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Abstract

Several methods have been used to calculate an approximate critical point of
a nonsmooth convex function, in particular the proximal point method and the
bundle method. In this paper we propose a class of methods, obtained by
combining the bundle method with the entropic distances. In our analysis, the
convergence properties obtained cover the convergence results of the bundle
method, while giving other.
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1. INTRODUCTION

Let’s consider the problem of convex optimization defined by :

(P ) : min { f(x), x ∈ Rd }

Several numerical methods have been used to resolve (P) , especially the methods of
the proximal point see [1, 3, 5, 7, 9, 10, 11, 15, 16] and the methods of bundle studied by
several authors [8, 12, 13, 14] . The pinciple of these is based of the approximaion of
f by a function’s sequence ϕk normally more simple than f. The principle restriction
of these methods is that the function f is at finite values. By coupling the methods of
bundle with the entropic distances [2] definid by

Dh(x, y) := h(x)− h(y)− < x− y,∇h(y) >,
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we propose a class of methods (EBA) called Entropic Bundle Algorithms . These, in
contrary the bundle methods (BM) , allowing to solve (P) when f verifies:

(A1) : f = F + Ψs,

where S is the function zone of Bregman h and F is a convex function at finite values .

In particular , by choosing h1(x) =
i=d∑
i=1

xilogxi− xi , these methods allow to minimize

F on the positive cone of Rd . For h0(x) = 1
2
‖ x ‖2 , we find the bundle method (BM)

described by C. Lemarechal and R.Correa [13].

Our notation is fairly standart , < ., . > is the scalar product on Rd, and the associated
norm ‖.‖. The closure of the set C ( relative interior) is denoted by
C ( riC, respectivly), Adh {xk} is the set of adherence values of a sequence {xk}. For
any convex function f , we denote by :

(1) domf = {x ∈ Rd, f(x) < +∞} its effective domain,
(2) ∂εf(.) = {v, f(y) ≥ f(.)+ < v, y − . > −ε,∀y} its ε −

subdifferential,

(3) argmin f = {x ∈ Rd, f(x) = inf f} its argmin f,

(4) ε− argmin f = {x ∈ Rd, f(x) ≤ inf f + ε} its ε− argminf.

2. PRELIMIMARIE

In this section, we remind some theoretical properties of entropic approximations
studied by Kabbadj in [6]. These results are necessary for the analysis of the methods
proposed in section 3 and 4 .

Let S be an convex open subset of Rd and h : S −→ R. We define Dh(., .) by :
∀x ∈ S, ∀y ∈ S :

Dh(x, y) := h(x)− h(y)− < x− y,∇h(y) > .

Let us consider the following hypotheses :
H1 : h is continuously differentiable on S.
H2 : h is continuous and strictly convex on S.
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H3 : ∀r ≥ 0,∀x ∈ S, ∀y ∈ S, the sets L1(x, r) and L2(y, r) are bounded where

L1(x, r) = {y ∈ S/Dh(x, y) ≤ r}

L2(y, r) = {x ∈ S/Dh(x, y) ≤ r}.

H4 : If {yk}k ⊂ S is such as yk −→ y∗ ∈ S , so Dh(y
∗, yk) −→ 0.

H5 : If {xk}k and {yk}k are two sequences of S such as : Dh(x
k, yk) −→ 0 and

xk −→ x∗ ∈ S, then yk −→ x∗.

Definition 2.1.

(i) h : S −→ R is a Bregman function on S or " D-function" if h verify H1, H2, H3, H4

and H5.

(ii) Dh(., .), is called entropic distance if h is a Bregman function.
We put :

A (S) = {h : S −→ R verifying H1 and H2}

B (S) = {h : S −→ R verifying H1, H2, H3, H4 and H5}.
Γ0(R

d) = {f : Rd → R ∪ {+∞} proper , closed and convex }

Lemma 2.2. ∀ h ∈ A(S),∀ a ∈ S, ∀ b, c ∈ S:

Dh(a, b) +Dh(b, c)−Dh(a, c) =< a− b,∇h(c)−∇h(b) > .

Dh(., .) is not a distance because the properties of the symetry and the triangle inegality
are not verfied, however positivity is ensured by the proposition below.

