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Abstract

Several methods have been used to calculate an approximate critical point of
a nonsmooth convex function, in particular the proximal point method and the
bundle method. In this paper we propose a class of methods, obtained by
combining the bundle method with the entropic distances. In our analysis, the
convergence properties obtained cover the convergence results of the bundle

method, while giving other.
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1. INTRODUCTION

Let’s consider the problem of convex optimization defined by :

(P): min{ f(z), v € R*}

Several numerical methods have been used to resolve (P) , especially the methods of
the proximal point see [1,3,5,7,9, 10, 11, 15, 16] and the methods of bundle studied by
several authors [8,12,13,14] . The pinciple of these is based of the approximaion of
f by a function’s sequence ¢* normally more simple than f. The principle restriction
of these methods is that the function f is at finite values. By coupling the methods of
bundle with the entropic distances [2] definid by

Diu(z,y) = h(z) — h(y)— <z —y, Vh(y) >,
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we propose a class of methods (EBA) called Entropic Bundle Algorithms . These, in
contrary the bundle methods (BM) , allowing to solve (P) when f verifies:

(Al)l f:F+\I[§,

where S is the function zone of Bregman h and F is a convex function at finite values .
i=d

In particular , by choosing hy(z) = Z x;logxr; — x; , these methods allow to minimize
i=1

F on the positive cone of R . For ho(z) = 3 || z ||* , we find the bundle method (BM)

described by C. Lemarechal and R.Correa [13].

Our notation is fairly standart , < .,. > is the scalar product on R, and the associated
norm ||.||. The closure of the set C ( relative interior) is denoted by

C (1iC, respectivly), Adh {z*} is the set of adherence values of a sequence {*}. For
any convex function f, we denote by :

(1) domf = {z € R, f(x) < +o0} its effective domain,

2) O.f(.) = {v,fly) > fO)+ < v,y —. > —¢ Yy} its € —
subdi f ferential,

(3) argmin f = {z € R?, f(x) = inf f} its argmin f,
4)e — argmin f = {x € R4, f(z) <inf f + e} its € — argminf.

2. PRELIMIMARIE

In this section, we remind some theoretical properties of entropic approximations
studied by Kabbadj in [6]. These results are necessary for the analysis of the methods
proposed in section 3 and 4 .

Let S be an convex open subset of R and i : S — R. We define Dy,(.,.) by :
Vee S, Vyes:

Dy(z,y) := h(z) — h(y)— <z —y, Vh(y) > .

Let us consider the following hypotheses :
H; : his continuously differentiable on S.
H, : his continuous and strictly convex on S.
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Hs:Vr >0,Vz € S,Vy € S, the sets L1 (z,7) and Ly(y, r) are bounded where
Li(z,r) ={y € S/Dp(x,y) <r}
Ly(y,r) = {x € S/Dy(x,y) <r}.

Hy: If {y*}, C Sissuchas y* — y* € S, s0 Dy(y*, y*) — 0.

Hy : If {2*}, and {y*},, are two sequences of S such as : Dj(z*, y¥) — 0 and

z¥ — 2* € S, then y* — x*.
Definition 2.1.

(i)h: S — Risa Bregman function on S or " D-function" if h verify Hy, Hy, Hs, Hy
and Hs.

(ii) Dy(.,.), is called entropic distance if h is a Bregman function.

We put :

A (S)={h:S — R verifying H, and H,}

B (S)={h:S — R verifying H,, Hy, Hs, Hy and H3}.
[o(RY) ={f: R - RU{+o0} proper, closed and convex }

Lemma2.2.V h € A(S),Ya€ S,VbcecS:
Dy(a,b) + Dy(b,¢) — Dy(a,c) =< a —b,Vh(c) — Vh(b) > .

Dy (., .) is not a distance because the properties of the symetry and the triangle inegality
are not verfied, however positivity is ensured by the proposition below.

Proposition 2.3. If h € A(S), then :

0if z=y,

Dh(x,y)—{ >0if x#y

Theorem 2.4. [6] Let f € T'o(R?) and h € A(S) such as domf NS # ¢. If one of the
two following conditions are verified :

(i) inf f > —oo and h verify Hj
5

(ii) ImVh = RC.
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Then for all z € S, for all A > 0, the function u — f(u) + A~'Dj,(u, v) has a unique
minimum point on S.

