limits as:

∇+(−)Ψ (a0; v) : = lim
t→0+(−)

Ψ (a0 + tv)−Ψ (a0)

t

It is worth mentioning that both of the one-sided directional derivatives ∇−Ψ (a0; v)

and ∇+Ψ (a0; v) are subadditive as well as positively homogenous and their existence
and equivalence gives us the directional derivative of Ψ relative to v at a0, written as
Ψ′(a0; v), which is nothing but the common value of ∇−Ψ (a0; v) and ∇+Ψ (a0; v).
We infer that ∇−Ψ (a0; v) and ∇+Ψ (a0; v) are linear when they exist and obey the
expression

∇+Ψ (a0; v) = −∇−Ψ (a0;−v)

To be more specific, the directional derivatives are actually the partial derivatives when
taken in connection to canonical basis of Rn. For the sake of simplicity we will
denote right directional derivative by Ψ′+ and left directional derivative by Ψ′− and for
directional derivative by Ψ′ if exist.
Following is another important result from [14, p. 12–13]

Proposition 3. Let Ψ be convex function on an open set U of a real normed linear space
Rn. Then for all θ, θ0 ∈ U the inequality

Ψ(θ)−Ψ(θ0) ≥ 〈Ψ′+(θ0), θ − θ0〉

holds, where 〈·, ·〉 represent usual inner product on Rn.
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Now let us recall an important result from literature by Levinson [11].

Proposition 4. For a real valued function Ψ with nonnegative third derivative and
defined on [0, 2a] ∈ R, the inequality∑n

i=1 qiΨ(θi)

Qn

−Ψ

(∑n
i=1 qiθi
Qn

)
≤
∑n

i=1 qiΨ(ηi)

Qn

−Ψ

(∑n
i=1 qiηi
Qn

)
(4)

holds for 0 < θi < a, ηi = 2a− θi, for i ∈ {1, . . . , n} qi > 0 and Qn =
∑n

i=1 qi.

2. FUNCTIONS WITH NONDECREASING INCREMENTS

In [2], H. D. Brunk introduced an important class of functions namely functions with
nondecreasing increments. In order to properly define this class here we have some
assumptions.

Let Rk is a k−dimensional vector lattice and the partial ordering for x,y ∈ Rk is given
as x = (x1, . . . , xk) ≤ y = (y1, . . . , yk) if and only if xi ≤ yi, where xi, yi are real for
each i ∈ {1, . . . , k}. Furthermore a set {z ∈ Rk : x ≤ z ≤ y} is called an interval
[x,y] and 0 shows the k−tuple (0, . . . , 0). Also for any r, s ∈ R

rx + sy = (rx1 + sy1, . . . , rxk + syk).

Throughout this article, functions with nondecreasing increments will be abbreviated as
F.W.N.D.I. We also suppose that U is an interval in Rk and for real weights q1, . . . , qn
we define

Qi =
i∑

j=1

qj, i ∈ {1, . . . , n} and clearly Qn =
n∑
j=1

qj.

In [2], we see the following definition of a F.W.N.D.I.:

Definition 1. A real-valued function Ψ defined on U is said to have nondecreasing
increments if

Ψ(α + η)−Ψ(α) ≤ Ψ(β + η)−Ψ(β) (5)

whenever α ∈ U, β + η ∈ U, 0 ≤ η ∈ Rk, α ≤ β.

Brunk observed that inequality (5) does not imply continuity even for k = 1. It is
very interesting to notice that for positively oriented lines these functions are convex.
These are lines having nonnegative direction cosines and expressed as X(t) = αt + β

where 0 ≤ α and α, β ∈ U. Furthermore, these functions are said to be Wright-convex
for k = 1 and from [14, p. 7] we know that the class of convex functions is properly
contained in class of Wright-convex functions while class of Wright-convex itself is a
proper subclass of J−convex functions. For some more properties and results regarding
F.W.N.D.I. [2], [5], [6], [7] and [15] can be seen.
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2.1 Some Inequalities for Functions with Nondecreasing
Increments

Lets start with Jensen-Steffensen type inequality for F.W.N.D.I. from [15].

Proposition 5. Let a function of bounded variations B : [a, b]→ R, such that

B(a) ≤ B(x) ≤ B(b), B(b) > B(a), (6)

and a continuous nondecreasing map Υ from a real interval [a, b] to U. Then for
continuous F.W.N.D.I., Ψ : U→ R, we have

Ψ

(∫ b
a

Υ(t) dB(t)∫ b
a
dB(t)

)
≤
∫ b
a

Ψ (Υ(t)) dB(t)∫ b
a
dB(t)

, (7)

where
∫ b
a

Υ dB is the vector (
∫ b
a

Υ1dB, . . . ,
∫ b
a

Υk dB).

Remark 1. If

∫ b
a

Υ(t)dB(t)∫ b
a
dB(t)

∈ U and we have either B(x) ≤ B(a) or B(x) ≥ B(b),

then the reverse inequality in (5) holds.

The following proposition is the Jensen-Boas type inequality for functions with
nondecreasing increments and it is proved in [6].

Proposition 6. Let Υ : [a, b] → U be a continuous and monotonic (either
nonincreasing or nondecreasing) map in each of the l intervals (bi−1, bi). Let B :

[a, b]→ R is continuous or of bounded variation satisfying

B(a) ≤ B(a1) ≤ B(b1) ≤ B(a2) ≤ · · · ≤ B(bl−1) ≤ B(al) ≤ B(b) (8)

for all ai ∈ (bi−1, bi) (b0 = a, bl = b), and B(b) > B(a). If ϕ is continuous function
having nondecreasing increments in each of the l intervals (bi−1, bi), then we have the
following inequality

Ψ

(∫ b
a

Υ(t)dB(t)∫ b
a
dB(t)

)
≤
∫ b
a

Ψ(Υ(t))dB(t)∫ b
a
dB(t)

. (9)

Remark 2. If

∫ b
a

Υ(t)dB(t)∫ b
a
dB(t)

∈ U and ∀x ∈ ai 3 (bi−1, bi)(b0 = a, bl = b)

and we have either B(x) ≥ B(b) or B(x) ≤ B(a), then the reverse inequality in (9)

holds.
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Following is the Neizgoda’s integral inequality for F.W.N.D.I. from [4].

Proposition 7. Let (Υ,Σ, µ) be a measure space with positive finite measure µ and
consider the weight function ω : Υ→ [0,+∞). Let Θ : [a, b]→ U and Ψ : Υ×[a, b]→
U be two nondecreasing continuous mappings such that for each s ∈ Υ∫ b

x

Ψ(s, t) dB(t) ≤
∫ b

x

Θ(s, t)dB(t), for each x ∈ (a, b), (10)

and
∫ b

a

Ψ(s, t) dB(t) =

∫ b

a

Θ(s, t) dB(t), (11)

where B : [a, b] → R is of bounded variation. Moreover, let I =
⋃k
i=1(ai, bi),

Ic = [a, b]\I =
⋃k+1
i=1 [bi−1, ai] and |Ic| =

∑k+1
i=1 (ai − bi−1) where a = b0 ≤ a1 <

b1 < a2 < b2 < . . . < ak < bk ≤ ak+1 = b is a partition of the interval [a, b]. Then for
every continuous function ϕ : U→ R with nondecreasing increments the inequality

ϕ

(
1

|Ic|

(∫ b

a

Θ(t)dB(t)− 1∫
Υ
ω(s)dµ(s)

∫
I

∫
Υ

ω(s)Ψ(s, t)dµ(s)dB(t)

))
≤

1

|Ic|

(∫ b

a

ϕ(Θ(t))dB(t)− 1∫
Υ
ω(s)dµ(s)

∫
I

∫
Υ

ϕ(Ψ(s, t))dµ(s)dB(t)

)
(12)

holds for each s ∈ Υ.

