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Abstract

In this paper, we present existence and uniqueness of mild solutions for neutral
impulsive stochastic differential equations driven by fractional Brownian motion
with the Hurst index H > 1

2 with Poisson jumps. The results are obtained by
using Banach fixed point principle in a Hillbert space.
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1. INTRODUCTION

In this paper, we establish the existence, uniqueness and asymptotic behaviour of mild
solution to neutral impulsive stochastic differential equations with finite delay and Pois-
son jumps of the following form driven by fractional Brownian motion in a Hilbert
space

d[u(t) + g(t, ut)] = [Au(t) + f(t, ut)]dt+ σ(t)dWH(t)+∫
Z

h(t, ut, y)Ñ(dt, dy), t ≥ 0, t 6= tk,

∆u(tk) := u(t+k )− u(tk) = Ik(x(tk)), k ∈ N, t ∈ (−τ, 0] (0 < τ ≤ ∞)

u(0) +G(u) = u0,

(1.1)
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where Z ∈ L 0
2 (U − {0}), A is the infinitesimal generator of an analytic semigroup

of bounded linear operators, (T (t))t≥0 in a Hilbert space X with norm ‖.‖, WH is a
fractional Brownian motion with H > 1

2
on a real and seperable Hilbert space Y , N

denotes the set of positive integers, the impulsive moments satisfy 0 < t1 < t2 <

· · · , lim
k→∞

tk = ∞, and f, g : [0,∞)X → X, ,G : X → L 0
2 (Y,X), σ : [0,∞) →

L 0
2 (Y,X), h : [0,∞)X × U → X, Ik : X → X are defined later, the initial data

φ ∈ C((−τ, 0], X) the space of all continuous functions from (−τ, 0] to X and has
finite second moments. The space L 0

2 (Y,X) will be defined later. We have used
Banach fixed point theorem and semigroup theory as a major tool.

As for the stochastic functional differential equations driven by a fractional Brownian
motion and Poisson jumps, even much less has been done, as far as we know, there
exists only few papers published in this field. In Ferrante and Rovira,[9] the authors
studied the existence and regularity of the density by using Skorohod integral based on
the Malliavin calculus. Neuenkirch et al. [18] studied the problem by using rough path
analysis. In [11]Ferrante and Rovira, studied the existence and convergence when the
delay goes to zero by using the Riemann-Stieltjes integral. Using the Riemann-Stieltjes
integral, Boufoussi and Hajji(2011) [3] and Boufoussi et al. (2011) [4] proved the
existence and uniqueness of a mild solution and studied the dependence of the solution
on the initial condition in finite and infinite dimensional spaces. Caraballo et al. (2011)
[6] have discussed the existence, uniqueness and exponential asymptotic behaviour of
mild solutions by using Wiener integral.

By contrary, there has not been very much study of stochastic differential equations
driven by fractional Brownian motion and Poisson jumps with nonlocal conditions,
while these have begun to gain attention recently. P. Balasubramaniam et. al [2] showed
there exists solutions for semilinear neutral stochastic functional differential equation
with nonlocal conditions. Jingyun v and Xiaoyuan Yang [14] studied nonlocal frac-
tional stochastic differential equations driven by fractional Brownian motion. Sayooj
Aby Jose and Venkatesh Usha [20] studied existence of Solutions for Random Impul-
sive Differential Equation with Nonlocal conditions.

On the other hand, to the best of our knowledge, there is no paper which investigates the
study of neutral stochastic impulsive differential equations driven by fractional Brown-
ian motion with finite delay, Poisson jumps and nonlocal conditions. Thus, by motiva-
tion of above mentioned works we will make the first attempt to study such system in
this paper.

This paper is constructed as follows. In section 2 we present some basic results and
estimates. In section 3 we mentioned hypotheses to establish the main result. In section
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4 we studied the existence, uniqueness and asymptotic behaviour of mild solution.

2. PRELIMINARIES

We first introduce some definitions, notations and basic preliminary facts which are
used throughout this paper. Let (Ω,F , P ) be a complete probability space and T > 0

be an arbitrary fixed horizon. An one-dimensional fractional Brownian motion(fbm)
with Hurst parameter H ∈ (0, 1) is a centered Gaussian process βH = {βH(t), 0 ≤ t ≤
T} with the covariance function R(t, s) = E[βH(t)βH(s)]

R(t, s) =
1

2
(|t|2H + |s|2H − |t− s|2H).

