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Abstract 

In this paper, we examine the common fixed point theorem of weakly 

compatible mapping and weak** commutative satisfying the implicit relation 

in strong M- fuzzy metric space. 
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1. INTRODUCTION 

Zadeh(1965) [9]introduced  the fuzzy set. Kramosil and Michalek(1975) 

[3]introduced the concept of fuzzy metric space. Popa (1997,1999) [5][6]introduced  

some fixed point theorems satisfying certain implicit relation. Dhage (1992)[1] 

introduced the notion of generalized metric or D-metric space and proved several 

fixed point theorem. 

Sedghi and Shoba (2006)[7] gave D* metric space as modification of the definition of 

D metric  introduced by Dhage and also defined M- fuzzy metric space by using the 

concept of D* metric. Gregori et al (2010) [2] introduced strong fuzzy metric space 

and proved a fixed point theorem. 

In this paper, we obtained fixed point theorem by using implicit relation in strong M-

fuzzy metric space. 
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2. PRELIMINARIES 

Definition: 2.1[9] 

A fuzzy set A in X is a function with domain X and values in [0,1] 

 

Definition: 2.2[8] 

A binary operation ∗: [0,1] × [0,1] → [0,1] is a continuous t-norm if  * is satisfying 

the conditions: 

i. *  is  commutative and associative, 

ii. * is continuous, 

iii. a*1 = a for all a ∈ [0,1], 

iv. a*b ≤ c*d whenever a≤c and b≤d, and a,b,c,d ∈ [0,1].            

 

Definition:2.3[7] 

A 3-tuple (X,M,*) is called a M-fuzzy metric space, if X is an arbitrary (non-empty) 

set, * is  a continuous   t-norm and M is a fuzzy set on 𝑋3 × (0,∞ ) satisfying the 

following condition for each x,y,z,a ∈ X and t,s >0     

i)M(x,y,z,t) > 0 

(ii)M(x,y,z,t) =  1, if and only if x=y=z 

(iii)M(x,y,z,t) = M(p{x,y,z},t) where p is a permutation function 

(iv)M(x,y,a,t) ∗ M(a,z,z,s) ≤ M(x,y,z,t+s) 

 (v)M(x,y,z,.) : [0,∞) → [0,1] is continuous. 

 

Remark:2.4[7] 

Let (X,M,*) be a M-fuzzy metric space. Then for every t > 0 and for every x,y ∈ X we 

have M(x,y,y,t) = M(x,x,y,t). 

 

Definition:2.5[2] 

Let (X,M,*) be a M-fuzzy metric space. The M-fuzzy metric  is said to be strong 

(non-Archimedean) if it satisfies M(x,y,z,t) ≥ M(x,y,a,t)*M(a,z,z,t) for each x,y,z ∈ X 

and each t>0. 
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Definition:2.6[7] 

Let  (X,M,*) be a M-fuzzy metric space, for t>0 the open ball BM(x,r,t) with centre 

x ∈ X and  radius 0<r<1 is defined by BM(x,r,t) = {y∈X:M(x,y,y,t)>1-r}. A subset A 

of X is called open set if for each  x ∈ A there exists t>0 and 0<r<1, such that 

BM(x,r,t) ≤ A. 

 

Definition:2.7[7] 

A sequence {𝑥𝑛} in X converges to X if and only if  M(𝑥𝑛,x,t) →1 as n→ ∞ for each 

t>0. It is called a Cauchy sequence if for each 0<∈<1and t>0 there exists 𝑛0 ∈ N such 

that M(𝑥𝑛, 𝑥𝑛, 𝑥𝑚,t) > 1-∈ for each n,m ≥  𝑛0 the M-fuzzy metric space (X,M,*) is 

said to be complete if every cauchy sequence is convergent. 

 

Lemma:2.8[7] 

Let (X,M,*) be a M-fuzzy metric space. Then M(x,x,y,t) is non – decreasing with 

respect to t for all x,y,z in X. 

 

Lemma:2.9[7] 

Let (X,M,*) be a M-fuzzy metric space. Then M is continuous function on 𝑋3 × 

(0,∞). 