Remark 3. It is interesting to notice that (12) still holds if the corresponding
assumptions of Proposition 7 is replaced by the following:
Let Θ : [a, b]→ U and Ψ : Υ× [a, b]→ U be two nonincreasing continuous mappings
such that for each s ∈ Υ∫ x

a

Ψ(s, t) dB(t) ≤
∫ x

a

Θ(s, t) dB(t), for each x ∈ (a, b),

and
∫ b

a

Ψ(s, t) dB(t) =

∫ b

a

Θ(s, t) dB(t).

Now we state a result namely generalized Levinson inequality from [7].

Proposition 8. Let B : [a, b] → R be a function of bounded variation such that (8)

holds and let Υ be a continuous and nondecreasing map from [a, b] ⊂ R to an interval
I = [0,d] ⊂ Rk, d > 0. If Ψ is a continuous F.W.N.D.I. of order 3 on J = [0, 2d], then∫ b

a
Ψ (Υ(t)) dB(t)∫ b

a
dB(t)

−Ψ

(∫ b
a

Υ(t) dB(t)∫ b
a
dB(t)

)

≤
∫ b
a

Ψ (2d−Υ(t)) dB(t)∫ b
a
dB(t)

−Ψ

(∫ b
a
(2d−Υ(t)) dB(t)∫ b

a
dB(t)

)
.
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Proposition 9. Let B : [a, b] → R be a function of bounded variation such that
(6) holds, and let Ψ be a continuous F.W.N.D.I. of order 3 on [c,d] ⊂ Rk. Let
0 < a < d − c. If Υ(t) : [a, b] → [c,d − a] is a continuous and nondecreasing
map, then∫ b

a
Ψ (Υ(t)) dB(t)∫ b

a
dB(t)

−Ψ

(∫ b
a

Υ(t) dB(t)∫ b
a
dB(t)

)

≤
∫ b
a

Ψ (a + Υ(t)) dB(t)∫ b
a
dB(t)

−Ψ

(∫ b
a
(a + Υ(t)) dB(t)∫ b

a
dB(t)

)
.

holds.

We now prove another important result related to F.W.N.D.I.

3. INTEGRAL JENSEN-MERCER INEQUALITY FOR FUNCTIONS WITH
NONDECREASING INCREMENTS

The integral version of Jensen-Mercer inequality for F.W.N.D.I. under the condition of
Jensen-Boas inequality (8) is given below:

Theorem 2. Let B : [a, b]→ R be a function of bounded variation satisfying

B(a) ≤ B(a1) ≤ B(b1) ≤ B(a2) ≤ · · · ≤ B(bl−1) ≤ B(al) ≤ B(b)

for all ai ∈ (bi−1, bi) (b0 = a, bl = b), and B(b) > B(a) and let Υ be a continuous
nondecreasing map from the real interval [a, b] to the interval U. If Ψ : I → R is a
continuous F.W.N.D.I., then

Ψ

(
L + M−

∫ b
a

Υ(t) dB(t)∫ b
a
dB(t)

)
≤ Ψ(L) + Ψ(M)−

∫ b
a

Ψ (Υ(t)) dB(t)∫ b
a
dB(t)

(13)

where
∫ b
a

Υ dB is the vector (
∫ b
a

Υ1dB, . . . ,
∫ b
a

Υk dB), and L = (L1, . . . , Lk) and
M = (M1, . . . ,Mk) are two k-tuples related to U such that L ≤ Υ(t) ≤ M for all
t ∈ [a, b].

Also if

∫ b
a

Υ(t)dB(t)∫ b
a
dB(t)

∈ U and ∀x ∈ ai 3 (bi−1, bi)(b0 = a, bl = b) and we have either

B(x) ≥ B(b) or B(x) ≤ B(a), then the inequality (13) remains valid.

Proof. Under the conditions (8) for a continuous nondecreasing map Υ from the real
interval [a, b] to the interval U, we have
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Ψ

(
L + M−

∫ b
a

Υ(t) dB(t)∫ b
a
dB(t)

)
= Ψ

[
1∫ b

a
dB(t)

∫ b

a

(L + M−Υ(t)) dB(t)

]
now if Υ is a continuous nondecreasing map from the real interval [a, b] to the interval
U, then L + M−Υ(t) is also a continuous nondecreasing map for ∀t ∈ [a, b].
Therefore by using Proposition 6 we have

Ψ

(
L + M−

∫ b
a

Υ(t) dB(t)∫ b
a
dB(t)

)
≤ 1∫ b

a
dB(t)

∫ b

a

Ψ (L + M−Υ(t)) dB(t)

now by using Lemma 1 of [1] we get

Ψ

(
L + M−

∫ b
a

Υ(t) dB(t)∫ b
a
dB(t)

)
≤ Ψ(L) + Ψ(M)−

∫ b
a

Ψ (Υ(t)) dB(t)∫ b
a
dB(t)

now if

∫ b
a

Υ(t)dB(t)∫ b
a
dB(t)

∈ U and ∀x ∈ ai 3 (bi−1, bi)(b0 = a, bl = b) and we have either

B(x) ≥ B(b) or B(x) ≤ B(a), then by using Lemma 1 of [1] and Remark 2 we have

Ψ

(
L + M−

∫ b
a

Υ(t) dB(t)∫ b
a
dB(t)

)
≤ Ψ(L) + Ψ(M)−Ψ

(∫ b
a

Υ(t) dB(t)∫ b
a
dB(t)

)

≤ Ψ(L) + Ψ(M)−
∫ b
a

Ψ (Υ(t)) dB(t)∫ b
a
dB(t)

which completes the proof.

We now state the integral Jensen-Mercer inequality under the condition of
Jensen-Steffensen inequality (16) is given below:

Corollary 1. Let B : [a, b]→ R be a function of bounded variation satisfying

B(a) ≤ B(x) ≤ B(b), B(b) > B(a)

and let Υ be a continuous nondecreasing map from the real interval [a, b] to the interval
U. If Ψ : I→ R is a continuous F.W.N.D.I., then

Ψ

(
L + M−

∫ b
a

Υ(t) dB(t)∫ b
a
dB(t)

)
≤ Ψ(L) + f(M)−

∫ b
a

Ψ (Υ(t)) dB(t)∫ b
a
dB(t)

(14)

where
∫ b
a

Υ dB is the vector (
∫ b
a

Υ1dB, . . . ,
∫ b
a

Υk dB), and L = (L1, . . . , Lk) and
M = (M1, . . . ,Mk) are two k-tuples related to U such that L ≤ Υ(t) ≤ M for all
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t ∈ [a, b].

Also if

∫ b
a

Υ(t)dB(t)∫ b
a
dB(t)

∈ U and we have either B(x) ≥ B(b) or B(x) ≤ B(a), then the

inequality (14) still remains valid.

