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Abstract

In this paper, we examine the common fixed point theorem of weakly
compatible mapping and weak** commutative satisfying the implicit relation
in strong M- fuzzy metric space.
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1. INTRODUCTION

Zadeh(1965) [9]introduced the fuzzy set. Kramosil and Michalek(1975)
[3]introduced the concept of fuzzy metric space. Popa (1997,1999) [5][6]introduced
some fixed point theorems satisfying certain implicit relation. Dhage (1992)[1]
introduced the notion of generalized metric or D-metric space and proved several
fixed point theorem.

Sedghi and Shoba (2006)[7] gave D* metric space as modification of the definition of
D metric introduced by Dhage and also defined M- fuzzy metric space by using the
concept of D* metric. Gregori et al (2010) [2] introduced strong fuzzy metric space
and proved a fixed point theorem.

In this paper, we obtained fixed point theorem by using implicit relation in strong M-
fuzzy metric space.
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2. PRELIMINARIES
Definition: 2.1[9]
A fuzzy set A in X is a function with domain X and values in [0,1]

Definition: 2.2[8]

A binary operation *: [0,1] x [0,1] — [0,1] is a continuous t-norm if * is satisfying
the conditions:

i. * is commutative and associative,
ii.  *is continuous,
iii. a*l=aforallae]0,1],

Iv.  a*b < c*d whenever a<c and b<d, and a,b,c,d € [0,1].

Definition:2.3[7]

A 3-tuple (X,M,*) is called a M-fuzzy metric space, if X is an arbitrary (non-empty)
set, * is a continuous t-norm and M is a fuzzy set on X3 x (0,00 ) satisfying the
following condition for each x,y,z,a € X and t,s >0

)M(x,y,z,t) >0

(iM(xy,z,t) = 1, if and only if x=y=z

@1iM(x,y,z,t) = M(p{x,y,z},t) where p is a permutation function
(iv)IM(x,y,a,t) * M(a,z,z,5) < M(X,y,z,t+s)

(VM(x,y,z,.) : [0,0) = [0,1] is continuous.

Remark:2.4[7]

Let (X,M,*) be a M-fuzzy metric space. Then for every t > 0 and for every x,y € X we
have M(x,y,y,t) = M(x,x,y,t).

Definition:2.5[2]

Let (X,M,*) be a M-fuzzy metric space. The M-fuzzy metric is said to be strong
(non-Archimedean) if it satisfies M(x,y,z,t) = M(x,y,a,t)*M(a,z,z,t) for each x,y,z € X
and each t>0.
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Definition:2.6[7]

Let (X,M,*) be a M-fuzzy metric space, for t>0 the open ball BM(x,r,t) with centre
x € X and radius 0<r<1 is defined by BM(x,r,t) = {yeX:M(x,y,y,t)>1-r}. A subset A
of X is called open set if for each x € A there exists t>0 and 0<r<1, such that
BM(x,r,t) < A.

Definition:2.7[7]

A sequence {x,} in X converges to X if and only if M(x,,x,t) =1 as n— o for each
t>0. It is called a Cauchy sequence if for each 0<e<land t>0 there exists n, € N such
that M(x,,, x,,, xn,t) > 1-€ for each nm > n, the M-fuzzy metric space (X,M,*) is
said to be complete if every cauchy sequence is convergent.

Lemma:2.8[7]

Let (X,M,*) be a M-fuzzy metric space. Then M(x,X,y,t) is non — decreasing with
respect to t for all x,y,z in X.

Lemma:2.9[7]

Let (X,M,*) be a M-fuzzy metric space. Then M is continuous function on X3 x
(0,%0).

Definition:2.10[7]

Let F and G be two self maps of (X,M,*) then F and G are said to be weakly
compatible if there exists v in X with Fv = Gv implies FGv=GFv.