Definitions 2.5. f and h verify the hypothesis of the Theorem 2.4.

i) The entropic approximation of f compared to h, of parameter A\(A > 0) is the function
defined by :

fia(z) == inf{f(y) + X' Dy(y,x)},Vx € S.

yeSs
i) The application entropic proximal of f comparing to h , of parameter ) is the operator
defined by :

h(z) = proxf\bf(a:) = argmin{ f(y) + A 'Dy(y,7)},Vz € S.
yes

Proposition 2.6. [6] Let h € A(S) and f € T'y(R?) such as :

(a) ri (dom f) NS # ¢,
(b) ImVh = R

Then:Vr € S, VA >0
hi(z) e S (1)

Vh(z) — Vh(hi(z))
3 € Of (h{(x)) (2)

Some examples of Bregman functions are given below.

Example 2.7. If S, = R? and ho(z) = 3 || = ||? then

1
Dio(,9) = 5 1z =y [

Example 2.8. If $; = R%, := {z € R?/x; > 0,i=1,...,d} and

i=d

hy(z) = Z zilogx; — x; Vo € Sy,

i=1
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with the convention : 0log0 = 0, then

d
Dy, (z,y) = Zazl log% +y; — x5, V(z,y) € S1XS).

i=1 g

i=d

Example 2.9. If S, = |—1,1[* and hy(z) = —Z \/1— a2, then:

i=1

d
1 1J1
th(x y Z Tl .77 y € SQXSQ

\/1—y12’

We easily verifies that
h; € B(SZ),’L =0,1,2.

3. MAIN RESULTS

In this section, we analyze an algorithm that plays a decisive role in establishing the
convergence of the Entropic Bundle Algorithms proposed in section 4 , we suggest that
h and f satisfy the following hypotheses

Assumptions A :
(i) h € B(S) such that ImVh = R?
(ii) f € To(R?) such that S Nri(domf) # 0

Algorithm 1: Inexact Entropic Proximal (IEP)

1: input: 2° € S N ri(domf)
2: forn =1,2,...with \, > 0, find 2" € S and &, > 0 such that f(z") < f(z" )
and

Vh(z" ') — Vh(z™)
/\n

€ 0., f(z")
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Proposition 3.1. The sequence {z"}, defined by (IEP) exists and verified for all
neN": ]
" € g, —argmin{ f(u) + )\—Dh(u, 2" N, u e S}

Proof. Existence: is deduced trivially from (2).

~ Vh(z"') — Vh(z")
— .

Qe € 0., f(z")
= f(u) > f(2")+ < u— 2", Q" > —¢,. By applying the L emma 2.2., we have :

fu) > f(2") + A [ Dh, (u, ") + Dy, (", 2" 1) = Dy, (u, 2" )] =&, (3)

= f(a™) + A\, 1Dy, (2", 2"7Y) < f(u) + A\ Dy, (u, 277 + 2, Vu € S

" € en — argmin{f(uv) + +Dp(u,z"),u €
S} O

Remark 3.2. For ¢, = 0,Vn € N* the algorithm (IEP) is written :

1 —
" = argmin{ f(u) + )\—Dh(u, 2" N, u € S},
which have nothing but the entropic proximal algorithm (EP) studied by [4, 18] . (IEP)
is then an inexact version of the algorithm (EP) . The convergence results developed

below cover the convergence properties given in [18] .

Proposition 3.3. (Summability) If f* := inf > —oco .Y A&, < +oo and

yes n=1

0 < A\, <\, then,

Z Dy (2", 2" 1) < 400 and Z Dy ("1 2™) < 400
n=1 =

n=1
Proof. From (3) , we have :

An(f(xn) - f(u)) S [Dh(uwrn_l) - Dh(ua :L,n) - Dh(wna xn—l)] + 5n>\n (4)
Put u = 2"~ ! in (4), we have