Proof. It is nothing but a straight forward case of Theorem 2 for l = 1.

Following is the discrete version of the above inequality:

Theorem 3. Let Ψ : U → R be a continuous F.W.N.D.I. and let x(i) ∈ U, i ∈
{1, . . . , n} satisfy the condition

x(1) ≤ · · · ≤ x(n) or x(1) ≥ · · · ≥ x(n)

if q is a real n-tuple such that 0 ≤ Qi ≤ Qn, with Qn > 0 for i ∈ {1, . . . , n},
then we have

Ψ

(
L + M−

∑n
i=1 qix

(i)

Qn

)
≤ Ψ(L) + Ψ(M)−

∑n
i=1 qiΨ(x(i))

Qn

(15)

where L,M are two k−tuples in U such that L ≤ x(i) ≤ M for all i ∈ {1, . . . , n}. Also

if
∑n

i=1 qix
(i)

Qn

∈ U and there exist i ∈ {1, . . . , n} such that for any m ∈ {2, . . . , n}

Qi ≤ 0 and i < m and Qn −Qi−1 ≤ 0 for i > m then the inequality (15) still remains
valid.

Remark 4. (i) Theorem 1 of [1] becomes special case of our Theorem 3 if we first
take q as a nonnegative n-tuple with Qn > 0 and then as a real tuple such that
q1 > 0, qi ≤ 0, i ∈ {2, . . . , n}, Qn > 0.
(ii) Taking k = 1 and q as a positive n-tuple with Qn = 1 then Theorem 1.2 of [12] and
all its related results become special cases of our Theorem 3.

In the rest of this article we assume that Υ is a continuous nondecreasing map from the
real interval [a, b] to the interval I ⊂ Rk of the form Υ(t) = at + b where 0 ≤ a and
a,b ∈ Rk. Hence a F.W.N.D.I. Ψ along positively oriented lines with positive direction
cosines is convex over this domain U and we will call this function a F.W.N.D.I. of
convex type.

Before going onto our main results we need the following important lemma with respect
to the Proposition 3.
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Lemma 1. Let Ψ : U→ R be a F.W.N.D.I. of convex type then ∀ x,x0 ∈ U we have

Ψ(x)−Ψ(x0)− 〈Ψ′+(x0),x− x0〉 ≥
∣∣|Ψ(x)−Ψ(x0)| − ‖Ψ′+(x0)‖‖x− x0‖

∣∣
where 〈·, ·〉 represent usual inner product on Rn and Ψ′+(x0) represents the
right-directional derivative of Ψ at x0.

Proof. Since Ψ is continuous F.W.N.D.I. of convex type, therefore ∀ x,x0 ∈ U from
Theorem 3 we have

Ψ(x)−Ψ(x0) ≥ 〈Ψ′+(x0),x− x0〉

which can be written as

Ψ(x)−Ψ(x0)− 〈Ψ′+(x0),x− x0〉 = |Ψ(x)−Ψ(x0)− 〈Ψ′+(x0),x− x0〉|
≥
∣∣|Ψ(x)−Ψ(x0)| − |〈Ψ′+(x0),x− x0〉|

∣∣
Now applying Cauchy-Schwartz Inequality |〈Ψ′+(x0),x−x0〉| ≤ ‖Ψ′+(x0)‖‖x−x0‖,
we conclude

Ψ(x)−Ψ(x0)− 〈Ψ′+(x0),x− x0〉 ≥
∣∣|Ψ(x)−Ψ(x0)| − ‖Ψ′+(x0)‖‖x− x0‖

∣∣.

4. IMPROVEMENTS OF THE JENSEN-BOAS INEQUALITY

Theorem 4. Let all the assumptions of Proposition 6 be valid for the F.W.N.D.I. of
convex type. Then we have∫ b

a
f(Υ(t))dB(t)∫ b

a
dB(t)

−Ψ

(∫ b
a

Υ(t) dB(t)∫ b
a
dB(t)

)

≥

∣∣∣∣∣
∫ b
a
|Ψ(Υ(t))−Ψ(Ῡ)|dB(t)∫ b

a
dB(t)

− ‖Ψ′+(Ῡ)‖
∫ b
a
‖Υ(t)− Ῡ‖dB(t)∫ b

a
dB(t)

∣∣∣∣∣ ,
where

Ῡ =

∫ b
a

Υ(t) dB(t)∫ b
a
dB(t)

.

Proof. Setting x = Υ(t) and x0 = Ῡ for all t ∈ [a, b] in Lemma 1 we get

Ψ(Υ(t))−Ψ(Ῡ)− 〈Ψ′+(Ῡ),Υ(t)− Ῡ〉 ≥
∣∣|Ψ(Υ(t))−Ψ(Ῡ)| − ‖Ψ′+(Ῡ)‖‖Υ(t)− Ῡ‖

∣∣
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By integrating with respect to function of bounded variation B over interval [a, b] we
get∫ b

a

f(Υ(t))dB(t)−Ψ(Ῡ)

∫ b

a

dB(t)

≥
∫ b

a

∣∣|Ψ(Υ(t))−Ψ(Ῡ)| − ‖Ψ′+(Ῡ)‖‖Υ(t)− Ῡ‖
∣∣dB(t)

≥
∣∣∣∣∫ b

a

|Ψ(Υ(t))−Ψ(Ῡ)|dB(t)− ‖Ψ′+(Ῡ)‖
∫ b

a

‖Υ(t)− Ῡ‖dB(t)

∣∣∣∣
and after dividing by

∫ b
a
dB(t) > 0 we get what we wanted.

Remark 5. Under the assumptions of Remark 2 the inequality in Theorem 4 get
reversed.

The following result gives the improvement of the Jensen-Steffensen inequality.

Corollary 2. Let all the assumptions of Proposition 5 be valid the F.W.N.D.I. of convex
type. Then∫ b

a
Ψ(Υ(t))dB(t)∫ b

a
dB(t)

−Ψ

(∫ b
a

Υ(t) dB(t)∫ b
a
dB(t)

)

≥

∣∣∣∣∣
∫ b
a
|Ψ(Υ(t))−Ψ(Ῡ)|dB(t)∫ b

a
dB(t)

− ‖Ψ′+(Ῡ)‖
∫ b
a
‖Υ(t)− Ῡ‖dB(t)∫ b

a
dB(t)

∣∣∣∣∣
where

Ῡ =

∫ b
a

Υ(t) dB(t)∫ b
a
dB(t)

.

Proof. The Theorem 4 generates the desired result by using (8) for l = 1.

Remark 6. (i)Under the assumptions of Remark 1 the inequality in Corollary 2 get
reversed.
(ii) If we take B as an increasing and bounded function with B(a) 6= B(b) then the
integral inequality of Theorem 2.1 of [3] becomes special case of our result for k = 1.