It is known that βH(t) with H > 1
2

admits the following Volterra representation

βH(t) =

∫ t

0

K(t, s)dβ(s), (2.1)

where β is a standard Brownian motion and the Volterra kernal K(t, s) is given by

K(t, s) = cH

∫ t

s

(u− s)H−
3
2

(
u

s

)H− 1
2

du, t ≥ s.

for the deterministic function ϕ ∈ L2([0, T ]), the fractional Wiener integral of ϕ with
respect to βH is defined by∫ T

0

ϕ(s)dβH(s) =

∫ T

0

K∗Hϕ(s)dβ(s),

where K∗Hϕ(s) =

∫ T

s

ϕ(r)
∂K

∂r
(r, s)dr.

Let (U , ε, ν(du)) be a σ− finite measurable space. Given a stationary Poisson point
process (pt)t>0, which is defined on (Ω,F , P ) with values in U and with character-
istic measure ν. We will denote by N(t, du) be the counting measure of pt such that
N̂(t, A) := E(N(t, A)) = tν(A) for A ∈ ε. Define N̂(t, du) := N(t, du)− tν(du), the
Poisson martingale measure generated by pt.
Let X and Y be two real, seperable Hilbert spaces and let L (Y,X) be the space of
bounded linear operators from Y to X . For the sake of convenience, we shall use
the same notation to denote the norms in X, Y and L (Y,X). Let {en, n = 1, 2, . . .}
be a complete orthonormal basis in Y and Q ∈ L (Y,X) be an operator defined by

Qen = λnen with finite trace trQ =
∞∑
n=1

λn <∞, where λn, n = 1, 2, . . . are non-

negative real numbers. We define the infinite dimensional fbm on Y with covariance Q
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as

WH(t) =
∞∑
n=1

√
λnenβ

H
n (t),

where βHn (t) are real, independent fbm’s. This process is a Y−valued Gaussian, it starts
from 0, has zero mean and covariance:

E
〈
WH(t), x

〉 〈
WH(s), y

〉
= R(t, s) 〈Q(x), y〉 for all x, y ∈ Y and t, s ∈ [0, T ].

In order to define Wiener integrals with respect to the Q−fbm WH(t), we introduce
the space L 0

2 := L 0
2 (Y,X) of all Q−Hillbert-Schmidt operators ψ : Y → X. and

ψ ∈ L (Y,X) is called a Q−Hilbert-Schmidt operator if

‖ψ‖L 0
2

:=
∞∑
n=1

‖
√
λnψen‖2 <∞

and that the space L 0
2 equipped with the inner product 〈ϕ, ψ〉L 0

2
:=

∞∑
n=1

〈ϕen, ψen〉 is

a seperable Hilbert space. The fractional Wiener integral of the function ψ : [0, T ] →
L 0

2 (Y,X) with respect to Q−fbm is defined by∫ t

0

ψ(s)dWH(s) =
∞∑
n=1

∫ t

0

√
λnψ(s)endβ

H
n (s) =

∞∑
n=1

∫ t

0

√
λnK

∗
H(ψen)(s)dβn(s),

(2.2)
where βn is the standard Brownian motion used to present βHn as in equation 2.1.

Suppose that 0 ∈ ρ(A), where ρ(A) is the resolvent set of A, and the semigroup T (t)

is uniformly bounded, ‖T (t)‖ ≤ M for some constant M ≥ 1 and every t ≥ 0. Then,
for 0 < α ≤ 1, it is possible to define the fractional power operator (−A)α as a closed
inear operator on its domain D(−A)α. Furthermore, the subspace D(−A)α is dense in
X and the expression

‖x‖α = ‖(−A)αx‖, x ∈ D(−A)α

defines a norm on Xα := D(−A)α.

Lemma 2.1. If ψ : [0, T ] → L 0
2 (Y,X) satisfies

∫ t

0

‖ψ(s)‖2L 0
2
ds <∞ then the above

sum in equation 2.2 is well defined as an X−valued random variable and we have

E

∥∥∥∥∫ t

0

ψ(s)dWH(s)

∥∥∥∥2 ≤ 2Ht2H−1
∫ t

0

‖ψ(s)‖2L 0
2
ds. (2.3)

Lemma 2.2. [19] Under the above conditions the following properties hold.
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• Xα is a Banach space for 0 < α ≤ 1.