Proposition 2.3. If h ∈ A(S), then :

Dh(x, y) =

{
0 if x = y,

> 0 if x 6= y

Theorem 2.4. [6] Let f ∈ Γ0(R
d) and h ∈ A(S) such as domf ∩ S 6= φ. If one of the

two following conditions are verified :

(i) inf
S
f > −∞ and h verify H3

(ii) Im∇h = Rd.
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Then for all x ∈ S, for all λ > 0 , the function u 7−→ f(u) + λ−1Dh(u, v) has a unique
minimum point on S.

Definitions 2.5. f and h verify the hypothesis of the Theorem 2.4.
i) The entropic approximation of f compared to h, of parameter λ(λ > 0) is the function
defined by :

fhλ(x) := inf
y∈S
{f(y) + λ−1Dh(y, x)},∀x ∈ S.

ii) The application entropic proximal of f comparing to h , of parameter λ is the operator
defined by :

hfλ(x) := proxhλf (x) := arg min
y∈S
{f(y) + λ−1Dh(y, x)},∀x ∈ S.

Proposition 2.6. [6] Let h ∈ A(S) and f ∈ Γ0(R
d) such as :

(a) ri (dom f) ∩S 6= φ,

(b) Im∇h = Rd.

Then : ∀x ∈ S, ∀λ > 0

hfλ(x) ∈ S (1)

∇h(x)−∇h(hfλ(x))

λ
∈ ∂f(hfλ(x)) (2)

Some examples of Bregman functions are given below.

Example 2.7. If S0 = Rd and h0(x) = 1
2
‖ x ‖2 then

Dh0(x, y) =
1

2
‖ x− y ‖2 .

Example 2.8. If S1 = Rd
++ := {x ∈ Rd/xi > 0, i = 1, ..., d} and

h1(x) =
i=d∑
i=1

xilogxi − xi ; ∀x ∈ S1,
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with the convention : 0 log 0 = 0 , then

Dh1(x, y) =
d∑
i=1

xi log
xi
yi

+ yi − xi,∀(x, y) ∈ S1XS1.

Example 2.9. If S2 = ]−1, 1[d and h2(x) = -
i=d∑
i=1

√
1− x2i , then:

Dh2(x, y) = h2(x) +
d∑
i=1

1− xiyi√
1− y2i

, ∀(x, y) ∈ S2XS2.

We easily verifies that
hi ∈ B(Si), i = 0, 1, 2.

3. MAIN RESULTS

In this section, we analyze an algorithm that plays a decisive role in establishing the
convergence of the Entropic Bundle Algorithms proposed in section 4 , we suggest that
h and f satisfy the following hypotheses

Assumptions A :
(i) h ∈ B(S) such that Im∇h = Rd

(ii) f ∈ Γ0(R
d) such that S ∩ ri(domf) 6= ∅

——————————————————————————————————-
Algorithm 1: Inexact Entropic Proximal (IEP)
———————————————————————————————————
1: input: x0 ∈ S ∩ ri(domf)

2: for n = 1, 2, .... with λn > 0, find xn ∈ S and εn ≥ 0 such that f(xn) ≤ f(xn−1)

and

∇h(xn−1)−∇h(xn)

λn
∈ ∂εnf(xn)

———————————————————————————————————–
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Proposition 3.1. The sequence {xn}n defined by (IEP) exists and verified for all
n ∈ N∗ :

xn ∈ εn − argmin{f(u) +
1

λn
Dh(u, x

n−1), u ∈ S}.

Proof. Existence: is deduced trivially from (2).

Ωn :=
∇h(xn−1)−∇h(xn)

λn
∈ ∂εnf(xn)

⇒ f(u) ≥ f(xn)+ < u− xn,Ωn > −εn. By applying the L emma 2.2., we have :

f(u) ≥ f(xn) + λ−1n [Dhn(u, xn) +Dhn(xn, xn−1)−Dhn(u, xn−1)]− εn (3)

⇒ f(xn) + λ−1n Dhn(xn, xn−1) ≤ f(u) + λ−1n Dhn(u, xn−1) + εn,∀u ∈ S

⇒ xn ∈ εn − argmin{f(u) + 1
λn
Dh(u, x

n−1), u ∈
S}. �

Remark 3.2. For εn = 0, ∀n ∈ N∗ the algorithm (IEP) is written :

xn = argmin{f(u) +
1

λn
Dh(u, x

n−1), u ∈ S},

which have nothing but the entropic proximal algorithm (EP) studied by [4, 18] . (IEP)
is then an inexact version of the algorithm (EP) . The convergence results developed
below cover the convergence properties given in [18] .