The analogous discrete inequality of the above result is given as

Theorem 5. Let Ψ : U → R be a continuous F.W.N.D.I. of convex type, let q be a
real n-tuple such that 0 ≤ Qi ≤ Qn, with Qn > 0 for i ∈ {1, . . . , n} and let
x(i) ∈ U, i ∈ {1, . . . , n} be such that

x(1) ≤ · · · ≤ x(n) or x(1) ≥ · · · ≥ x(n)
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then

∑n
i=1 qiΨ

(
x(i)
)

Qn

−Ψ

(∑n
i=1 qix

(i)

Qn

)
≥

∣∣∣∣∣
∑n

i=1 qi
∣∣Ψ (x(i)

)
−Ψ (x̄)

∣∣
Qn

− ‖Ψ′+ (x̄) ‖
∑n

i=1 qi‖x(i) − x̄‖
Qn

∣∣∣∣∣
where

x̄ =

∑n
i=1 qix

(i)

Qn

.

Remark 7. (i)If
∑n

i=1 qix
(i)

Qn

∈ U and there exist i ∈ {1, . . . , n} such that for any

m ∈ {2, . . . , n} Qi ≤ 0 for i < m and Qn −Qi−1 ≤ 0 for i > m then the inequality in
Theorem 5 is reversed.
(ii) If we take positive qi for i ∈ {1, . . . , n} then the discrete inequality of Theorem 2.1

of [3] becomes a special case of our result for k = 1.

5. IMPROVEMENTS OF THE JENSEN-MERCER INEQUALITY

Theorem 6. Let all the assumptions of Theorem 2 be valid for the F.W.N.D.I. of convex
type. Then we have

Ψ(L) + Ψ(M)−
∫ b
a
f(Υ(t))dB(t)∫ b

a
dB(t)

−Ψ

(
L + M−

∫ b
a

Υ(t) dB(t)∫ b
a
dB(t)

)

≥

∣∣∣∣∣
∫ b
a
|Ψ(L + M−Υ(t))−Ψ(Ῡ)|dB(t)∫ b

a
dB(t)

− ‖Ψ′+(Ῡ)‖
∫ b
a
‖L + M−Υ(t)− Ῡ‖dB(t)∫ b

a
dB(t)

∣∣∣∣∣
where L,M are two k − tuples in U such that L ≤ Υ(t) ≤ M for all t ∈ [a, b] with

Ῡ = L + M−
∫ b
a

Υ(t) dB(t)∫ b
a
dB(t)

.

Proof. For t ∈ [a, b], set x = L + M−Υ(t) and x0 = Ῡ in Lemma 1 we have

Ψ(L + M−Υ(t))−Ψ(Ῡ)− 〈Ψ′+(Ῡ),L + M−Υ(t)− Ῡ〉
≥
∣∣|Ψ(L + M−Υ(t))−Ψ(Ῡ)| − ‖Ψ′+(Ῡ)‖‖L + M−Υ(t)− Ῡ‖

∣∣
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by integrating with respect to function of bounded variation B over interval [a, b] we
get

∫ b

a

Ψ(L + M−Υ(t))dB(t)−Ψ(Ῡ)

∫ b

a

dB(t)

≥
∫ b

a

∣∣|Ψ(L + M−Υ(t))−Ψ(Ῡ)| − ‖Ψ′+(Ῡ)‖‖L + M−Υ(t)− Ῡ‖
∣∣dB(t)

≥
∣∣∣∣∫ b

a

|Ψ(L + M−Υ(t))−Ψ(Ῡ)|dB(t)− ‖Ψ′+(Ῡ)‖
∫ b

a

‖L + M−Υ(t)− Ῡ‖dB(t)

∣∣∣∣ .
and which leads to the desired result by applying Lemma 1 of [1] and dividing by∫ b
a
dB(t) > 0.

The analogous discrete inequality for the above result is given as:

Theorem 7. Let f : U → R be a continuous F.W.N.D.I. of convex type and let
x(i) ∈ U, i ∈ {1, . . . , n} satisfy the condition

x(1) ≤ · · · ≤ x(n) or x(1) ≥ · · · ≥ x(n)

if q be a real n-tuple such that 0 ≤ Qi ≤ Qn, with Qn > 0 for i ∈ {1, . . . , n},
then we have

Ψ(L) + Ψ(M)−
∑n

i=1 qiΨ
(
x(i)
)

Qn

−Ψ

(
L + M−

∑n
i=1 qix

(i)

Qn

)
≥∣∣∣∣∣

∑n
i=1 qi

∣∣Ψ (L + M− x(i)
)
−Ψ (x̄)

∣∣
Qn

− ‖Ψ′+ (x̄) ‖
∑n

i=1 qi‖L + M− x(i) − x̄‖
Qn

∣∣∣∣∣ ,

where x̄ = L + M −
∑n

i=1 qix
(i)

Qn
and L = (l1, . . . , lk) and M = (m1, . . . ,mk) are two

k-tuples related to U such that L ≤ x(i) ≤ M for all i ∈ {1, . . . , n}.
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6. IMPROVEMENTS OF THE NEIZGODA’S INEQUALITY

Theorem 8. Let all the assumptions of Proposition 7 hold for F.W.N.D.I. of convex type,
then we have

1

|Ic|

(∫ b

a

ϕ(Θ(t))dB(t)− 1∫
Υ
ω(s)dµ(s)

∫
I

∫
Υ

ω(s)ϕ(Ψ(s, t))dµ(s)dB(t)

)
− ϕ

(
1

|Ic|

(∫ b

a

Θ(t)dB(t)− 1∫
Υ
ω(s)dµ(s)

∫
I

∫
Υ

ω(s)Ψ(s, t)dµ(s)dB(t)

))

≥

∣∣∣∣∣∣
∫

Υ
ω(s)|ϕ

(
1
|Ic|

(∫ b
a

Θ(t)dB(t)−
∫
I

Ψ(s, t)dB(t)
))

ϕ(Ῡ)|dµ(s)∫
Υ
ω(s)dµ(s)

− ‖ϕ′+(Ῡ)‖

∫
Υ
ω(s)‖

(
1
|Ic|

(∫ b
a

Θ(t)dB(t)−
∫
I

Ψ(s, t)dB(t)
))
− Ῡ‖dµ(s)∫

Υ
ω(s)dµ(s)

∣∣∣∣∣∣
where

Ῡ =

(
1

|Ic|

(∫ b

a

Θ(t)dB(t)− 1∫
Υ
ω(s)dµ(s)

∫
I

∫
Υ

ω(s)Ψ(s, t)dµ(s)dB(t)

))
.