• If the resolvent operator of A is compact, then the embedding Xβ ⊂ Xα is con-
tinuous and compact for 0 < α ≤ β.

• For every 0 < α ≤ 1, there exists Mα such that

‖(−A)αT (t)‖ ≤Mαt
−αe−λt, λ > 0, t ≥ 0. (2.4)

Definition 2.1. An X−valued stochastic process {u(t), t ∈ (−τ,∞)} is called a mild
solution of equation 1.1 if u(t) = φ(t) on (−τ, 0], and the following conditions hold:

• u(.) is continuous on (0, t1] and each interval (tk, tk+1], k ∈ N,

• for each tk, u(t+k ) = lim
t→t+k

u(t) exists,

• for each t ≥ 0, we have a.s.

u(t) = T (t)[u0 −G(u) + g(0, φ)]− g(t, ut)−
∫ t

0

AT (t− s)g(s, us)ds

+

∫ t

0

T (t− s)f(s, us)ds+

∫ t

0

T (t− s)σ(s)dWH(s)

+

∫ t

0

T (t− s)
∫
Z

h(s, us, y)Ñ(ds, dy) +
∑

0<tk<t

T (t− tk)Ik(u(tk)).

(2.5)

3. HYPOTHESES

In order to prove the required results, we assume the following conditions:

(H1) A is the infinitesimal generator of an analytic semigroup, (T (t))t≥0, of bounded
linear operators on X . Moreover, T (t) satisfies the condition that there exists
positive constants M , λ such that

‖T (t)‖ ≤Me−λt, t ≥ 0.

(H2) There exists L1 > 0 such that, for all t ≥ 0, x, y ∈ X.

‖f(t, u)− f(t, v)‖2 ≤ L1‖u− v‖2.

(H3) There exist constants 0 < β < 1, L2 > 0 such that the function g is Xβ− valued
and satisfies for all t ≥ 0, x, y ∈ X

||(−A)βg(t, u)− (−A)βg(t, v)||2 ≤ L2||u− v||2.
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(H4) The function (−A)βg is continuous in the quadratic mean square:
For all functions x,

lim
t→s

E‖(−A)βg(t, u(t))− (−A)βg(s, u(s))‖2 = 0.

(H5) There exists some positive numbers qk, k ∈ N such that

‖Ik(u)− Ik(v)‖ ≤ qk‖u− v‖

for all u, v ∈ X and
∞∑
k=1

qk <∞.

(H6) The function σ : [0,∞) → L 0
2 (Y,X) satisfies

∫ ∞
0

e2γs‖σ(s)‖2L 0
2
ds <∞ for

some γ > 0.

(H7) The measurable mappings f(.), σ(.) and h(.) satisfy the following conditions:

(7a) for all t ∈ (−τ, 0], φ1, φ2 ∈ C((−τ, 0], X),

|f(t, φ1)− f(t, φ2)|2 ∨ |σ(t, φ1)− σ(t, φ2)|2L 0
2

≤ K(‖φ1 − φ2‖2L 0
2
).

(7b) for any H− valued processes u(t), v(t), t ∈ (−τ, 0],∫ t

0

∫
Z

|h(s, us, z)

− h(s, vs, z)|2v(dz)ds ∨
(∫ t

0

∫
Z

|h(s, us, z)− h(s, vs, z)|4v(dz)ds

) 1
2

≤
∫ t

0

K(|u(s)− v(s)|2)ds,(∫ t

0

∫
Z

|h(s, us, z)|4v(dz)ds

) 1
2

≤
∫ t

0

K(|u(s)|2)ds,

where K(.) is a concave nondecreasing function from R+ to R+ such that

K(0) = 0,K(u) > 0 for u > 0 and
∫
0+

du

K(u)
= +∞.

(H8) For all t ∈ (−τ, 0], there exists a constant L3 > 0 such that

|f(t, 0)|2 ∨ |σ(t, 0)|2 ∨
∫
Z

|h(t, 0, z)|2v(dz) ≤ L3
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(H9) There exists a constant L4 > 0 such that G : S→ X satisfies

‖G(x1)−G(x2)‖2 ≤ L4‖x1 − x2‖.

(H10) There exists a constant c1 such that

‖G(x)‖ ≤ c1(1 + ‖x‖), ∀x ∈ X.