 

Definition:2.10[7] 

Let F and G be two self maps of (X,M,*) then F and G are said to be weakly 

compatible if there exists v in X with  Fv = Gv implies FGv=GFv. 

 

Definition:2.11[4] 

Two self mappings A and S of fuzzy metric space (X,M, * ) is called weak** 

commuting 

if A(X) ⊂ S(X) and for any x ∈  X, 

M(𝐴2𝑆2x,𝑆2𝐴2x,t) ≥M(𝐴2Sx, 𝑆2Ax,t) ≥ 

M(A𝑆2x,S𝐴2x,t) ≥M(ASx,SAx,t) ≥M(𝐴2x, 𝑆2x,t) 
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Remark:2.12[4] 

If A and S are idempotent maps i.e. 𝐴2 = A and 𝑆2 = S then weak** commutative 

reduces to weak commuting pair of (A,S). 

 

3.  MAIN RESULTS 

Implicit Relation:1 

Let Φ be the set of all real continuous functions F: [0,1]6 → R is continuous function 

such that 

(F1): For u,v > 0 F is non-decreasing in the fifth and sixth variable 

(F1a) : F{v(t) , u(t) , v(t) , u(t) , u(t) * v(t) , 1} ≥ 0 

then  u(t) ≥ u(t) * v(t) 

(F2):  F{u(t) , u(t) , u(t)  , u(t) , 1 , 1}≥ 0 

         F{1 , u(t) , 1  , u(t) , u(t)  , u(t) }≥ 0 

         F{u(t)  , u(t) , 1  , u(t) , u(t) , 1 }≥ 0 

Then u(t) ≥ 1 

Example: 

Define f(t1,t2,t3,t4,t5,t6) = 2t1 + 5t2 -2𝑡3 -4𝑡4 -𝑡5 -𝑡6 +1  

Then f ∈ Φ . 

 

Theorem:3.1 

Let (X,M,*) be a strong M-fuzzy metric  space and (A,S) and (B,T) be self maps with 

continuous t-norm * defined by a*b = min(a,b) a,b ∈ [0,1] 

F{M(Ax,By,Tz,t), M(Ax,Sy,Tz,t), M(By,Sy,Tz,t), M(Ax,Tz,Sy,t), M(By,Ay,Tz,t), 

M(Bx,Ax,Tz,t)} ≥ 0  

 AX ⊆ SX and BX  ⊆ TX 

 (A,S) and (B,T) are weakly compatible 

Then A,B,S,T have  common fixed point. 

Proof: 

Let 𝑥0 ∈ X be any arbitrary point. Since A (X) ⊂ S(X) and B(X) ⊂ T(X) there exists a  

point     𝑥1 , 𝑥2 ∈ X such that A𝑥0 = S𝑥1  , B𝑥1 = T𝑥2   inductively, we get a 
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sequence {𝑦2𝑛} as                           

             𝑦2𝑛 = A𝑥2𝑛 = S𝑥2𝑛+1       𝑦2𝑛+1 = B𝑥2𝑛+1 = T𝑥2𝑛+2   n = 1,2…  

                   Let   𝑀2𝑛 = M(𝑦2𝑛, 𝑦2𝑛+1, 𝑦2𝑛+2 , t) < 1 for all n, 

Put x = 𝑥2𝑛−1 , y = 𝑥2𝑛  , z = 𝑥2𝑛+1 

Substituting in the inequality, we get 

F{M(A𝑥2𝑛−1, 𝑆𝑥2𝑛−1, 𝑇𝑥2𝑛+1,t) , M(A𝑥2𝑛−1,B𝑥2𝑛,S𝑥2𝑛+1,t) , 

M(S𝑥2𝑛−1,A𝑥2𝑛−1,S𝑥2𝑛−1,t) , M(T𝑥2𝑛+1, A𝑥2𝑛−1, B𝑥2𝑛,t) , M(A𝑥2𝑛+1,B𝑥2𝑛, 𝑆𝑥2𝑛−1,t) , 