Proof. Setting x = 1
|Ic|

(∫ b
a

Θ(t)dB(t)−
∫
I

Ψ(s, t)dB(t)
)

and x0 = Ῡ for all s ∈ Υ

in Lemma 1 we get

Ψ

(
1

|Ic|

(∫ b

a

Θ(t)dB(t)−
∫
I

Ψ(s, t)dB(t)

))
−Ψ(Ῡ)−

〈Ψ′+(Ῡ),
1

|Ic|

(∫ b

a

Θ(t)dB(t)−
∫
I

Ψ(s, t)dB(t)

)
−Ῡ〉 ≥

∣∣|Ψ( 1

|Ic|

(∫ b

a

Θ(t)dB(t)

−
∫
I

Ψ(s, t)dB(t)

))
−Ψ(Ῡ)|−‖Ψ′+(Ῡ)‖‖ 1

|Ic|

(∫ b

a

Θ(t)dB(t)−
∫
I

Ψ(s, t)dB(t)

)
−Ῡ‖

∣∣
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multiplying by ω(s) and integrating with respect µ(s) over interval Υ we get

∫
Υ

ω(s)ϕ

(
1

|Ic|

(∫ b

a

Θ(t)dB(t)−
∫
I

Ψ(s, t)dB(t)

))
dµ(s)− ϕ(Ῡ)

∫
Υ

ω(s)dµ(s)

≥
∫

Υ

ω(s)
∣∣|Ψ( 1

|Ic|

(∫ b

a

Θ(t)dB(t)−
∫
I

Ψ(s, t)dB(t)

))
−Ψ(Ῡ)|

− ‖Ψ′+(Ῡ)‖‖ 1

|Ic|

(∫ b

a

Θ(t)dB(t)−
∫
I

Ψ(s, t)dB(t)

)
− Ῡ‖

∣∣dµ(s)

≥
∣∣∣∣∫

Υ

ω(s)|Ψ
(

1

|Ic|

(∫ b

a

Θ(t)dB(t)−
∫
I

Ψ(s, t)dB(t)

))
−Ψ(Ῡ)|dµ(s)

− ‖Ψ′+(Ῡ)‖
∫

Υ

ω(s)‖ 1

|Ic|

(∫ b

a

Θ(t)dB(t)−
∫
I

Ψ(s, t)dB(t)

)
− Ῡ‖dµ(s)

∣∣∣∣

and after dividing by
∫

Υ
ω(s)dµ(s) > 0 and using Lemma 1 of [8] we get our desired

result.

Remark 8. The above inequality still holds for the following assumptions:
Let Θ : [a, b]→ U and Ψ : Υ× [a, b]→ U be two nonincreasing continuous mappings
such that for each s ∈ Υ∫ x

a

Ψ(s, t) dB(t) ≤
∫ x

a

Θ(t) dB(t), for each x ∈ (a, b),

and
∫ b

a

Ψ(s, t) dB(t) =

∫ b

a

Θ(t) dB(t),

The analogous discrete inequality of the above theorem is given as:

Theorem 9. Suppose that Ψ : U → R be a continuous F.W.N.D.I. of convex type.
Let there be m elements in á =

(
a(1), . . . , a(m)

)
such that a(j) ∈ U is a k-tuple

for j ∈ {1, . . . ,m}. Also there are n × m elements represented as x(ij) ∈ U s.t.
every x(ij) is a k-tuple for i ∈ {1, . . . , n}, j ∈ {1, . . . ,m} and all these x(ij) can
be arranged in a n × m matrix X = (x(ij)). Let q be a real n-tuple such that
0 ≤ Qi ≤ Qn, with Qn > 0 for i ∈ {1, . . . , n} and If á majorizes each row of
Υ, that is,

x(i.) =
(
x(i1), . . . ,x(im)

)
≺
(
a(1), . . . , a(m)

)
= á for each i ∈ {1, . . . , n},
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then we have the inequality

m∑
j=1

Ψ
(
a(j)
)
−
∑n

i=1

∑m−1
j=1 qiΨ

(
x(ij)

)
Qn

−Ψ

(
m∑
j=1

a(j) −
∑n

i=1

∑m−1
j=1 qix

(ij)

Qn

)
≥∣∣∣∣∣∣

∑n
i=1 qi

∣∣∣Ψ(∑m
j=1 a(j) −

∑m−1
j=1 x(ij)

)
−Ψ (x̄)

∣∣∣
Qn

−‖Ψ′+ (x̄) ‖
∑n

i=1 qi‖
∑m

j=1 a(j) −
∑m−1

j=1 x(ij) − x̄‖
Qn

∣∣∣∣∣
where

x̄ =
m∑
j=1

a(j) −
∑n

i=1

∑m−1
j=1 qix

(ij)

Qn

.

7. IMPROVEMENTS OF THE LEVINSON INEQUALITY FOR FUNCTIONS
WITH NONDECREASING INCREMENTS

Here we first state the improvement of the Levinson inequality by using Jesen-Boas
Inequality.

Theorem 10. Let B : [a, b] → R be a function of bounded variation such that (8)

holds, and let Υ be a continuous and nondecreasing map from [a, b] ⊂ R to an interval
I = [0,d] ⊂ Rk, d > 0. If Ψ is a continuous F.W.N.D.I. of convex type of order 3 on
J = [0, 2d], then∫ b

a
f(2d−Υ(t))dB(t)∫ b

a
dB(t)

−Ψ
(
2d− Ῡ

)
−
∫ b
a
f(Υ(t))dB(t)∫ b

a
dB(t)

+ Ψ
(
Ῡ
)

≥

∣∣∣∣∣
∫ b
a
|Ψ(2d−Υ(t))−Ψ(Υ(t))−Ψ(2d− Ῡ) + Ψ(Ῡ)|dB(t)∫ b

a
dB(t)

−‖Ψ′+(2d− Ῡ)‖+ ‖Ψ′+(Ῡ)‖
∫ b
a
‖Υ(t)− Ῡ‖dB(t)∫ b

a
dB(t)

∣∣∣∣∣ .
where

Ῡ =

∫ b
a

Υ(t) dB(t)∫ b
a
dB(t)

.

Proof. If Ψ is a F.W.N.D.I. of order 3 on J, then

∆h∆t∆sΨ(x) ≥ 0 (x,x + h + t + s ∈ J, 0 ≤ h, t, s ∈ Rk),
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i.e.,

∆h∆t(Ψ(x + s)−Ψ(x)) ≥ 0. (16)

If x ∈ I and s = 2d− 2x, we have

∆h∆t(Ψ(2d− x)−Ψ(x)) ≥ 0

i.e. the function x 7→ Ψ(2d−x)−Ψ(x) is a F.W.N.D.I. of order 2, i.e., it is a F.W.N.D.I.
Now, by replacing Ψ(x) by Ψ(2d−x)−Ψ(x) in Theorem 4, we obtain Theorem 10.

Theorem 11. Let B : [a, b] → R be a function of bounded variation such that (8)

holds, and let Ψ be a continuous F.W.N.D.I. of convex type of order 3 on [r,d] ⊂ Rk.
Let 0 < p < d − r. If Υ(t) : [a, b] → [r,d − p] is a continuous and nondecreasing
map, then

∫ b
a
f(p + Υ(t))dB(t)∫ b

a
dB(t)

−Ψ
(
p + Ῡ

)
−
∫ b
a

Ψ(Υ(t))dB(t)∫ b
a
dB(t)

+ Ψ
(
Ῡ
)

≥

∣∣∣∣∣
∫ b
a
|Ψ(p + Υ(t))−Ψ(Υ(t))−Ψ(p + Ῡ) + Ψ(Ῡ)|dB(t)∫ b

a
dB(t)

−‖Ψ′+(p + Ῡ)‖+ ‖Ψ′+(Ῡ)‖
∫ b

a
‖Υ(t)− Ῡ‖dB(t)∫ b

a
dB(t)

∣∣∣∣∣ ,
where

Ῡ =

∫ b
a

Υ(t) dB(t)∫ b
a
dB(t)

.

Proof. Using (16) for s = c = constant∈ Rk , we have Ψ(p+x)−Ψ(x) is a F.W.N.D.I.,
now applying Theorem 4 to get the Theorem 11.

We now give the improvement of the Levinson inequality in accordance to
Jensen-Steffensen inequality.