Dy (2™, 2™ + Dyp(2™ 1 2™) < X(f(2™Y) — f(2™) + Mncn (3)
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n=p n=p
= ZDh L")+ D@ at) SN (fE"T) = f@") + D Aaen
n=1 n=1
n=p
= ZDh L2 Y Dy (2" ™) < X(f(2°) — f) + ZAnsn.
Z)\ngn<—|—oo:>ZDh nogtl <+ooandZDh , ") < 400. O

n=1

Proposition 3.4. (Global estimate in function values)
P

We suppose that argminf # (). Let ¢, := Z An-
S —

(@) Yu € S,Vp € N* , for 2* € arg minf

s
1 o
fa?) = f* < ~[Du(a",2%) + > Auen) (6)
p n=1
() If )\, = \,¥n € N*,
1
f@?) == 0(5) (7)
Proof. (a) We have :
An(f(2") = f(u)) < Da(u,2"7") = Da(u, 2") + endn ®)
n=p n=p n=p
=Y A(f(@) = f(u) <Y Dy, 2™ ) = Dy(u,2") + > Anen
n=1 n=1 n=1
n=p n=p
= 3 Mlf(@") = F(w) < Da(u,a®) = Duu,a%) + 3 Aue
n=1 n=1
Since {f(z")} is decreasing, we have :
n=p n=p
) Y A < Dy(u, %) = Dy(u,a?) + > Aney 9)
= n=1
then,
) = 1) £ FDua) + 3 M) (10)

n=1
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(b)
t, = Ap = (7). : O

Now , we derive a global convergence of the sequence generated by (IEP) to a minimizer
of (P) .

Theorem 3.5.
(@) If Y\, = +ooand e, — 0then f(2") — inf
S

(b) If, moreover argminf # () and > \,&, < +oo then 2™ — z* € argmin f
S S

Proof. (a)

(10) = f(a?) < f(u) + 22 4 2=1 when t, — oo,

lim f(2”) < inf . (11)
S

As limf(xP) > inf, we deduce
S
limf(z?) = inf .
S

(b) Let * € argmin f, we put u = z* in (8), we have
S

Dy (z*,2") < Dyp(x*, 2"71) + \uen (12)

Since Y A\,&, < +oo, we have

Dy(z*,2") = 1>0 (13)

From Hj, {2"}, is bounded . Let u* € Adh{z"}, it exists then a sub-sequence {z"}

of {#"}, such as 2™ — u* . u* € argminf. Indeed :
s

inf < f(u®) < f(z™) = inf = inf = f(u"),
S o s

which shows that u* € arg minf, therefore Dy, (u*,2") — I
s

Since =™ —» u* € S, from H, , we are getting :

Dy (u*,2™) — 0,
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then I’ = 0, i.e.,, Dp(u*,2") — 0. The convergence of 2" to u* results immediately
from the following lemma :

Lemma 3.6. If {z"} C S and Dy (u*,2") — 0 then 2™ — u*.

Proof : From Hj, {z"} is bounded. Let z* € Adh{z"} , it exists then the sub-sequence
{z"} of {™} such that 2™ — x*. From Hj :

Dy(u*,2™) — 0and 2% — z* € S = z* = u*

= Adh{z"} = {z*}
= x" —

Corollary 3.7. we suppose that ri(domf) C S.
(@ If Y A\, = +ooand e, — O0then f(z") — inff.
(b) If, moreover argminf # 0 and > \,&, < +oo then 2™ — x* € argminf.

Proof. Is a simple consequence of Theorem 3.5. U

4. ANALYSIS OF THE ENTROPIC BUNDLE ALGORITHMS

In what follows, we will deduce the results of convergence (Theorem 4.5. - 4.6.) for
Entropic Bundle Algorithms . First, we need to establish some technical results.

Let h € B(S). Let f € I'((R?) and F a convex function with a finite values . We
suppose that f verifies :

(Ay) : f=F+ Vg
Let {¢"*}. a sequence of functions belonging to I'y(R?) such as :

(Ag) : Va €S,V A>0,y*:=prox} ,(v),exists and belongs to S.
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(The conditions of realisation of (Aj) are given in the Remark 4.7.). From (2)

_ Vh(z) — Vh(y¥)

T S € dpF (y*).
Let’s put :
Cy) == " () + < TFy — oy~ >
—k
U (y) == (y) + X' Dy(y, x)
2 (y) =" (y) + X' Du(y, ).
Furthermore we suppose :
(Ag)l ngSf, i kzl,
(A4) . gkz S gpk+1,
(A5) : fW)+ <" y— v >< " y) where: g € OF(yF).