Definition:2.11[4]

Two self mappings A and S of fuzzy metric space (X,M, *) is called weak**
commuting

if A(X) c S(X) and for any x € X,

M(A2S52x,52A2X,t) =M(A2Sx, S2AX,t) =
M(AS?2x,SA%x,t) =M(ASX,SAX,t) >M(42X, S?X,t)
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Remark:2.12[4]

If A and S are idempotent maps i.e. A% = A and S? = S then weak** commutative
reduces to weak commuting pair of (A,S).

3. MAIN RESULTS
Implicit Relation:1

Let @ be the set of all real continuous functions F: [0,1]® — R is continuous function
such that

(F1): For u,v > 0 F is non-decreasing in the fifth and sixth variable
(F1a) : F{v(t), u(t), v(t), u(t), u(t) *v(t),1} =0
then u(t) > u(t) * v(t)
(F2): F{u(t),u(),u() ,u),1,1}=0
F{1,u(t),1 ,u(),u) ,u®}=0
F{u(t) ,u(t),1 ,u®),u(t),1}=0
Thenu(t) > 1
Example:
Define f(ty,t2,t3ta ts t6) = 2t1 + 5tz -2t5 -4t, -t5 -t +1
Thenfe .

Theorem:3.1

Let (X,M,*) be a strong M-fuzzy metric space and (A,S) and (B,T) be self maps with
continuous t-norm * defined by a*b = min(a,b) a,b € [0,1]

F{M(Ax,By,Tz,t), M(Ax,Sy,Tz,t), M(By,Sy,Tz,t), M(Ax,Tz,Sy,t), M(By,Ay,Tz,),
M(Bx,Ax,Tz,t)} =0

e AXcSXandBX cTX

e (A,S)and (B,T) are weakly compatible
Then A,B,S,T have common fixed point.
Proof:

Let x, € X be any arbitrary point. Since A (X) c S(X) and B(X) c T(X) there exists a
point  x; , x, € X such that Ax, = Sx; , Bx; = Tx, inductively, we get a
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sequence {y,,} as
Yon = AXon = SXontt Yon+1 = Bxani1 = Txongz n=12...
Let Mz = M(Yan, Y2n+1s Yansz o 1) < 1foralln,
PULX =X2p-1,Y = X2n + Z= Xon41
Substituting in the inequality, we get

F{M(Ax;p,_1, Sx2n—1, TXon41,1) , M(AX2p_1,BX250,Sxpp041.1)
M(SxZn—l!AxZn—listn—lit) ' I\/I(-I_-X'2n+1l AxZn—I! BxZn!t) ' M(Ax2n+1!Bx2nl SxZn—llt) '
M(Txzp 41, Bxop, Sxon41,)} = 0

FIM(V2n-1, Y2n-2, Y2n ) M(Yan-1,Y2n: Yon ) M(Van-2, Y2n-1.Y20 1) MVan, Yan-1,Y2n.0),
M(Yzn+1.Y2n Yon-2:):MV2n Yon, Y2n )} 2 0

Here (X,M,*) is strong M-fuzzy metric space ,then

FIM(V2n-1, Y2n-2, Y2n ) M(Yan-1,Y2n: Yon ) MVan-2, Y2n-1.Y20 1) MV2n, Yan-1,Y2n:0),
MV2n+1. Y20 Yan-10)*MVan-1, Yan-2, Yan-2.).MYan, Yon, Y2n )} = 0

F{M2n-2 s Man-1, Man—2 , Man-1, Man-1*Mp—» , 1} = 0

By using (Fia)

Thus, we have My, > My, _q % Myy_p =--=--mmmm--= 1)
Consider a*b =min{a,b}
Claim:1

Mzn-1>Mzp-g

which is not possible.

Claim:2

M,,_1 > M, _,. Therefore M,, > M,,_;

Thus {M,,,n = 0} is an increasing sequences of positive real numbers in [0,1] and
therefore tends to limit L < 1. We claim L =1 for L<1 taking limit in (1), we get L<L
which is a contradiction .