Corollary 3. Let B : [a, b] → R be a function of bounded variation such that (6)

holds, and let Υ be a continuous and nondecreasing map from [a, b] ⊂ R to an interval
I = [0,d] ⊂ Rk, d > 0. If Ψ is a continuous F.W.N.D.I. of convex type of order 3 on
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J = [0, 2d], then we have

∫ b
a
f(2d−Υ(t))dB(t)∫ b

a
dB(t)

−Ψ
(
2d− Ῡ

)
−
∫ b
a

Ψ(Υ(t))dB(t)∫ b
a
dB(t)

+ Ψ
(
Ῡ
)

≥

∣∣∣∣∣
∫ b
a
|Ψ(2d−Υ(t))−Ψ(Υ(t))−Ψ(2d− Ῡ) + Ψ(Ῡ)|dB(t)∫ b

a
dB(t)

−‖Ψ′+(2d− Ῡ)‖+ ‖Ψ′+(Ῡ)‖
∫ b
a
‖Υ(t)− Ῡ‖dB(t)∫ b

a
dB(t)

∣∣∣∣∣
where

Ῡ =

∫ b
a

Υ(t) dB(t)∫ b
a
dB(t)

.

Proof. It can be directly obtained from Theorem 10 by taking l = 1 in (8).

The analogues discrete result for the above corollary is given as

Theorem 12. Let q be a real n-tuple such that 0 ≤ Qi ≤ Qn, with Qn >

0 for i ∈ {1, . . . , n},x(i) ∈ [0,d]n ⊂ U with (d > 0) be such that

x(1) ≤ · · · ≤ x(n) or x(1) ≥ · · · ≥ x(n)

then for a continuous F.W.N.D.I. of convex type Ψ of order three on J = [0, 2d], we
have

∑n
i=1 qiΨ

(
2d− x(i)

)
Qn

−Ψ (2d− x̄)−
∑n

i=1 qiΨ
(
x(i)
)

Qn

+ Ψ (x̄) ≥∣∣∣∣∣
∑n

i=1 qi
∣∣Ψ (2d− x(i)

)
−Ψ

(
x(i)
)
−Ψ (2d− x̄) + Ψ (x̄)

∣∣
Qn

−‖Ψ′+ (2d− x̄) ‖+ ‖Ψ′+ (x̄) ‖
∑n

i=1 qi‖x(i) − x̄‖
Qn

∣∣∣∣ ,
where

x̄ =

∑n
i=1 qix

(i)

Qn

Remark 9. For k = 1, the Theorem 4.1 of [9] becomes a special case of our Theorem
12.
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Corollary 4. Let B : [a, b]→ R be a function of bounded variation such that (6) holds,
and let Ψ be a continuous F.W.N.D.I. of order 3 on [r,d] ⊂ Rk. Let 0 < p < d− r. If
Υ(t) : [a, b]→ [r,d− p] is a continuous and nondecreasing map, then∫ b

a
Ψ(p + Υ(t))dB(t)∫ b

a
dB(t)

−Ψ
(
p + Ῡ

)
−
∫ b
a

Ψ(Υ(t))dB(t)∫ b
a
dB(t)

+ Ψ
(
Ῡ
)

≥

∣∣∣∣∣
∫ b
a
|Ψ(p + Υ(t))−Ψ(Υ(t))−Ψ(p + Ῡ) + Ψ(Ῡ)|dB(t)∫ b

a
dB(t)

−‖Ψ′+(p + Ῡ)‖+ ‖Ψ′+(Ῡ)‖
∫ b
a
‖Υ(t)− Ῡ‖dB(t)∫ b

a
dB(t)

∣∣∣∣∣ ,
where

Ῡ =

∫ b
a

Υ(t) dB(t)∫ b
a
dB(t)

.

Proof. It is a straight forward result from Theorem 11 with l = 1 in (8).

The analogues discrete result for the above Corollary is given as

Theorem 13. Let w be a nonnegative n-tuple such that q be a real n-tuple such that
0 ≤ Qi ≤ Qn, with Qn > 0 for i ∈ {1, . . . , n},x(i) ∈ [r,d − p]n ⊂ U with
0 < p < d− r be such that

x(1) ≤ · · · ≤ x(n) or x(1) ≥ · · · ≥ x(n)

then for a continuous F.W.N.D.I. Ψ of convex type of order 3 on J = [r,d], we have∑n
i=1 qiΨ

(
p + x(i)

)
Qn

−Ψ (p + x̄)−
∑n

i=1 qiΨ
(
x(i)
)

Qn

+ Ψ (x̄)

≥

∣∣∣∣∣
∑n

i=1 qi
∣∣Ψ (p + x(i)

)
−Ψ

(
x(i)
)
−Ψ (p + x̄) + Ψ (x̄)

∣∣
Qn

−‖Ψ′+ (p + x̄) ‖+ ‖Ψ′+ (x̄) ‖
∑n

i=1 qi‖x(i) − x̄‖
Qn

∣∣∣∣
where

x̄ =

∑n
i=1 qix

(i)

Qn

We now give the improvement of the Levinson inequality in accordance to
Jensen-Mercer inequality.
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Theorem 14. Let B : [a, b] → R be a function of bounded variation such that (6)

holds, and let Υ be a continuous and nondecreasing map from [a, b] ⊂ R to an interval
I = [0,d] ⊂ Rk, d > 0. If Ψ is a continuous F.W.N.D.I. of convex type having order 3

on J = [0, 2d], then∫ b
a

Ψ(Υ(t))dB(t)∫ b
a
dB(t)

−
∫ b
a
f(2d−Υ(t))dB(t)∫ b

a
dB(t)

−Ψ
(
2d− Ῡ

)
+ Ψ

(
Ῡ
)

≥

∣∣∣∣∣
∫ b
a
|Ψ(L + M− 2d + Υ(t))−Ψ(L + M−Υ(t))−Ψ(2d− Ῡ) + Ψ(Ῡ)|dB(t)∫ b

a
dB(t)

+ −‖Ψ′+(2d− Ῡ)‖‖Ψ′+(Ῡ)‖
∫ b
a
‖L + M−Υ(t)− Ῡ‖dB(t)∫ b

a
dB(t)

∣∣∣∣∣ .
Where Ῡ = L + M −

∫ b
a

Υ(t) dB(t)∫ b
a
dB(t)

and L,M are two k − tuples in Usuch that

L ≤ Υ(t) ≤ M for all t ∈ [a, b].

Proof. Adopting the Theorem 10 and replacing Ψ(x) by Ψ(2d−x)−Ψ(x) in Theorem
6 we get the desired result.