M(T𝑥2𝑛+1, B𝑥2𝑛, S𝑥2𝑛+1,t)} ≥   0 

F{M(𝑦2𝑛−1, 𝑦2𝑛−2, 𝑦2𝑛,t),M(𝑦2𝑛−1,𝑦2𝑛, 𝑦2𝑛,t),M(𝑦2𝑛−2, 𝑦2𝑛−1,𝑦2𝑛,t),M(𝑦2𝑛 , 𝑦2𝑛−1,𝑦2𝑛,t),     

M(𝑦2𝑛+1,𝑦2𝑛, 𝑦2𝑛−2,t),M(𝑦2𝑛 , 𝑦2𝑛 , 𝑦2𝑛,t)} ≥   0 

Here (X,M,*) is strong M-fuzzy metric space ,then 

F{M(𝑦2𝑛−1, 𝑦2𝑛−2, 𝑦2𝑛,t),M(𝑦2𝑛−1,𝑦2𝑛, 𝑦2𝑛,t),M(𝑦2𝑛−2, 𝑦2𝑛−1,𝑦2𝑛,t),M(𝑦2𝑛 , 𝑦2𝑛−1,𝑦2𝑛,t), 

M(𝑦2𝑛+1,𝑦2𝑛, 𝑦2𝑛−1,t)*M(𝑦2𝑛−1, 𝑦2𝑛−2, 𝑦2𝑛−2,t),M(𝑦2𝑛 , 𝑦2𝑛 , 𝑦2𝑛,t)} ≥   0 

F{𝑀2𝑛−2 , 𝑀2𝑛−1 , 𝑀2𝑛−2 , M2n−1 , M2n−1*M2n−2 , 1} ≥   0 

By using (F1a)   

Thus, we have M2n−1 > M2n−1 ∗ M2n−2  -------------- (1) 

Consider   a*b = min{a,b} 

Claim:1 

M2n−1 > M2n−1 

which is  not possible. 

Claim:2 

 M2n−1 > M2n−2. Therefore M2n > M2n−1 

Thus {M2n,n ≥ 0} is an increasing sequences of positive real numbers in [0,1] and 

therefore tends to limit L ≤ 1. We claim L =1 for L<1 taking limit in (1), we get L<L 

which is a contradiction . 

Therefore L =1  

For any positive integer r  

M(yn, yn, yn+r,t) ≥ M(yn, yn, yn+1,t/r)∗ M(yn+1, yn+1, yn+2, t/r)                                          

                                    ∗…∗M(yn+r−1, yn+r−1, yn+r,t/r) 

                              > (1-∈) r times = (1-∈) 
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M(yn, yn, yn+r,t) > 1-∈ 

For all n,s ≥ n0 where n0 ∈ N. Thus, {yn} is a Cauchy sequence in X. Since X is 

complete there is a point p ∈ X such that yn →p. Thus subsequence 

{Ax2n},{Sx2n−1},{Bx2n},{Tx2n} also converges to p. Since A(X) ⊂ S(X) and  

B(X) ⊂ T(X) then there must exist u,v ∈ X such that   p= Sv = Tu. 

Put x = v ,y = x2n ,z = x2n+1 

F{M(Av,Sv,Tx2n+1,t) , M(Av,Bx2n,Sx2n+1,t) , M(Sv,Av,Sv,t) , M(Tx2n+1,Av,Bx2n,t) 

, M(Ax2n+1,Bx2n,Sv,t) , M(Tx2n+1,Bx2n,Sx2n+1,t)} ≥ 0 

F{M(Av,p,p,t) , M(Av,p,p,t) , M(p,Av,p,t) , M(p,Av,p,t) , M(p,p,p,t) , M(p,p,p,t)} ≥ 0 