Therefore L =1

For any positive integer r

M(Yn, Ynr Yntr:l) = M(Yn, Yn, Vo1, /0D* M(Ynt1, Yns1 Yntazr £/1)
*.. -*M(Yn+r—1v Yn+r-1s Yn+r1t/r)

> (1-€) r times = (1-€)
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M(Yn’ YH’ Yn+r1t) > 1'6

For all n,s > n, where n, € N. Thus, {y,} is a Cauchy sequence in X. Since X is
complete there is a point p € X such that y,, —p. Thus subsequence

{Ax,, }{Sx,,-1 1 {Bx,,},{Tx,,} also converges to p. Since A(X) c S(X) and
B(X) c T(X) then there must exist u,v € X such that p=Sv =Tu.

Putx=v.,y =x,,,Z = Xon41

F{M(AV,SV,Tx5,+1,1) , M(AV,Bx5,,SX5041,1) , M(SV,AV,Sv,t) , M(TX5,41,AV,Bx,,,1)
’ M(AX2n+1’BX2n’SV’t) ’ M(TX2n+11BX2nisX2n+1’t)} = 0

F{M(Av,p,p.,t) , M(Av,p,p.t) , M(p,Av,p,t) , M(p,Av,p.t) , M(p,p.p.t) , M(p,p,p.)} = O
F{M(Av,p,p,t) , M(Av,p,p,t) , M(p,Av,p,t) , M(p,Av,p,t), 1,1} >0
By using F2 which implies M(Av,p,p,t) > 1
Av=p
Therefore Av =p = Sv
Putx=v,y=u,z=x541

F{M(AV,SV,TX,,+1,t) , M(AV,BU,SX;,41,t) , M(SV,Av,Sv,t) , M(Tx,,4+1,AV,Bu,t) ,
M(Ax,,41,BU,SV,t) , M(TxX5,41,BU,SX5541,0)} =0

F{M(p.p.p.t) , M(p,Bu,p,t) , M(p,p,p.t) , M(p,p,Bu,t) , M(p,Bu,p,t) , M(p,Bu,p,t)} = 0
F{1,M(p,Bu,p,t), 1, M(p,p,Bu,t), M(p,Bu,p,t) , M(p,Bu,p,t)} >0
By using F2 which implies M(Bu,p,p,t) > 1
Bu=p
Therefore Bu=p =Tu
Combine p =Av =Sv=Bu =Tu
Since (A,S) and (B,T) are weak compatible. Therefore ASv =SAv = Ap =Sp
BTu=TBu =Bp=Tp
Hence p is a coincidence point of A,B,Sand T
Put X==xn-1,Y=P,Z=Xzn41

F{M(AXZH—I’SXZH—l!TX2n+1!t) ' M(AXZH—lin!SX2n+1!t) ’
M(Sxzn-1,A%3n-1,9%2n-1,t) » M(TX2n4+1,A%0-1,Bp,1) , M(Ax3541,BP,SXon-1.1) ,
M(TX2n+1!Bp!SX2n+1’t) } = 0

FHM(p.p.p.t) . M(p,Tp,p.t) , M(p,p.p.t) , M(p.p,Tp.t) , M(p,Tp,p.t) , M(p, Tp,p,1)} = 0
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F{l’ M(p’Tp’p’t) 1 1 1 M(p’p7Tp7t) 1 M(p’Tp’p’t) 1 M(p7Tp7p’t)} 2 0
By using F2 which implies M(Tp,p,p,t) > 1

Tp=p=Bp
PUutX =p.y =Xzn , Z = Xan+1

F{M(Apisp’TX2n+1lt) ’ M(ApIBX2nisx2n+1!t) ' M(Sp,Ap,Sp,t) ' M(TX2n+1!Ap’BX2n!t)
' M(AX2n+1’BX2n’Sp’t) ’ M(TX2n+1vBX2n’SX2n+1’t) } 2 O

F{M(Sp,Sp,p.t) , M(Sp,p,p,t) , M(Sp,Sp,Sp,t) , M(p,Sp,p.t) , M(p,p,Sp.t) ,
M(p,p,p,t)} =0

F{M(Sp,Sp.p.t) , M(Sp,p.,p.t) . 1, M(p,Sp,p.t) , M(p.p,Sp.t) , 1}= 0
By using F2 which implies M(Sp,p,p,t) = 1

Sp=p=Ap

Similarly, Ap=Sp=Bp=Tp

Hence p isa common fixed point of A,B,Sand T.