The analogues discrete inequality of the above result is given as

Theorem 15. Let q be a real n-tuple such that 0 ≤ Qi ≤ Qn, with Qn >

0 for i ∈ {1, . . . , n} and let for i ∈ {1, . . . , n},x(i) ∈ [0,d]n ⊂ U with (d > 0) be
such that

x(1) ≤ · · · ≤ x(n) or x(1) ≥ · · · ≥ x(n)

then for a continuous F.W.N.D.I., Ψ of order three on J = [0, 2d], we have

∑n
i=1 qiΨ

(
x(i)
)

Qn

−Ψ (2d− x̄)−
∑n

i=1 qiΨ
(
2d− x(i)

)
Qn

+ Ψ (x̄)

≥

∣∣∣∣∣
∑n

i=1 qi
∣∣Ψ (L + M− 2d + x(i)

)
−Ψ

(
L + M− x(i)

)
−Ψ (2d− x̄) + Ψ (x̄)

∣∣
Qn

+ −‖Ψ′+ (2d− x̄) ‖‖Ψ′+ (x̄) ‖
∑n

i=1 qi‖L−M− x(i) − x̄‖
Qn

∣∣∣∣ ,
where x̄ = L + M −

∑n
i=1 qix

(i)

Qn
and L = (l1, . . . , lk) and M = (m1, . . . ,mk) are two

k-tuples related to U such that L ≤ x(i) ≤ M for all i ∈ {1, . . . , n}.
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Theorem 16. LetB : [a, b]→ R be a function of bounded variation such that (6) holds,
and let Ψ be a continuous F.W.N.D.I. of order 3 on [r,d] ⊂ Rk. Let 0 < p < d− r. If
Υ(t) : [a, b]→ [r,d− p] is a continuous and nondecreasing map, then∫ b

a
Ψ(Υ(t))dB(t)∫ b

a
dB(t)

−
∫ b
a

Ψ(p + Υ(t))dB(t)∫ b
a
dB(t)

−Ψ
(
p + Ῡ

)
+ Ψ

(
Ῡ
)

≥

∣∣∣∣∣
∫ b
a
|Ψ(L + M− p−Υ(t))−Ψ(L + M−Υ(t))−Ψ(p + Ῡ) + Ψ(Ῡ)|dB(t)∫ b

a
dB(t)

+ −‖Ψ′+(p + Ῡ)‖‖Ψ′+(Ῡ)‖
∫ b
a
‖L + M−Υ(t)− Ῡ‖dB(t)∫ b

a
dB(t)

∣∣∣∣∣ ,
where Ῡ = L + M −

∫ b
a

Υ(t) dB(t)∫ b
a
dB(t)

and L,M are two k − tuples in U such that

L ≤ Υ(t) ≤ M for all t ∈ [a, b].

Proof. Adopting Theorem 11 and replacing Ψ(x) by Ψ(p + x) −Ψ(x) in Theorem 6
we get the desired result.

The analogous discrete inequality of the above result is given as

Theorem 17. Let q be a real n-tuple such that 0 ≤ Qi ≤ Qn, with Qn >

0 for i ∈ {1, . . . , n} and let for i ∈ {1, . . . , n},x(i) ∈ [r,d − p]n ⊂ U with
0 < p < d− r be such that

x(1) ≤ · · · ≤ x(n) or x(1) ≥ · · · ≥ x(n)

then for a continuous F.W.N.D.I. Ψ of order three on J = [r,d], we have∑n
i=1 qiΨ

(
x(i)
)

Qn

−Ψ (p + x̄)−
∑n

i=1 qiΨ
(
p + x(i)

)
Qn

+ Ψ (x̄) ≥∣∣∣∣∣
∑n

i=1 qi
∣∣Ψ (L + M− p− x(i)

)
−Ψ

(
L−M− x(i)

)
−Ψ (p + x̄) + Ψ (x̄)

∣∣
Qn

+ −‖Ψ′+ (p + x̄) ‖‖Ψ′+ (x̄) ‖
∑n

i=1 qi‖L−M− x(i) − x̄‖
Qn

∣∣∣∣
where x̄ = L + M −

∑n
i=1 qix

(i)

Qn
and L = (l1, . . . , lk) and M = (m1, . . . ,mk) are two

k-tuples related to Usuch that L ≤ x(i) ≤ M for all i ∈ {1, . . . , n}.
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We now state improvement of the Levinson inequality by using Neizgoda’s inequality
of Theorem 7.

Theorem 18. Let (Υ,Σ, µ) be a measure space with positive finite measure µ and
consider the weight function ω : Υ → [0,+∞). Let Θ and Ψ be two nondecreasing
continuous mappings from [a, b] ⊂ R to an interval I = [0,d] ⊂ Rk, d > 0 such that
for each s ∈ Υ∫ b

x

Ψ(s, t) dB(t) ≤
∫ b

x

Θ(t)dB(t), for each x ∈ (a, b),

and
∫ b

a

Ψ(s, t) dB(t) =

∫ b

a

Θ(t) dB(t),

where B : [a, b] → R is of bounded variation. Moreover, let I =
⋃k
i=1(ai, bi),

Ic = [a, b]\I =
⋃k+1
i=1 [bi−1, ai] and |Ic| =

∑k+1
i=1 (ai − bi−1) where a = b0 ≤ a1 <

b1 < a2 < b2 < . . . < ak < bk ≤ ak+1 = b is a partition of the interval [a, b]. Then
for every continuous function ϕ with nondecreasing increments of convex type having
order 3 on J = [0, 2d], the following inequality holds.

1

|Ic|

(
1∫

Υ
ω(s)dµ(s)

∫
I

∫
Υ

ϕ(Ψ(s, t))dµ(s)dB(t)

)
− 1

|Ic|

(
1∫

Υ
ω(s)dµ(s)

∫
I

∫
Υ

ϕ(2d−Ψ(s, t))dµ(s)dB(t)

)
− ϕ

(
2d− Ῡ

)
+ ϕ

(
Ῡ
)

≥

∣∣∣∣∣ 1∫
Υ
ω(s)dµ(s)

[∫
Υ

ω(s)|ϕ

(
1

|Ic|

(∫ b

a

Θ(t)dB(t)−
∫
I

(2d−Ψ(s, t))dB(t)

))

− ϕ

(
1

|Ic|

(∫ b

a

Θ(t)dB(t)−
∫
I

Ψ(s, t)dB(t)

))
− ϕ

(
2d− Ῡ

)
+ ϕ(Ῡ)|dµ(s)

]
+ ‖ϕ′+(2d− Ῡ)‖

− ‖ϕ′+(Ῡ)‖

∫
Υ
ω(s)‖

(
1
|Ic|

(∫ b

a
Θ(t)dB(t)−

∫
I
(2d−Ψ(s, t))dB(t)

))
− Ῡ‖dµ(s)∫

Υ
ω(s)dµ(s)

∣∣∣∣∣∣ .
(17)

where

Ῡ =

(
1

|Ic|

(∫ b

a

Θ(t)dB(t)− 1∫
Υ
ω(s)dµ(s)

∫
I

∫
Υ

ω(s)Ψ(s, t)dµ(s)dB(t)

))
.