F{M(Av,p,p,t) , M(Av,p,p,t) , M(p,Av,p,t) , M(p,Av,p,t) , 1 , 1} ≥ 0 

By using F2 which implies M(Av,p,p,t) ≥ 1 

   Av = p 

Therefore Av = p = Sv 

Put x = v ,y = u , z = x2n+1  

F{M(Av,Sv,Tx2n+1,t) , M(Av,Bu,Sx2n+1,t) , M(Sv,Av,Sv,t) , M(Tx2n+1,Av,Bu,t) , 

M(Ax2n+1,Bu,Sv,t) , M(Tx2n+1,Bu,Sx2n+1,t)} ≥ 0 

F{M(p,p,p,t) , M(p,Bu,p,t) , M(p,p,p,t) , M(p,p,Bu,t) , M(p,Bu,p,t) , M(p,Bu,p,t)} ≥ 0 

F{1 , M(p,Bu,p,t) , 1 , M(p,p,Bu,t) , M(p,Bu,p,t) , M(p,Bu,p,t)} ≥ 0 

By using F2 which implies M(Bu,p,p,t) ≥ 1 

   Bu = p 

Therefore Bu = p = Tu 

Combine p =Av =Sv=Bu =Tu 

Since (A,S) and (B,T) are weak compatible. Therefore ASv =SAv  ⇒ Ap =Sp 

 BTu = TBu  ⇒ Bp =Tp 

Hence p is a coincidence point of A,B,S and T 

Put  x = x2n−1 , y = p , z = x2n+1 

F{M(Ax2n−1,Sx2n−1,Tx2n+1,t) , M(Ax2n−1,Bp,Sx2n+1,t) , 

M(Sx2n−1,Ax2n−1,Sx2n−1,t) , M(Tx2n+1,Ax2n−1,Bp,t) , M(Ax2n+1,Bp,Sx2n−1,t) , 

M(Tx2n+1,Bp,Sx2n+1,t) } ≥ 0 

F{M(p,p,p,t) , M(p,Tp,p,t) , M(p,p,p,t) , M(p,p,Tp,t) , M(p,Tp,p,t) , M(p,Tp,p,t)} ≥ 0 
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F{1, M(p,Tp,p,t) , 1 , M(p,p,Tp,t) , M(p,Tp,p,t) , M(p,Tp,p,t)} ≥ 0 

By using F2 which implies M(Tp,p,p,t) ≥ 1 

    Tp = p =Bp 

Put x =p ,y =x2n , z = x2n+1 

F{M(Ap,Sp,Tx2n+1,t) , M(Ap,Bx2n,Sx2n+1,t) , M(Sp,Ap,Sp,t) , M(Tx2n+1,Ap,Bx2n,t) 

, M(Ax2n+1,Bx2n,Sp,t) , M(Tx2n+1,Bx2n,Sx2n+1,t) } ≥ 0 

F{M(Sp,Sp,p,t) , M(Sp,p,p,t) , M(Sp,Sp,Sp,t) , M(p,Sp,p,t) , M(p,p,Sp,t) , 

M(p,p,p,t)} ≥ 0 

F{M(Sp,Sp,p,t) , M(Sp,p,p,t) , 1, M(p,Sp,p,t) , M(p,p,Sp,t) , 1}≥ 0 

By using F2 which implies M(Sp,p,p,t) ≥ 1 

Sp = p = Ap 

Similarly, Ap = Sp = Bp = Tp 

Hence p  is a  common fixed point of A,B,S and T. 

Implicit Relation:2 

Let Φ be the set of all real continuous functions F: [0,1]6 → R is continuous function 

such that 

(F1): For u,v >0 F is non-decreasing in the fifth and sixth variable 

(F1a) : F{u(t) , v(t) , u(t) , v(t) , 1, u(t) * v(t) } ≥ 0 

then  u(t) ≥ u(t) * v(t) 

(F2):  F{u(t) , 1 , u(t)  , u(t) , 1 , 1}≥ 0 

         F{u(t) , 1  , u(t) , 1 , u(t)  , u(t) }≥ 0 

         F{u(t)  , u(t) ,  u(t) , 1 , 1 , u(t)  }≥ 0 

        F{ u(t)  , u(t) ,  u(t) , 1 , u(t) , u(t)} }≥ 0 

Then u(t) ≥ 1 

 

Theorem:3.2 

Let (X,M,*) be a complete strong M-fuzzy metric space and (A,S) and (B,T) are 

weak** commuting pairs of self maps on X satisfying 

AX ⊆ SX and BX ⊆ TX 
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F{M(A2x,B2y,T2z,t) , M(S2x, T2x, S2z,t) , M(A2x,B2y, S2z,t) , M(A2x, S2x, S2x,t) , 

M(B2y, A2y, A2y,t) , M(A2z, B2y, S2x,t)} ≥ 0 

For all x,y,z ∈ X ,t > 0 then A,B,S and T have a unique common fixed point . 