Implicit Relation:2

Let @ be the set of all real continuous functions F: [0,/]° = R is continuous function
such that

(F1): For u,v >0 F is non-decreasing in the fifth and sixth variable
(F1a) : F{u(t) , v(t) ,u(t), v(t), 1, u(t) *v(t) } =0
then u(t) > u(t) * v(t)
(F2): F{u®),1,u) ,u),1,1}=0
F{ut),1 ,u(®),1,u() ,u®}=0
F{u(t) ,u(), u®),1,1,u() }=0
F{u(®) ,u®), u),1,u®),u®}3}=0
Thenu(t) > 1

Theorem:3.2

Let (X,M,*) be a complete strong M-fuzzy metric space and (A,S) and (B, T) are
weak** commuting pairs of self maps on X satisfying

AX € SXand BX € TX
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F{M(A%x,B2y,T?zt) , M(S2x, T?x, S?z,t) , M(A%x,B%y, S?z,t) , M(A%x, S?x, S?x,t) ,
M(B?y, A%y, A%y,t) , M(A%z, B2y, S2x,t)} >0

For all x,y,z € X ,t >0 then A,B,S and T have a unique common fixed point .

Proof:

Let x, € X be any arbitrary point. Since A (X) c S(X) and B(X) < T(X) there exist a
point  x, , x, € X such that A%x, = S?x, , B%x; = T?x, inductively, construct
sequence {y,,} as
Yan = A%Xon = S*Xon41 Van+1 = B?Xons1 = T?Xppy, n=12...

Let My, = M(Yzn Yan+1s Yansz o 1) < 1foralln,
PU'[ X = XZn—l y y = in ] Z= X2n+1

F{M(AZXZn—lf BZXva T2X2n+1vt) ) M(TZXZn—lv SZXZn—lf SZX2n+1’t) ;
M(A%X;n_1, B®Xon, S?Xans1:1) s M(A?Xan_1 , S?Xan-1, S?Xan-1.1) ,
M(BZXZH! AZXZn! A2X2n’t) ’ M(A2X2n+1! B2X2n’ SzXZn—lit)} = 0

F{M(y2n-1, ¥Y2n: Y2n:t) » M(Y2n-2, Y2n-2, Y2n:t) » M(Y2n-1: Y2n, ¥Y2n:l) ,

M(Y2n-1, Y2n-2: Y2n-2:1), M(¥2n, Y2n: Y2n:) » M(Y2n+1: Y2n, Y2n-2.1) }=0

Using strong M-fuzzy metric space

F{M(¥2n-1, ¥2n: Y2n:t) » M(Y2n-2, Y2n-2, Y2n:t) » M(Y2n-1: Y2n, Y2n:l) ,

M(Y2n-1: Y2n-2: Y2n-2:1): 1, M(Y2n+1, Y2n, Yan-1,.)*M(¥2n-1, Y2n-2, Y2n-2:1)} = 0
F{MZn—ll MZn—Z! MZn—lf M2n—211! MZn—l * MZn—Z} 2 O

By using Fia

Thus, we have My, _q > Myp_q % Moy _j ==--====------ )
Consider a*b = min{a,b}

Claim:1

Man—1 > Myp_q

which is not possible.
Claim:2

Man-1 > Myp_s.
Therefore M,, > M,,_,

Thus{M,,,n = 0} is an increasing sequence of positive real numbers in [0,1] and
therefore tends to limit L < 1. We claim L =1 for L<1 taking limit in (2), we get L<L
which is a contradiction .
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Therefore L =1

For any positive integer r

M(Ynl Yn, YH+rrt) = M(Yn’ Yn: Yn+1lt/r) * M(Yn+1’ Yn+1s Yn+21t/r)
Hooenn *M(YH+r—1v Yn+r-1 Yn+r’t/r)

> (1-€) r times = (1-€)
M(Ynl Yno Yn+r,t) >1-€

For all n,s = ny, where ny, € N. Thus, {y,} is a Cauchy sequence in X. Since X is
complete there is a point p € X such that y,, —p. Thus subsequence
{Ax,, }{Sx2n-1 1 {Bx,n}.{Tx,,} also converges to p.