Proposition 3.3. (Summability) If f ∗ := inf
y∈S

> −∞ ,
∞∑
n=1

λnεn < +∞ and

0 < λn ≤ λ, then,

∞∑
n=1

Dh(x
n, xn−1) < +∞ and

∞∑
n=1

Dh(x
n−1, xn) < +∞

Proof. From (3) , we have :

λn(f(xn)− f(u)) ≤ [Dh(u, x
n−1)−Dh(u, x

n)−Dh(x
n, xn−1)] + εnλn (4)

Put u = xn−1 in (4), we have

Dh(x
n, xn−1) +Dh(x

n−1, xn) ≤ λ(f(xn−1)− f(xn)) + λnεn (5)
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⇒
n=p∑
n=1

Dh(x
n, xn−1) +Dh(x

n−1, xn) ≤ λ

n=p∑
n=1

(f(xn−1)− f(xn)) +

n=p∑
n=1

λnεn

⇒
n=p∑
n=1

Dh(x
n, xn−1) +Dh(x

n−1, xn) ≤ λ(f(x0)− f ∗) +

n=p∑
n=1

λnεn.

∞∑
n=1

λnεn < +∞⇒
∞∑
n=1

Dh(x
n, xn−1) < +∞ and

∞∑
n=1

Dh(x
n−1, xn) < +∞. �

Proposition 3.4. (Global estimate in function values)

We suppose that arg min
S

f 6= ∅. Let tp :=

p∑
n=1

λn.

(a) ∀u ∈ S, ∀p ∈ N∗ , for x∗ ∈ arg min
S

f

f(xp)− f ∗ ≤ 1

tp
[Dh(x

∗, x0) +
∞∑
n=1

λnεn] (6)

(b) If λn = λ,∀n ∈ N∗,

f(xp)− f ∗ = O(
1

p
) (7)

Proof. (a) We have :

λn(f(xn)− f(u)) ≤ Dh(u, x
n−1)−Dh(u, x

n) + εnλn (8)

⇒
n=p∑
n=1

λn(f(xn)−f(u)) ≤
n=p∑
n=1

Dh(u, x
n−1)−Dh(u, x

n)+

n=p∑
n=1

λnεn

⇒
n=p∑
n=1

λn(f(xn)− f(u)) ≤ Dh(u, x
0)−Dh(u, x

p) +

n=p∑
n=1

λnεn

Since {f(xn)} is decreasing, we have :

(f(xp)− f(u))

n=p∑
n=1

λn ≤ Dh(u, x
0)−Dh(u, x

p) +

n=p∑
n=1

λnεn (9)

then,

f(xp)− f(u) ≤ 1

tp
[Dh(u, x

0) +
∞∑
n=1

λnεn]. (10)
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(b)
tp = λp⇒ (7). . �

Now , we derive a global convergence of the sequence generated by (IEP) to a minimizer
of (P) .

Theorem 3.5.
(a) If

∑
λn = +∞ and εn → 0 then f(xn)→ inf

S

(b) If, moreover arg min
S

f 6= ∅ and
∑
λnεn < +∞ then xn → x∗ ∈ arg min

S

f

Proof. (a)

(10)⇒ f(xp) ≤ f(u) + Dh(u,x
0)

tp
+

n=p∑
n=1

λnεn

tp
, when tp → +∞,

limf(xp) ≤ inf
S
. (11)

As limf(xp) ≥ inf
S
, we deduce

limf(xp) = inf
S
.

(b) Let x∗ ∈ arg min
S

f , we put u = x∗ in (8), we have

Dh(x
∗, xn) ≤ Dh(x

∗, xn−1) + λnεn (12)

Since
∑
λnεn < +∞, we have

Dh(x
∗, xn)→ l ≥ 0 (13)

From H3, {xn}n is bounded . Let u∗ ∈ Adh{xn}, it exists then a sub-sequence {xni}
of {xn}n such as xni −→ u∗ . u∗ ∈ arg min

S

f. Indeed :

inf
S
≤ f(u∗) ≤ f(xni) = inf

S
⇒ inf

S
= f(u∗),

which shows that u∗ ∈ arg min
S

f, therefore Dh(u
∗, xn)→ l′.