4. EXISTENCE AND UNIQUENESS RESULTS

Theorem 1. Assume that f(t, 0) = g(t, 0) = Ik(0) = 0, ∀t ≥ 0, k ∈ N. The
assumptions (H1)− (H8) hold and that

4

(
L2‖(−A)−β‖2 +M2

1−βL2Γ
2(β)λ−2β +M2L1λ

−2

+M2λ−2 + L4M
2e−λt +M2

( ∞∑
k=1

qk

)2)
< 1,

(4.1)

where Γ(.) is the Gamma function, M1−β is the corresponding constant in Lemma
2.2. Then the mild solution to equation 1.1 exists uniquely and is exponential decay
to zero in mean square, i.e., there exists a pair of positive constants a > 0 and M∗ =

M∗(φ, a) > 0 such that
E‖u(t)‖2 ≤M∗e−at, t ≥ 0. (4.2)

Proof: Denote by S the space of all stochastic processes u(t, ω) : (−τ,∞) × Ω → X

satisfying u(t) = φ(t), t ∈ (−τ, 0] and the conditions (i), (ii) in Definition 2.1 and there
exist some constants a > 0 and M∗ = M∗(φ, a) > 0 such that

E‖u(t)‖2 ≤M∗e−at, t ≥ 0. (4.3)

Now we check that S is a banach space endowed with a norm |x|2S = supt≥0E|u(t)|2.
Without loss of generality, we may assume that a < λ. We define the operator Ψ on S
by
(Ψx)(t) = φ(t), t ∈ (−τ, 0] and

(Ψx)(t) = T (t)[x0 −G(x) + g(0, φ)]− g(t, xt)

−
∫ t

0

AS(t− s)g(s, xt)ds+

∫ t

0

S(t− s)f(s, xs)ds

+

∫ t

0

S(t− s)σ(s)dWH(s) +

∫ t

0

S(t− s)
∫
Z

h(s, xs, y)Ñ(ds, dy)

+
∑

0<tk<t

S(t− tk)Ik(x(tk)) :=
6∑
i=1

Pi(t), t ≥ 0.
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It is enough to show that the operator Ψ has a unique fixed point in S. To prove this we
use the contraction mapping principle.
Step 1: Lets check that Ψ(S) ⊂ S. We denote by M∗

i , i = 1, 2, . . . the finite positive
constants depending on φ, a. By the assumption (H1) we have

E‖P1(t)‖2 ≤M2E‖x0 −G(x) + g(0, φ)‖2e−λt

≤ 3M2[E‖x0‖2 + E‖G(x)‖2 + E‖g(0, φ)‖2]e−λt

≤ 3M2[E‖x0‖2 + 2c21(1 + ‖x‖2)]e−λt

≤ 3M2[E‖x0‖2 + 2c21]e
−λt + 6M2c21e

−λtE‖x‖2

≤M∗
1 e
−λt +M∗

2 e
−(λ+a)t (4.4)

To analyze Pi(t), i = 2, . . . , 6, we found that for u ∈ S the following evaluation holds

E‖ut‖2 ≤ (M∗e−at + E‖φt‖2)
≤ (M∗e−at + E‖φ‖2Ce−at)
≤ (M∗ + E‖φ‖2C)e−at,

where ‖φ‖C = sup
−τ<s≤0

‖φ(s)‖ <∞. Then by assumption (H3) we have

E‖P2(t)‖2 ≤ ‖(−A)−β‖2E‖(−A)βg(t, ut)− (−A)βg(t, 0)‖2

≤ L2‖(−A)−β‖2E‖ut‖2

≤ L2‖(−A)−β‖2(M∗ + E‖φ‖2C)e−at

≤M∗
2 e
−at. (4.5)

Using Lemma 2.2, Holder’s inequality and assumption (H3) we get that

E‖P3(t)‖2 = E

∥∥∥∥∫ t

0

AT (t− s)g(s, us))ds

∥∥∥∥2
≤
∫ t

0

‖(−A)1−βT (t− s)‖ds
∫ t

0

‖(−A)1−βT (t− s)‖E‖(−A)βg(s, us)‖2ds

≤M2
1−βL2

∫ t

0

(t− s)β−1e−λ(t−s)ds
∫ t

0

(t− s)β−1e−λ(t−s)E‖us‖2ds

≤M2
1−βL2

Γ(β)

λβ

∫ t

0

(t− s)β−1e−λ(t−s)(M∗ + E‖φ‖2C)e−asds

≤M2
1−βL2

Γ(β)