Case:l

S(X) is complete
Take p € S(X) there exist v € X such that p = S?v
PULX=V,Y=Xy,,Z=Xon41

F{M(AZV!BZXZn’T2X2n+1’t) ’ M(SZV! TZX2nl SZX2n+1’t) ’ M(AZV! BZXZn! SZX2n+1!t) '
M(A%v, S?v, S2v,t) , M(B?X,,, A%Xo, A%X50,1) , M(A%X5041, B2X5p, S2V,1)} >0

F{M(A2%v,p,p,t) , M(p,p,p,t) , M(A2%v,p,p,t) , M(A%v,p,p,t), 1,1} >0
By using (F2)

M(A?%v,p,p,t) =1 which implies A%v = p

P=A%v=S%v

Using (A,S) is weak ** commuting

M(S2A%v, A%2S2v,t) > M(S2Av, A2Sv,t)>M(SA2v,AS?v,t) >M(SAV,ASv,t)
>M(S?v, A2v,t)

which implies S2A2%v = A2S%y
S?p = A%p
PUtX:p!y:XZH!Z:X2n+1

F{M(Azp!BZXZH’T2X2n+1’t) ’ M(Szp! T2X2nl SZX2n+1’t) ’ M(Azpr BZXZn! SZX2n+1rt) '
M(Azp! SZp' Szp!t) ' M(BZXZHI A2X2n! AZXZn!t) ' M(A2X2n+1! BZXan Szp!t)} 20

F{M(A%p,p,p,t) , M(A%p,p,p,t) , M(A%p,p,p,t) , 1, 1, M(p,p, A%p)} >0
By using (F2)
M(A%p,p,p.t) =1 which implies A%p = p
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Hence p = A%p =S2p

Case:ll

T(X) is complete

Take p € T(X) there exist v € X such that p = T?v
PUtX=%sp-1 ,Y=V,Z=Xon41

F{M(A%*X;,_1,B?V,T%Xzn41,t)  M(S*X2n-1, T2V, $?*X2n41,1) |
M(A%x,,_1, B2V, S%Xo041,1) » M(A%X5,_1, S%Xon_1, S%Xon_1,1) » M(B2v, A?v, A%v 1),
M(A%X,, 41, B%v, S2x,,_1,0)} =0

F{M(p, B®v ,p,t) , M(p,p,p,t) , M(p, B?v ,p,t) , M(p,p,p.t) , M(B?Vv,p,p,t),
M(p, B2v ,p,t) } >0

F{M(p, B2v ,p,t), 1, M(p, B?v ,p,t) , 1, M(B2v,p,p,t) , M(p, B?v p,t) } =0
By using (F2)

M(B2v,p,p,t) =1 which implies B2v =p

P=B2v=T?%

Using (B,T) is weak ** commuting

M(T2B2v, B2T2v,t) > M(T2Bv, B2Tv,t)>M(TB2v,BT2v,t) >M(TBv,BTv,t)
>M(T2v, B2v,1)

which implies T?B2v = B2T?v
T?p = B?p
PULX =Xzn-1,Y =P, Z=Xon41

F{M(AZXZn—lszva2X2n+1vt) ) M(SZXZH—I ’sza SZX2n+1’t) )
M(A*Xon-1 , B?D, S?Xpn11,t) » M(A*Xp0_1 , $%Xon_1 , S*Xan-1 1) ,
M(sz’ Azp! Azpvt) ) M(A2X2n+11 sza SZXZn—l 1t)} 20

F{M(p, B%p ,p,t) , M(p, BZp p,t) , M(p, B?p p,t) , 1, M(B?p,p,p,t) , M(p, BZp,p,t)} =0
By using (F2)