Since xni −→ u∗ ∈ S , from H4 , we are getting :

Dh(u
∗, xni)→ 0,
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then l′ = 0, i.e., Dh(u
∗, xn) → 0. The convergence of xn to u∗ results immediately

from the following lemma :

Lemma 3.6. If {xn} ⊂ S and Dh(u
∗, xn)→ 0 then xn → u∗.

Proof : From H3, {xn} is bounded. Let x∗ ∈ Adh{xn} , it exists then the sub-sequence
{xni} of {xn} such that xni → x∗. From H5 :

Dh(u
∗, xni)→ 0 and xni → x∗ ∈ S ⇒ x∗ = u∗

⇒ Adh{xn} = {x∗}
⇒ xn →

u∗. �

Corollary 3.7. we suppose that ri(domf) ⊂ S.

(a) If
∑
λn = +∞ and εn → 0 then f(xn)→ inff.

(b) If, moreover argminf 6= ∅ and
∑
λnεn < +∞ then xn → x∗ ∈ argminf.

Proof. Is a simple consequence of Theorem 3.5. �

4. ANALYSIS OF THE ENTROPIC BUNDLE ALGORITHMS

In what follows, we will deduce the results of convergence (Theorem 4.5. - 4.6.) for
Entropic Bundle Algorithms . First, we need to establish some technical results.

Let h ∈ B(S). Let f ∈ Γ0(R
d) and F a convex function with a finite values . We

suppose that f verifies :

(A1) : f = F + ΨS

Let {ϕk}k a sequence of functions belonging to Γ0(R
d) such as :

(A2) : ∀ x ∈ S,∀ λ > 0, yk := proxh
λϕk

(x) , exists and belongs to S.
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(The conditions of realisation of (A2) are given in the Remark 4.7.). From (2)

Υk :=
∇h(x)−∇h(yk)

λ
∈ ∂ϕk(yk).

Let’s put :

`k(y) := ϕk(yk)+ < Υk, y − yk >

`
k
(y) := `k(y) + λ−1Dh(y, x)

ϕk(y) := ϕk(y) + λ−1Dh(y, x).

Furthermore we suppose :

(A3) : ϕk ≤ f, ∀ k = 1, ...

(A4) : `k ≤ ϕk+1.

(A5) : f(yk)+ < gk, y − yk >≤ ϕk+1(y) where : gk ∈ ∂F (yk).

Proposition 4.1. Let h ∈ B(S). Let {xk} ⊂ S bounded and {yk} ⊂ S bounded, such
as Dh(y

k, xk)→ 0. Then ‖ yk − xk ‖→ 0.

Proof. Since {yk} and {xk} are bounded , the sequence {‖ yk − xk ‖}k is bounded
too. Let’s show that Adh{‖yk − xk‖} = {0} . Let δ ∈ Adh{‖yk − xk‖} , it exists a
sub-sequence {‖yki − xki‖}ki such as:

‖yki − xki‖ → δ.

{xki} is bounded , it exists {xkj} such that xkj → x∗ . Otherwise

{xk } ⊂ S ⇒ x∗ ∈ S.

From H5 ,

Dh(y
kj , xkj)→ 0 and xkj → x∗ ⇒ ykj → x∗.

It follows that ‖ ykj − xkj ‖→ 0 , which means : δ = 0. �
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Proposition 4.2. If f verifies A1 and {ϕk}k≥1 verifies A2, A3, A4 and A5 , then :

(i) 0 ≤ f(yk)− ϕk(yk)→ 0,

(ii) yk → proxhλfx.

Proof . (i)

`
k
(y)− `k(yk) = `k(y) + λ−1Dh(y, x)− `k(yk)− λ−1Dh(y

k, x)

=< Υk, y − yk > +λ−1Dh(y, x)− λ−1Dh(y
k, x)

= λ−1 < ∇h(x) − ∇h(yk), y − yk > +λ−1Dh(y, x) −
λ−1Dh(y

k, x).