Proof: 

Let x0 ∈ X be any arbitrary point. Since A (X) ⊂ S(X) and B(X) ⊂ T(X) there exist a 

point     x1 , x2 ∈ X such that A2x0 = S2x1  , B2x1 = T2x2   inductively, construct 

sequence {y2n} as  

y2n = A2x2n = S2x2n+1       y2n+1 = B2x2n+1 = T2x2n+2   n = 1,2…  

                   Let   M2n = M(y2n, y2n+1, y2n+2 , t) < 1 for all n, 

Put x = x2n−1   , y = x2n , z = x2n+1 

F{M(A2x2n−1, B2x2n, T2x2n+1,t) , M(T2x2n−1, S2x2n−1, S2x2n+1,t) , 

M(A2x2n−1, B2x2n, S2x2n+1,t) , M(A2x2n−1 , S2x2n−1, S2x2n−1,t) , 

M(B2x2n, A2x2n, A2x2n,t) , M(A2x2n+1, B2x2n, S2x2n−1,t)} ≥ 0 

F{M(y2n−1, y2n, y2n,t) , M(y2n−2, y2n−2, y2n,t) , M(y2n−1, y2n, y2n,t) , 

M(y2n−1, y2n−2, y2n−2,t),  M(y2n, y2n, y2n,t) , M(y2n+1, y2n, y2n−2,t) }≥ 0 

Using strong M-fuzzy metric space 

F{M(y2n−1, y2n, y2n,t) , M(y2n−2, y2n−2, y2n,t) , M(y2n−1, y2n, y2n,t) , 

M(y2n−1, y2n−2, y2n−2,t), 1 , M(y2n+1, y2n, y2n−1,t)*M(y2n−1, y2n−2, y2n−2,t)} ≥ 0 

F{M2n−1, M2n−2, M2n−1, M2n−2,1, M2n−1 * M2n−2} ≥ 0 

By using F1a   

Thus, we have 𝑀2𝑛−1 > 𝑀2𝑛−1 ∗ 𝑀2𝑛−2  -------------- (2) 

Consider   a*b = min{a,b} 

Claim:1 

M2n−1 > M2n−1 

which is  not possible. 

Claim:2 

 M2n−1 > M2n−2. 

 Therefore M2n > M2n−1 

Thus{M2n,n ≥ 0} is an increasing sequence of positive real numbers in [0,1] and 

therefore tends to limit L ≤ 1. We claim L =1 for L<1 taking limit in (2), we get L<L 

which is a contradiction . 
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Therefore L =1  

For any positive integer r  

M(yn, yn, yn+r,t) ≥ M(yn, yn, yn+1,t/r) ∗ M(yn+1, yn+1, yn+2,t/r) 

                                     ∗……∗M(yn+r−1, yn+r−1, yn+r,t/r) 

                              > (1-∈) r times = (1-∈) 

M(yn, yn, yn+r,t) > 1-∈ 

For all n,s ≥ n0 where n0 ∈ N. Thus, {yn} is a Cauchy sequence in X. Since X is 

complete there is a point p ∈ X such that yn →p. Thus subsequence 

{Ax2n},{Sx2n−1},{Bx2n},{Tx2n} also converges to p.  