M(B2p,p,p,t) =1 which implies BZp = p

Hence p = B%p =T?p

Putx=Ap,y=p,z=p

F{M(A?(Ap), B?p, T?p,t) , M(S*(Ap), T?p, S*p,t) , M(A?(Ap), B?p, S?p.1),
M(A?(Ap), S*(Ap), S*(Ap).t) , M(B?p, A*p, A%p,t) , M(A?p, B?p, S*(Ap).1)} =0
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F{M(Ap.,p.,p.t) , M(Ap,p,p.t) , M(Ap,p.p.f) . 1,1,M(Ap,p,Ap,1)} =0

Ap=p

Similarly ,show that Bp=p ,Sp=pand Tp=p

P=Ap=Bp=Sp=Tp

p is common fixed point of A,B,Sand T.

Uniqueness:

Putx=p,y=p,z=q

F{M(p.p.a.t) , M(p.p.q.1) , M(p.p.q.t) , M(p.p.p.t) , M(p,p.p.t) , M(q,p.p.1)} =0
F{M(p.p.q.,t) , M(p,p.a,t) , M(p,p,a.t) , 1,1, M(a,p,p,)} =0

M(p,p.a,t) =1
Therefore p=q
Hence p is a unique fixed point of A,B,Sand T.

Theorem:3.3

Let (X,M,*) be complete strong M-fuzzy metric space. Let A,B,S and T be self maps
satisfying the following condition

A(X) €S(X) and B(X) € T(X)
(A,S) and (B,T) are weak compatible pair

M(AX,By,Sz,t) = min{M(AX,Ty,Tz,t) , M(Ax,Sx,Sz,t) , M(Bz,Tz,Sx,t) ,
M(By,Sz,Tz,t)}

Then A,B,S and T have a unique fixed point .
Proof:

Let x, € X be any arbitrary point. Since A (X) c S(X) and B(X) c T(X) there exist a
point  X;, X, € X such that Ax, = Sx; , Bx; = Tx, inductively, we get a sequence

{YZn} as

Yan = AXpp = SXany1 Yan+1 = BXany1 = TXony2 n=1.2...
Let My, = M(Yzn Yan+1s Yansz o 1) < 1foralln,

PUtX =Xpp-1,Y =X2n » Z = Xon41
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Substituting in the inequality, we get

M(AX2n-1,BXzn ,SXant1,t) = MIn{M(AX54-1,TX2n TX2n41.t)
M(AXzn-1,5%2n-1,5%2n+1:t) » M(BXan+1, TX2n41,9%2n-1,1) ,
M(Bx2n,SXon+1: TX2n+1,0)}

M(Y2n+1: Y2n: Y2n ©) = Min {M(y2n-1, Y2n-1, Y2n:1) » M(Y2n-1, Y2n-2, Y2n:1) ,
M(Y2n+1’ YZn! YZn—th) ' M(YZn’ YZn! YZn’t)

Using strong M- Fuzzy metric space

M(Y2n-1: Y2n: Yan, £) = Min {M(y2n_1, Yan-1, Y2n:t) » M(Y2n-1, Y2n-2, Y2n.1) ,
M(Y2n+1: Y2nr Y2n-1.0*M(Y2n-1, ¥2n-2, Y2n-2.1) » M(¥2n, Y2n: Y2n:t)

Mjp—1 = min{Mp,_1, Mpy_p, My _1*Myp 5,1}

Thus, we have My,_q > Myp_q * My, -=-==----=--=- ©)
Consider a*b =min{a,b}
Claim:1

Mzn-1 > Mzp-1

which is not possible.
Claim:2

Man-1> Mzp—2.
Therefore My, > M,,_4

Thus{M,,,n = 0} is an increasing sequence of positive real numbers in [0,1] and
therefore tends to limit L < 1. We claim L =1 for L<1 taking limit in (3), we get L<L
which is a contradiction .