From the Lemme 2.2.,

< ∇h(x)−∇h(yk), y − yk >= Dh(y, y
k) +Dh(y

k, x)−Dh(y, x)

It follows that :
`
k
(y) = `

k
(yk) + λ−1Dh(y, y

k) (14)

For x ∈ S,

f(x) ≥ ϕk+1(x) = ϕk+1(x)

≥ ϕk+1(yk+1) = `
k+1

(yk+1)

≥ `
k
(yk+1) = `

k
(yk) + λ−1Dh(y

k+1, yk).

(15)

We deduce that
f(x) ≥ `

k
(yk) (16)

`
k+1

(yk+1) ≥ `
k
(yk) + λ−1Dh(y

k+1, yk) (17)

Since x ∈ domf, from (16) and (17), we can deduce that

`
k
(yk)→ ` ∈ R. (18)
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On the other hand

(17)⇒ Dh(y
k+1, yk)→ 0.

For y fixed in (14) , and due to (18), we deduce that the sequence {Dh(y, y
k)}k is

bounded. From H3, {yk} is bounded . By vertue of the Proposition 4.1. ,

‖yk+1 − yk‖ → 0. (19)

From the other hand ,

f(yk+1)− f(yk) ≥ ϕk+1(yk+1)− f(yk) ≥< gk, yk+1 − yk >,

and from (A1) and (A2) ,

F (yk+1)− F (yk) ≥ ϕk+1(yk+1)− f(yk) ≥< gk, yk+1 − yk >,

F is at finite values , so locally Lipschitz , which leads , with (19),

F (yk+1)− F (yk)→ 0.

Since gk ∈ ∂F (yk) and {yk} is bounded, {gk} is bounded, then

ϕk+1(yk+1)− f(yk)→ 0.

Otherwise ,

0 ≤ f(yk)− ϕk(yk) = F (yk)− F (yk−1) + F (yk−1)− ϕk(yk).

It follows that

f(yk)− ϕk(yk)→ 0.

ii. the sequence {yk}k verifies ∇h(x)−∇h(y
k)

λ
∈ ∂εkf(yk) where εk = f(yk) − ϕk(yk),

thus the convergence of yk towards proxhλf results immediatly from the following
Lemme:
Lemma 4.3. Let {yk}k ⊂ S such as:

i- ∇h(x)−∇h(y
k)

λ
∈ ∂εkf(yk),

ii- εk → 0.
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Then :

(a) Dh(y
k, proxhλfx) +Dh(prox

h
λfx, y

k) ≤ λεk,

(b) yk → proxhλfx.

Proof. (a) ∇h(x)−∇h(yk)
λ

∈ ∂εkf(yk) and
∇h(x)−∇h(proxhλfx)

λ
∈ ∂εkf(proxhλfx), it

follows that

< ∇h(yk)−∇h(proxhλfx), yk − proxhλfx >≤ λεk,

Let again ,

Dh(y
k, proxhλfx) +Dh(prox

h
λfx, y

k) ≤ λεk,

(b) Dh(y
k, proxhλfx)→ 0 , so from H5, y

k → proxhλfx. �

Example 4.4. If h verifies the conditions of the proposition 2.6., Then (A2) is verified,
we give below two exemples of sequences {ϕk} verifying (A3), (A4) and (A5) :

E1 : ϕk+1(y) = max{f(yi)+ < gi, y − yi >, 1 ≤ i ≤ k >}

E2 : ϕk+1(y) = max{`k(y), f(yk)+ < gk, y − yk >}.

Now we represent below the Entropic Bundle Algorithms obtained by replacing the
quadratic kernel in the base method with entropic distances.

————————————————————————————————————
Algorithm 2 : Entropic Bundle Algorithm (EBA)
————————————————————————————————————–
1: input: m ∈ ]0, 1[, x1 ∈ S and k(1) := 0

2: for n = 1, 2, .... with λn > 0 and εn ≥ 0 , do
3: for k = k(n) + 1, ..., k(n+ 1), cumpute

yk := proxh
λnϕk

xn ,
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where k(n+ 1) is the first natural integer k > k(n) for which an improvement is
obtained , precisely :

(*) : f(xn)− f(yk) ≥ m
[
f(xn)− ϕk(yk)

]
.