Proposition 4.1. Let i € B(S). Let {z*} C S bounded and {*} C S bounded, such
as Dy,(y*, 2*) — 0. Then || y* — z* || — 0.

Proof. Since {y*} and {z*} are bounded , the sequence {|| y* — z* ||} is bounded
too. Let’s show that Adh{||y* — ||} = {0} . Let § € Adh{|y* — 2*||} , it exists a
sub-sequence {||y* — z¥i||}4, such as:

— 0.

ly™ —

{x*i} is bounded , it exists {z* } such that 2% — z* . Otherwise

{tFVc S =a"eb.
From Hj ,
Dy(y%, %) — 0and 2% — 2% = y% — 2~

It follows that || 4% — 2% ||— 0, which means : § = 0. O
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Proposition 4.2. If f verifies A; and {("};>, verifies Ay, A3, A4 and A5 , then :

(1) 0 < f(y*) — ©"(y*) — 0,

(i1) y* — proxl x.
Proof . ()

() = T° (") = (*(y) + A"1Dy (y, ) — (*(y*) — A1 Dy (4", z)

=< Tk y —yF > +A " Dy(y, x) — A Dy (yF, x)

= A < Vh(z) — VA, y — y* > +X'Du(y,z) —

)Fth(yk, x).

From the Lemme 2.2.,

< Vh(z) — V"), y — y* >= Du(y,4") + Du(y*, 2) — Di(y, 2)

It follows that :
k

C(y) =0 ") + 2" Dy, y")

For x € S,
f(x) > " 2) =7 (z)
_ k41
Z (’pk'H(yk'H) —7 (yk—‘rl)
—k —k _
>0 (g =07 + XDy o).
We deduce that

flz) =0y

—k+1 —k _
CTWTY > ) + MDY )

Since x € dom f, from (16) and (17), we can deduce that

") = (e R

Said Kabbadj

(14)

(15)

(16)

(17)

(18)
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On the other hand
17) = Dh(yk“,yk) — 0.

For y fixed in (14) , and due to (18), we deduce that the sequence {Dj,(y, ")} is
bounded. From H3, {yk} is bounded . By vertue of the Proposition 4.1. ,

"+ —¢¥|| — 0. (19)

From the other hand ,

FWY) = fF) = M) = FF) >< gyt —yF >,

and from (A;) and (A,) ,

Fy") — F(y") > " (yF ) — f(0F) >< gF " — o >,

F is at finite values , so locally Lipschitz , which leads , with (19),
F(y*') = F(y*) — 0.

Since g* € OF (y*) and {y*} is bounded, {¢g*} is bounded, then

Y = f(y*) = 0.

Otherwise ,
0< f(y") —"(") = F(*") = Fy" ) + F(y* ) = " ("),
It follows that
FWr) = ¢*(y*) — 0.

ii. the sequence {y*}, verifies w € 0., f(y*) where e, = f(y*) — ©*(y"),
thus the convergence of y* towards proxﬁf results immediatly from the following
Lemme:

Lemma 4.3. Let {y*}, C S such as:

i YYD € g f(yh),

ii- g, — 0.



852 Said Kabbadj

Then :

(a) Dy(y*, proxl;x) + Dy (proxh iz, y*) < Aep,

(b) y* — proal .

xX)— T’Oxh x .
Proof. (a) Yh@)-Vhy") ¢ -, f(y*) and Vi) w;(p ) e 0., f(proxh,;x), it

hy
follows that

< Vh(y*) — Vh(proa:ﬁfx), y* — proxﬁfa: >< Aeg,
Let again ,
Dh(yk,proxﬁfx) + Dh(proa:’jfa:, y*) < Aep,

(b) Dy (y¥, proal ) — 0, so from Hy, y* — proal . O

Example 4.4. If h verifies the conditions of the proposition 2.6., Then (A,) is verified,
we give below two exemples of sequences {*} verifying (A3), (A4) and (As) :

Ey "N y) =maz{f(y')+ < ¢y —y' > 1<i<k>}
By - " (y) = maz{*(y), f(y*)+ < ¢",y — v* >}.

Now we represent below the Entropic Bundle Algorithms obtained by replacing the
quadratic kernel in the base method with entropic distances.