Case:I 

  S(X) is complete 

Take p ∈ S(X) there exist v ∈ X such that p = S2v 

Put x = v , y = x2n , z = x2n+1 

F{M(A2v,B2x2n,T2x2n+1,t) , M(S2v, T2x2n, S2x2n+1,t) , M(A2v, B2x2n, S2x2n+1,t) , 

M(A2v, S2v, S2v,t) , M(B2x2n, A2x2n, A2x2n,t) , M(A2x2n+1, B2x2n, S2v,t)} ≥0  

F{M(A2v,p,p,t) , M(p,p,p,t) , M(A2v,p,p,t) , M(A2v,p,p,t) , 1 , 1} ≥0 

By using (F2) 

M(A2v,p,p,t) ≥1 which implies A2v = p 

P = A2v = S2v 

Using (A,S)  is weak ** commuting 

M(S2A2v, A2S2v,t) ≥ M(S2Av, A2Sv,t)≥M(SA2v,AS2v,t) ≥M(SAv,ASv,t) 

≥M(S2v, A2v,t) 

which implies  S2A2v = A2S2v  

                              S2p = A2p 

Put x = p , y = x2n , z = x2n+1 

F{M(A2p,B2x2n,T2x2n+1,t) , M(S2p, T2x2n, S2x2n+1,t) , M(A2p, B2x2n, S2x2n+1,t) , 

M(A2p, S2p, S2p,t) , M(B2x2n, A2x2n, A2x2n,t) , M(A2x2n+1, B2x2n, S2p,t)} ≥0  

F{M(A2p,p,p,t) , M(A2p,p,p,t) , M(A2p,p,p,t) , 1, 1 , M(p,p, A2p)} ≥0 

By using (F2) 

M(A2p,p,p,t) ≥1 which implies A2p = p 
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Hence p = A2p =S2p 

Case:II 

T(X) is complete 

Take p ∈ T(X) there exist v ∈ X such that p = T2v 

Put x = x2n−1  , y = v , z = x2n+1 

F{M(A2x2n−1,B2v,T2x2n+1,t) , M(S2x2n−1, T2v, S2x2n+1,t) , 

M(A2x2n−1, B2v, S2x2n+1,t) , M(A2x2n−1, S2x2n−1, S2x2n−1,t) , M(B2v, A2v, A2v,t) , 

M(A2x2n+1, B2v, S2x2n−1,t)} ≥0  

F{M(p, B2v ,p,t) , M(p,p,p,t) , M(p, B2v ,p,t) , M(p,p,p,t) , M(B2v,p,p,t) ,  

M(p, B2v ,p,t)  } ≥0 

F{M(p, B2v ,p,t) , 1, M(p, B2v ,p,t) , 1, M(B2v,p,p,t) , M(p, B2v ,p,t)  } ≥0 

By using (F2) 

M(B2v,p,p,t) ≥1 which implies B2v = p 

P = B2v = T2v 

Using (B,T) is weak ** commuting 

M(T2B2v, B2T2v,t) ≥ M(T2Bv, B2Tv,t)≥M(TB2v,BT2v,t) ≥M(TBv,BTv,t) 

≥M(T2v, B2v,t) 

which implies  T2B2v = B2T2v  

                              T2p = B2p 

Put x = x2n−1 , y = p , z = x2n+1 

F{M(A2x2n−1,B2p,T2x2n+1,t) , M(S2x2n−1 , T2p, S2x2n+1,t) ,  

M(A2x2n−1 , B2p, S2x2n+1,t) , M(A2x2n−1 , S2x2n−1 , S2x2n−1 ,t) , 

M(B2p, A2p, A2p,t) , M(A2x2n+1, B2p, S2x2n−1 ,t)} ≥0  

F{M(p, B2p ,p,t) , M(p, B2p p,t) , M(p, B2p p,t) , 1, M(B2p,p,p,t) ,  M(p, B2p,p,t)} ≥0 

By using (F2) 

M(B2p,p,p,t) ≥1 which implies B2p = p 

Hence p = B2p =T2p 

Put x = Ap , y = p , z = p 

F{M(A2(Ap), B2p, T2p,t) , M(S2(Ap), T2p, S2p,t) , M(A2(Ap), B2p, S2p,t) , 

M(A2(Ap), S2(Ap), S2(Ap),t) , M(B2p, A2p, A2p,t) , M(A2p, B2p, S2(Ap),t)} ≥0 
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F{M(Ap,p,p,t) , M(Ap,p,p,t) , M(Ap,p,p,t) , 1,1,M(Ap,p,Ap,t)} ≥0 

Ap = p 

Similarly ,show that Bp = p ,Sp = p and Tp = p 

P = Ap = Bp = Sp = Tp 

p is common fixed point of A,B,S and T. 