4: (i) If the condition (*) is never verified , we put k(n+ 1) := +∞ and stop
(ii) If not , we put xn+1 = yk(n+1) go to step 3.
———————————————————————————————————–

Theorem 4.5. Let {xn} the generated sequence by the Entropic Bundle Algorithms .
From two things the one :

- (a) It exists n such as k(n+ 1) = +∞ then xn minimizes f.

- (b) The sequence k(n) is infinite , then if
∑

n λn = +∞, f(xn)→ inff. If furthermore
, 0 < λk ≤ λ < +∞ and argmin f 6= φ , then

xn → x ∈ argminf.

Proof . (a) (*) is not verified , it exists then a rank n such as :

f(xn)− f(yk) < m
[
f(xn)− ϕk(yk)

]
, ∀ k ≥ k(n) + 1.

Which leads :

(1−m)
[
f(xn)− f(yk)

]
< m

[
f(yk)− ϕk(yk)

]
.

According to the Proposion 4.2., f(yk) − ϕk(yk) → 0, then f(xn) ≤ f(proxhλnfxn).

Otherwise f(proxhλnfxn) + λ−1n Dh(prox
h
λnf
xn, xn) ≤ f(xn), then

f(proxhλnfxn) + λ−1n Dh(prox
h
λnf
xn, xn) ≤ f(proxhλnfxn)

Since proxhλnfxn ∈ S = domf , we have Dh(prox
h
λnf
xn, xn) = 0, i.e. proxhλnfxn =

xn ∈ S. From (2), 0 ∈ ∂f(xn), then xn ∈ Argminf.

(b) ∇h(xn)−∇h(xn+1)
λn

∈ ∂ϕk(n+1)(xn+1) ⇒ ∇h(xn)−∇h(xn+1)
λn

∈ ∂εn+1f(xn+1), where
εn+1 = f(xn+1)− ϕk(n+1)(xn+1).

From (*) , we have

0 ≤ εn+1 ≤
1−m
m

[f(xn)− f(xn+1)],
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therefore, f(xn) is decreasing and
∑

n λnεn < +∞. as ri(domf) = S, therefore by
application of the Corollary 3.7. , we deduce the result . �

In order to avoid the calculation of yk indefinitely, and since f(yk) − ϕk(yk) → 0, we
propose the following algorithm :

—————————————————————————————————-
Algorithm 3: A version of the Entropic Bundle Algorithm (EBA)
————————————————————————————————–
1: input: x1 ∈ S and k(1) := 0

2: for n = 1, 2, .... with λn > 0 and αn ≥ 0 , do
3: for k = k(n) + 1, ..., k(n+ 1), cumpute

yk := proxh
λnϕk

xn ,

where k(n+ 1) is the first natural integer k > k(n) such that :

(**) f(yk)− ϕk(yk) ≤ αn+1

4: put : xn+1 = yk(n+1) go to step 3.
————————————————————————————————–

As before, we have ∇h(xn)−∇h(xn+1)
λn

∈ ∂εn+1f(xn+1) , where

εn+1 = f(xn+1)− ϕk(n+1)(xn+1).

Since εn+1 ≤ αn+1 , the convergence result of this algorithm is given by :

Theorem 4.6. Let {xn} the generated sequence by Algorithm 3
(i) If

∑
n λn = +∞ and αk → 0 then lim inff(xn) = inff .

(ii) If, moreover , 0 < λk ≤ λ < +∞ ,
∑

k αk < +∞ and Argmin f 6= φ then

limf(xn) = inff and xn → x ∈ argmin f.

Proof. Immediate consequence of Corollary 3.7. �
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Remark 4.7.

(i) If Im∇h = Rd and ri(domϕk) ∩ S 6= ∅ , then according to the Proposition 2.6.
(A2) is always verified

(ii) If S = Rd, then (A2) is checked and the Algorithms (2) and (3) solve (P) where f
is finite values

5. CONCLUSION

The proposed class of methods (EBA) contains the bundle method (BM) described
by Correa-Lemaréchal [13] and solves convex optimization problems under positive
constraints:
(i) If h = h0 then (EBA)⇔ (BM)

(ii) For F: Rd → R convex , let the problem of convex optimization:

(P ′) : min{F (x), x ∈ Ω} where Ω is the positive cone of Rd

For h ∈ B(S), with S = int(Ω), (for example h = h1) , (EBA) solves (P ′) without
using the dual problem, like Teboulle [17] and Eckstein [4] .
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