Proof. Following Theorem 10 and replacing ϕ (Ψ) by ϕ (2d−Ψ) − ϕ (Ψ) in the
Theorem 8 we get the desired result.
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Remark 10. The above inequality still holds for the following assumptions:
Let Θ : [a, b]→ U and f : Υ× [a, b]→ U be two nonincreasing continuous mappings
such that for each s ∈ Υ∫ x

a

Ψ(s, t) dB(t) ≤
∫ x

a

Θ(t) dB(t), for each x ∈ (a, b),

and
∫ b

a

Ψ(s, t) dB(t) =

∫ b

a

Θ(t) dB(t),

The discrete analogous inequality for the above result is given as

Theorem 19. Let there are m elements in á =
(
a(1), . . . , a(m)

)
in a way that every

a(j) ∈ I is a k-tuple for j ∈ {1, . . . ,m}. Also there be n ×m elements represented as
x(ij) ∈ [0,d]n ⊂ U with (d > 0) such that every x(ij) is a k-tuple for i ∈ {1, . . . , n},
j ∈ {1, . . . ,m} and all these x(ij) can be arranged in a n×m matrix X = (x(ij)). Let
q be a real n-tuple such that 0 ≤ Qi ≤ Qn, with Qn > 0 for i ∈ {1, . . . , n}. If
á majorizes each row of Υ, that is,

x(i.) =
(
x(i1), . . . ,x(im)

)
≺
(
a(1), . . . , a(m)

)
= á for each i ∈ {1, . . . , n},

then for a continuous F.W.N.D.I. Ψ of order three on J = [0, 2d], we have the inequality

∑n
i=1

∑m−1
j=1 qiΨ

(
x(ij)

)
Qn

+ Ψ (2d− x̄)−
∑n

i=1

∑m−1
j=1 qiΨ

(
2d− x(ij)

)
Qn

+ Ψ (x̄) ≥∣∣∣∣∣∣
∑n

i=1 qi

∣∣∣Ψ(∑m
j=1 a(j) −

∑m−1
j=1

(
2d− x(ij)

))
−Ψ

(∑m
j=1 a(j) −

∑m−1
j=1 x(ij)

)
−Ψ (2d− x̄) + Ψ (x̄)

∣∣∣
Qn

− ‖Ψ′+ (2d− x̄) ‖+ ‖Ψ′+ (x̄) ‖
∑n

i=1 qi‖
∑m

j=1 a(j) −
∑m−1

j=1 x(ij) − x̄‖
Qn

∣∣∣∣∣ ,
where

x̄ =
m∑
j=1

a(j) −
∑n

i=1

∑m−1
j=1 qix

(ij)

Qn

.

Theorem 20. Let (Υ,Σ, µ) be a measure space with positive finite measure µ and
consider the weight function ω : Υ → [0,+∞). Let Θ and Ψ be two nondecreasing
continuous mappings from [a, b] ⊂ R to an interval [r,d−p] ⊂ Rk, with 0 < p < d−r

such that for each s ∈ Υ∫ b

x

Ψ(s, t) dB(t) ≤
∫ b

x

Θ(t)dB(t), for each x ∈ (a, b),

and
∫ b

a

Ψ(s, t) dB(t) =

∫ b

a

Θ(t) dB(t),
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where B : [a, b] → R is of bounded variation. Moreover, let I =
⋃k
i=1(ai, bi),

Ic = [a, b]\I =
⋃k+1
i=1 [bi−1, ai] and |Ic| =

∑k+1
i=1 (ai − bi−1) where a = b0 ≤ a1 <

b1 < a2 < b2 < . . . < ak < bk ≤ ak+1 = b is a partition of the interval [a, b]. Then
for every continuous function ϕ with nondecreasing increments of convex type having
order 3 on J = [r,d] ⊂ Rk, the following inequality holds.

1

|Ic|

(
1∫

Υ
ω(s)dµ(s)

∫
I

∫
Υ

ϕ(Ψ(s, t))dµ(s)dB(t)

)
− 1

|Ic|

(
1∫

Υ
ω(s)dµ(s)

∫
I

∫
Υ

ϕ(p + Ψ(s, t))dµ(s)dB(t)

)
− ϕ

(
2p + Ῡ

)
+ ϕ

(
Ῡ
)

≥

∣∣∣∣∣ 1∫
Υ
ω(s)dµ(s)

[∫
Υ

ω(s)|ϕ

(
1

|Ic|

(∫ b

a

Θ(t)dB(t)−
∫
I

(p + Ψ(s, t))dB(t)

))

− ϕ

(
1

|Ic|

(∫ b

a

Θ(t)dB(t)−
∫
I

Ψ(s, t)dB(t)

))
− ϕ

(
p + Ῡ

)
+ ϕ(Ῡ)|dµ(s)

]
+ ‖ϕ′+(p− Ῡ)‖

− ‖ϕ′+(Ῡ)‖

∫
Υ
ω(s)‖

(
1
|Ic|

(∫ b

a
Θ(t)dB(t)−

∫
I
(p + Ψ(s, t))dB(t)

))
− Ῡ‖dµ(s)∫

Υ
ω(s)dµ(s)

∣∣∣∣∣∣ ,
(18)

where

Ῡ =

(
1

|Ic|

(∫ b

a

Θ(t)dB(t)− 1∫
Υ
ω(s)dµ(s)

∫
I

∫
Υ

ω(s)Ψ(s, t)dµ(s)dB(t)

))
Proof. Following Theorem 11 and replacing ϕ (f) by ϕ (p + f) − ϕ (f) in Theorem 8
we get the desired result.

Remark 11. The above inequality still holds for the following assumptions:
Let Θ : [a, b]→ U and f : Υ× [a, b]→ U be two nonincreasing continuous mappings
such that for each s ∈ Υ∫ x

a

Ψ(s, t) dB(t) ≤
∫ x

a

Θ(t) dB(t), for each x ∈ (a, b),

and
∫ b

a

Ψ(s, t) dB(t) =

∫ b

a

Θ(t) dB(t),

The analogous discrete inequality for the above result is given as:

Theorem 21. Let there are m elements in á =
(
a(1), . . . , a(m)

)
in a way that every

a(j) ∈ I is a k-tuple for j ∈ {1, . . . ,m}. Also there are n × m elements represented
as x(ij) ∈ [r,d − p]n ⊂ U with 0 < p < d − r such that every x(ij) is a k-tuple
for i ∈ {1, . . . , n}, j ∈ {1, . . . ,m} and all these x(ij) can be arranged in a n × m
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matrix X = (x(ij)). Let q be a real n-tuple such that 0 ≤ Qi ≤ Qn, with Qn >

0 for i ∈ {1, . . . , n}. If á majorizes each row of Υ, that is,

x(i.) =
(
x(i1), . . . ,x(im)

)
≺
(
a(1), . . . , a(m)

)
= á for each i ∈ {1, . . . , n},

then for a continuous F.W.N.D.I. Ψ of order three on J = J = [r,d], we have the
inequality

∑n
i=1

∑m−1
j=1 qiΨ

(
x(ij)

)
Qn

+ Ψ (p + x̄)−
∑n

i=1

∑m−1
j=1 qiΨ

(
p + x(ij)

)
Qn

+ Ψ (x̄) ≥∣∣∣∣∣∣
∑n

i=1 qi

∣∣∣Ψ(∑m
j=1 a(j) −

∑m−1
j=1

(
p + x(ij)

))
−Ψ

(∑m
j=1 a(j) −

∑m−1
j=1 x(ij)

)
−Ψ (p + x̄) + Ψ (x̄)

∣∣∣
Qn

− ‖Ψ′+ (p + x̄) ‖+ ‖Ψ′+ (x̄) ‖
∑n

i=1 qi‖
∑m

j=1 a(j) −
∑m−1

j=1 x(ij) − x̄‖
Qn

∣∣∣∣∣ ,
where

x̄ =
m∑
j=1

a(j) −
∑n

i=1

∑m−1
j=1 qix

(ij)

Qn

.
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