λβ
(M∗ + E‖φ‖2C)e−at

∫ t

0

(t− s)β−1e(a−λ)(t−s)ds

≤M2
1−βL2

Γ2(β)

λβ(λ− a)β
(M∗ + E‖φ‖2C)e−at.
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Hence we retrieve that

E‖P3(t)‖2 ≤M∗
3 e
−at. (4.6)

we acquire by assumption (H2) that

E‖P4(t)‖2 = E

∥∥∥∥∫ t

0

T (t− s)f(s, us)ds

∥∥∥∥2
≤M2L1

∫ t

0

e−λ(t−s)ds

∫ t

0

e−λ(t−s)E‖us‖2ds

≤M2L1λ
−1
∫ t

0

e−λ(t−s)(M∗ + E‖φ‖2C)e−asds

≤M2L1λ
−1(λ− a)−1(M∗ + E‖φ‖2C)e−at

≤M∗
4 e
−at. (4.7)

By using Lemma 2.1 we get that

E‖p5(t)‖2 ≤ 2M2Ht2H−1
∫ t

0

e−2λ(t−s)‖σ(s)‖2L 0
2
ds (4.8)

From this inequality we can establish that ,

E‖P5(t)‖2 ≤ 2M2Ht2H−1e−2λ
′
t

∫ ∞
0

e2γs‖σ(s)‖2L 0
2
ds, (4.9)

where λ′
= λ ∧ γ. Indeed, if λ < γ, then λ′

= λ and we have

E‖P5(t)‖2 ≤ 2M2Ht2H−1e−2λt
∫ t

0

e2λs‖σ(s)‖2L 0
2
ds

≤ 2M2Ht2H−1e−2λ
′
t

∫ ∞
0

e2γs‖σ(s)‖2L 0
2
ds.

If γ < λ, then λ′
= γ and we have

E‖P5(t)‖2 ≤ 2M2Ht2H−1e−2γt
∫ t

0

e−2(λ−γ)(t−s)e2γs‖σ(s)‖2L 0
2
ds.

≤ 2M2Ht2H−1e−2λ
′
t

∫ ∞
0

e2γs‖σ(s)‖2L 0
2
ds.

We know that sup
t≥0

(t2H−1e−λ
′
t) <∞, and using the inequality 4.9, gives us

E‖P5(t)‖2 ≤M∗
5 e
−λ′ t. (4.10)
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Using assumptions (H7), (H8) and Burholder’s inequality, we found that

E‖P6(t)‖2 = E

∥∥∥∥∫ t

0

∫
Z

T (t− s)h(s, us, z)Ñ(ds, dz)

∥∥∥∥2
≤ c

{∫ t

0

∫
Z

E‖T (t− s)h(s, us, z)‖2v(dz)ds

+ E

(∫ t

0

∫
z

‖T (t− s)h(s, us, z)‖4v(dz)ds

) 1
2
}

≤ c

{∫ t

0

E‖T (t− s)‖ds
∫ t

0

∫
z

T (t− s)‖h(s, us, z)‖2v(dz)ds

+ E

∫ t

0

‖T (t− s)‖2ds
(∫ t

0

∫
z

(
T (t− s))2‖h(s, us, z)‖4v(dz)ds

) 1
2
}

≤ c

{
2M2λ−1

(∫ t

0

∫
z

e−λ(t−s)‖h(s, us, z)− h(s, 0, z)‖2v(dz)ds

+

∫ t

0

∫
z

e−λ(t−s)‖h(s, 0, z)‖2v(dz)ds

)
+M2λ−2

(
M2

∫ t

0

e−2λ(t−s)
) 1

2
∫ t

0

‖‖u(s)‖2ds
}

≤ c

{
2M2λ−1

∫ t

0

e−λ(t−s)(M∗ + E‖φ‖2)e−asds

+ 2M2L3λ
−2 +M3λ−2

∫ t

0

e−λ(t−s)(M∗ + E‖φ‖2)e−asds
}

After reckoning we found the following.