Uniqueness: 

Put x = p ,y = p , z = q 

F{M(p,p,q,t) , M(p,p,q,t) , M(p,p,q,t) , M(p,p,p,t) , M(p,p,p,t) , M(q,p,p,t)} ≥0 

F{M(p,p,q,t) , M(p,p,q,t) , M(p,p,q,t) , 1,1 , M(q,p,p,t)} ≥0 

M(p,p,q,t) ≥ 1 

Therefore p = q 

Hence p is a unique fixed point of A,B,S and T. 

 

Theorem:3.3 

Let (X,M,*) be  complete strong M-fuzzy metric space. Let A,B,S and T be self  maps 

satisfying the following condition  

A(X) ⊆S(X) and B(X) ⊆ T(X) 

(A,S) and (B,T) are weak compatible  pair 

M(Ax,By,Sz,t) ≥ min{M(Ax,Ty,Tz,t) , M(Ax,Sx,Sz,t) , M(Bz,Tz,Sx,t) , 

M(By,Sz,Tz,t)} 

Then A,B,S and T have a unique fixed point . 

Proof: 

Let x0 ∈ X be any arbitrary point. Since A (X) ⊂ S(X) and B(X) ⊂ T(X) there exist a 

point     x1 , x2 ∈ X such that Ax0 = Sx1  , Bx1 = Tx2   inductively, we get a sequence 

{y2n} as                           

             y2n = Ax2n = Sx2n+1       y2n+1 = Bx2n+1 = Tx2n+2   n = 1,2…  

                   Let   M2n = M(y2n, y2n+1, y2n+2 , t) < 1 for all n, 

Put x = x2n−1 , y = x2n  , z = x2n+1 
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Substituting in the inequality, we get 

M(Ax2n−1,Bx2n  ,Sx2n+1,t) ≥ min{M(Ax2n−1,Tx2n  ,Tx2n+1,t) , 

M(Ax2n−1,Sx2n−1,Sx2n+1,t) , M(Bx2n+1,Tx2n+1,Sx2n−1,t) , 

M(Bx2n,Sx2n+1,Tx2n+1,t)} 

M(y2n+1, y2n, y2n, t) ≥ min {M(y2n−1, y2n−1, y2n,t) , M(y2n−1, y2n−2, y2n,t) , 

M(y2n+1, y2n, y2n−2,t) , M(y2n, y2n, y2n,t) 

Using strong M- Fuzzy metric space 

M(y2n−1, y2n, y2n, t) ≥ min {M(y2n−1, y2n−1, y2n,t) , M(y2n−1, y2n−2, y2n,t) , 

M(y2n+1, y2n, y2n−1,t)*M(y2n−1, y2n−2, y2n−2,t) , M(y2n, y2n, y2n,t) 

M2n−1 ≥ min{M2n−1, M2n−2, M2n−1*M2n−2,1} 

Thus, we have M2n−1 > M2n−1 ∗ M2n−2  -------------- (3) 

Consider   a*b = min{a,b} 

Claim:1 

M2n−1 > M2n−1 

which is  not possible. 

Claim:2 

 M2n−1 > M2n−2. 

Therefore M2n > M2n−1 

Thus{M2n,n ≥ 0} is an increasing sequence of positive real numbers in [0,1] and 

therefore tends to limit L ≤ 1. We claim L =1 for L<1 taking limit in (3), we get L<L 

which is a contradiction . 