Therefore L =1

For any positive integer r

M(Yn’ Yn, YH+rvt) = M(Yna Yn Yn+1’t/r) * M(Yn+1’ Yn+1s Yn+21t/r)
RERRRRD *M(Yn+r—1v Yn+r-1 Yn+rat/r)

> (1-€) r times = (1-€)
M(Yn: Y, Ynerot) > 1-€

For all n,s > ny where ny € N. Thus, {y,} is a Cauchy sequence in X. Since X is
complete there is a point pe X such that y, —p. Thus subsequence
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{Ax,0 1 {Sxon-1 1 {Bx2n}{Tx,n} also converges to p. since A(X) c S(X) and
B(X) c T(X) then there must exist u,v € X such that p=Su=Tv.

Putx=u,y =x,,,Z=Xopn41

M(AU,Bx5,,SX5n4+1,1) = MIin{M(AU, TX,,, TX2n4+1,t) » M(AU,SU,Sx,,41,1) ,
M(BX2n+1, TX2n+1,5Ut) , M(BX2n,SX2n+1, TXan+1,0)}

M(Au,p,p,t) = min{M(Au,p,p.t) , M(Au,p.p.t) , M(p,p.p.t) , M(p,p.p.0)}
M(Au,p,p,t) = min{M(Au,p,p,t) , M(Au,p,p,t) ,1,1}

M(Au,p,p,t) = M(Au,p,p,t) which is a contradiction

Au =p

Hence Au =p =Su

Putx=u,y=Vv,Z=X5p41

M(AU,BV,SXZIH_l,t) = min{M(AU,TV,TX2n+1,t) y M(AU,SU,SXZn_l_l,t) y
M(Bxzn+1:TX2n+1,9U,t) , M(BV,SX5p 41, TX2n41,0)}

M(p,Bv,p,f) = min {M(p,p.p.t) , M(p,p.p.t) , M(p,p.p.t) , M(Bv,p.p.0)}
M(p,Bv,p,t) = min {1,1,,1, M(Bv,p,p,t)}

which is a contradiction

Bv=p=Tv

Since (A,S) and (B, T) are weak compatible, ASu=SAu = Ap =Sp
BTv=TBv =Bp=Tp

Hence p is a coincidence point of A,B,Sand T
Putx=u,y=p,2=Xsn41

M(AU,Bp,Sx55n41,t) = Min{M(AU,Tp,TX5n4+1,t) ,» M(AU,SU,Sx,,41,1) ,
M(Bx2n+1, TX2n+1,5U,t) , M(BP,SX2n+1, TX2n 41,0}

M(p,Bp.p,t) = min {M(p,Bp,p,t) , M(p,p,p.t) , M(p,p,p.t) , M(Bp,p,p,0)}
M(p,Bp,p.t) = min {M(p,Bp,p.f) , 1,1, M(Bp,p,p.0)}

M(p,Bp,p,t) = {M(p,Bp,p,t) which isa contradiction

Bp=p=Tp

Similarly, Ap = p =Sp

p is the common fixed point.
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Uniqueness:
Putx=p,y=p,z=w

M(Ap,Bp,Sw,t) = min{M(Ap,Tp,Tw,t) , M(Ap,Sp,Sw,t) , M(Bw,Tw,Sp,t) ,
M(Bp,Sw,Tw,t)}

M(p,p,w,t) = min{M(p,p,w,t) , M(p,p,w,t) , M(w,w,p,t) , M(p,w,w,t)}
M(p,p,w,t) = M(p,p,w,t) which is contradiction
p=w

p is the unique fixed point of A,B,Sand T.

Corollary:3.4

Let (X,M,*) be complete strong M-fuzzy metric space. Let A,B,S and T be self maps
satisfying the following condition

A(X) €S(X) and A(X) < T(X)

(A,S) and (A, T) are weakly compatible

M(AX,Ay,Sz,t) = min{M(Ax,Sx,Sz,t) , M(Az,Tz,Sz,t) , M(Ay,Sz,Sx,t)}
Then A,S and T have a unique fixed point .
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