Algorithm 2 : Entropic Bundle Algorithm (EBA)

1: input: m € ]0,1[, ; € S and k(1) :=0
2: forn=1,2,....with \,, >0ande, > 0,do
3:fork=k(n)+1,..,k(n+ 1), cumpute

k. h
Yy = prox)\mokxn ’
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where k(n + 1) is the first natural integer & > k(n) for which an improvement is
obtained , precisely :

4: (i) If the condition (*) is never verified , we put k(n + 1) := +occo and stop
(43) If not , we put z,, ., = "™+ go to step 3.

Theorem 4.5. Let {z,} the generated sequence by the Entropic Bundle Algorithms .
From two things the one :

- (a) Tt exists n such as k(n + 1) = 400 then x,, minimizes f.

- (b) The sequence k(n) is infinite , thenif ) A, = +o0, f(x,) — inf f. If furthermore
,0 < Ay <X < 400 and argmin f # ¢ , then

T, — T € argninf.

Proof . (a) (*) is not verified , it exists then a rank n such as :

flan) = fy*) <m [fz,) = ")), YE= k(n)+1.
Which leads :

(1 =m) [f(za) = ")) <m [f(y*) — ("] -

According to the Proposion 4.2., f(y*) — ©*(y*) — 0, then f(z,) < f(prox’infxn).
Otherwise f(proz} @,) + A, ' Du(proal ,wn, w,) < f(x,), then

f(proxﬁnfxn) + A;th(prox’/{nfxn, x,) < f(proa:ﬁfnf:vn)

Since prom’/{nfa:n € S = domf, we have Dh(pmxﬁnfa:n, r,) = 0, ie. pm:p’/\lnfxn =
x, € S. From (2),0 € df(x,), then x,, € Argminf.

(b) Vh(zn);\Zh(xn+1) c a¢k(n+1)(5€n+1) — Vh(zn)—Vh(zni1) c 867L+1f(q;n+1), where

An
Ent1 = f(Tny1) — ‘Pk(n+1)($n+1)~
From (*) , we have
1—m
0 S En+1 S

Lf(zn) = f(zni1)];



854 Said Kabbadj

therefore, f(x,) is decreasing and Zn AnEn < +o00. as ri(domf) = S, therefore by
application of the Corollary 3.7. , we deduce the result . 0

In order to avoid the calculation of 3* indefinitely, and since f(y*) — ©*(y*) — 0, we
propose the following algorithm :

Algorithm 3: A version of the Entropic Bundle Algorithm (EBA)

1:input: 3 € Sand k(1) :==0
2:forn=1,2,....with A, >0and o, > 0, do
3:fork =k(n)+1,...,k(n + 1), cumpute

k._ h
y" = proxy T

where k(n + 1) is the first natural integer £ > k(n) such that :

(%) FWF) — ") < g

4: put : 2,1 = y*"*+Y go to step 3.

As before, we have Vh(‘r”)t\zh(x"“) € 0., f(xns1) , where

Ent1 = f(anrl) - ¢k(n+l)(95n+1)~

Since €,,11 < ay,41 , the convergence result of this algorithm is given by :

Theorem 4.6. Let {z,,} the generated sequence by Algorithm 3
(¢) If > A\, = 400 and ay, — 0 then lim inf f(x,) = inf f.
(i4) If, moreover , 0 < A\, < A < 400, >, ay < +oc and Argmin f # ¢ then

limf(x,) =inffand x, — T € argmin f.

Proof. Immediate consequence of Corollary 3.7. U
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Remark 4.7.

(i) If ImVh = R? and ri(dom¢*) NS # (), then according to the Proposition 2.6.
(Ay) is always verified

(i) If S = R?, then (A,) is checked and the Algorithms (2) and (3) solve (P) where f
is finite values

S. CONCLUSION

The proposed class of methods (EBA) contains the bundle method (BM) described
by Correa-Lemaréchal [13] and solves convex optimization problems under positive
constraints:

(i) If h = hg then (EBA) < (BM)

(ii) For F: RY — R convex , let the problem of convex optimization:

(P") : min{F(x),z € Q} where ( is the positive cone of R?

For h € B(S), with S = int(Q2), (for example h = hy) , (EBA) solves (P’) without
using the dual problem, like Teboulle [17] and Eckstein [4] .
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