Therefore L =1  

For any positive integer r  

M(yn, yn, yn+r,t) ≥ M(yn, yn, yn+1,t/r) ∗ M(yn+1, yn+1, yn+2,t/r) 

                                      ∗……∗M(yn+r−1, yn+r−1, yn+r,t/r) 

                              > (1-∈) r times = (1-∈) 

M(yn, yn, yn+r,t) > 1-∈ 

For all n,s ≥ n0 where n0 ∈ N. Thus, {yn} is a Cauchy sequence in X. Since X is 

complete there is a point p ∈ X such that yn →p. Thus subsequence 
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{Ax2n},{Sx2n−1},{Bx2n},{Tx2n} also converges to p. since A(X) ⊂ S(X) and 

B(X) ⊂ T(X) then there must exist u,v ∈ X such that     p= Su = Tv. 

Put x = u ,y = x2n ,z = x2n+1 

M(Au,Bx2n,Sx2n+1,t) ≥ min{M(Au,Tx2n,Tx2n+1,t) , M(Au,Su,Sx2n+1,t) , 

M(Bx2n+1,Tx2n+1,Su,t) , M(Bx2n,Sx2n+1,Tx2n+1,t)} 

M(Au,p,p,t) ≥ min{M(Au,p,p,t) , M(Au,p,p,t) , M(p,p,p,t) , M(p,p,p,t)} 

M(Au,p,p,t) ≥ min{M(Au,p,p,t) , M(Au,p,p,t) ,1,1} 

M(Au,p,p,t) ≥ M(Au,p,p,t) which is a contradiction 

Au =p 

Hence Au = p =Su 

Put x = u , y = v, z = x2n+1 

M(Au,Bv,Sx2n+1,t) ≥ min{M(Au,Tv,Tx2n+1,t) , M(Au,Su,Sx2n+1,t) , 

M(Bx2n+1,Tx2n+1,Su,t) , M(Bv,Sx2n+1,Tx2n+1,t)} 

M(p,Bv,p,t) ≥ min {M(p,p,p,t) , M(p,p,p,t) , M(p,p,p,t) , M(Bv,p,p,t)} 

M(p,Bv,p,t) ≥ min {1,1,,1, M(Bv,p,p,t)} 

which is a contradiction 

Bv = p = Tv 

Since (A,S) and (B,T) are weak compatible,  ASu =SAu  ⇒ Ap =Sp 

 BTv = TBv  ⇒ Bp =Tp 

Hence p is a coincidence point of A,B,S and T 

Put x = u, y = p, z = x2n+1 

M(Au,Bp,Sx2n+1,t) ≥ min{M(Au,Tp,Tx2n+1,t) , M(Au,Su,Sx2n+1,t) , 

M(Bx2n+1,Tx2n+1,Su,t) , M(Bp,Sx2n+1,Tx2n+1,t)} 

M(p,Bp,p,t) ≥ min {M(p,Bp,p,t) , M(p,p,p,t) , M(p,p,p,t) , M(Bp,p,p,t)} 

M(p,Bp,p,t) ≥ min {M(p,Bp,p,t) , 1,1, M(Bp,p,p,t)} 

M(p,Bp,p,t) ≥  {M(p,Bp,p,t) which is a  contradiction 

Bp = p =Tp  

Similarly, Ap = p =Sp 

p is the common fixed point. 
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Uniqueness: 

Put x = p, y = p, z = w 

M(Ap,Bp,Sw,t) ≥ min{M(Ap,Tp,Tw,t) , M(Ap,Sp,Sw,t) , M(Bw,Tw,Sp,t) , 

M(Bp,Sw,Tw,t)} 

M(p,p,w,t) ≥ min{M(p,p,w,t) , M(p,p,w,t) , M(w,w,p,t) , M(p,w,w,t)} 

M(p,p,w,t) ≥ M(p,p,w,t)  which is contradiction 

p = w 

p is the unique fixed point of A,B,S and T. 

 

Corollary:3.4 

Let (X,M,*) be  complete strong M-fuzzy metric space. Let A,B,S and T be self  maps 

satisfying the following condition  

A(X) ⊆S(X) and A(X) ⊆ T(X) 

(A,S) and (A,T) are weakly compatible  

M(Ax,Ay,Sz,t) ≥ min{M(Ax,Sx,Sz,t) , M(Az,Tz,Sz,t) , M(Ay,Sz,Sx,t)} 

Then A,S and T have a unique fixed point . 
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