E‖P6(t)‖2 ≤ c

{
2M2λ−1(λ− a)−1(M∗ + E‖φ‖2)e−at + 2M2L3λ

−2e−λ1t

+M3λ−2‖(M∗ + E‖φ‖2)(λ− a)−1e−at
}
≤M∗

6 e
−(a+λ1)t. (4.11)
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From (H5) and Holder’s inequality, we get the following estimate for P6(t)

E‖P7(t)‖2 = E

∥∥∥∥ ∑
0<tk<t

T (t− tk)Ik(u(tk))

∥∥∥∥2
≤ E

( ∑
0<tk<t

‖T (t− tk)‖‖Ik(u(tk))− Ik(0)‖
)2

≤M2E

( ∑
0<tk<t

e−λ(t−tk)qk‖u(tk)‖
)2

≤M2
∑

0<tk<t

qk
∑

0<tk<t

qke
−2λ(t−tk)E‖u(tk)‖2

≤M2

∞∑
k=1

qk
∑

0<tk<t

qke
−2λ(t−tk)M∗e−atk

≤M2M∗e−at
∞∑
k=1

qk
∑

0<tk<t

qke
(a−2λ)(t−tk)

≤M2M∗e−at
( ∞∑

k=1

qk

)2

≤M∗
6 e
−at. (4.12)

Combining 4.4 - 4.7 and 4.10 - 4.12 we found there exist M
∗
> 0 and a > 0 such that

E‖(Ψu)(t)‖2 ≤M
∗
e−at, t ≥ 0. (4.13)

It is easy to check that (Ψu)(t) satisfies the conditions (i), (ii) in definition 3.1. Hence,
we can conclude that Ψ(S) ⊂ S.
Step 2 We now show that Ψ is a contraction mapping. For any u, v ∈ ∼, we have

E‖(Ψu)(t)− (Ψv)(t)‖2 ≤ 4
4∑
i=1

Qi. (4.14)

Since u(t) = v(t) = φ(t), t ∈ (−τ, 0], this implies that

E‖ut − vt‖2 ≤ sup
t≥0

E‖u(t)− v(t)‖2. (4.15)

Q1 = E‖T (t)[G(ut)−G(vt)]‖2 ≤ ‖T (t)‖2E‖G(ut)−G(vt)‖2 (4.16)

≤M2e−λtE‖G(ut)−G(vt)‖2 ≤ L4M
2 sup
t≥0

e−λtE‖G(ut)−G(vt)‖. (4.17)

Using assumption (H3), we get the following result.

Q1 = E‖g(t, ut)− g(t, vt)‖2

≤ L2‖(−A)−β‖2E‖ut − vt‖2

≤ L2‖(−A)−β‖2 sup
t≥0

E‖u(t)− v(t)‖2.
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and

Q2 = E

∥∥∥∥∫ t

0

AT (t− s)[g(s, us)− g(s, vs)]ds

∥∥∥∥2
≤M2

1−βL2

∫ t

0

(t− s)β−1e−λ(t−s)ds
∫ t

0

(t− s)β−1e−λ(t−s)E‖us − vs‖2ds

≤M2
1−βL2

Γ(β)

λβ

∫ t

0

(t− s)β−1e−λ(t−s)E‖us − vs‖2ds

≤M2
1−βL2

Γ2(β)

λ2β
sup
t≥0

E‖u(t)− v(t)‖2.

By assumption (H2)

Q3 = E

∥∥∥∥∫ t

0

T (t− s)[f(s, us)− f(s, vs)]ds

∥∥∥∥2
≤M2L1

∫ t

0

e−λ(t−s)ds

∫ t

0

e−λ(t−s)E‖us − vs‖2ds

≤M2L1λ
−1
∫ t

0

e−λ(t−s)E‖us − vs‖2ds

≤M2L1λ
−2 sup

t≥0
E‖u(t)− v(t)‖2.

By assumption (H7)

Q4 = E

∥∥∥∥∫ t

0

∫
Z

T (t− s)[h(s, us, z)− h(s, vs, z)]Ñ(ds, dz)

∥∥∥∥2
≤
∫ t

0

T (t− s)ds
∫ t

0

∫
z

T (t− s)E‖h(s, us, z)− h(s, vs, z)‖2Ñ(ds, dz)

≤M2

∫ t

0

e−λ(t−s)
∫ t

0

e−λ(t−s)‖us − vs‖2ds

≤M2λ−1
∫ t

0

e−λ(t−s)‖us − vs‖2ds ≤M2λ−2 sup
t≥0

E‖u(t)− v(t)‖2.

By assumption (H5)

Q5 = E

∥∥∥∥∑
0<tk<t

s(t− tk)[Ik(u(tk))− Ik(v(tk))]

∥∥∥∥2

≤M2

(∑
0<tk<t

e−λ(t−tk)qkE‖u(tk)− v(tk)‖
)2

≤M2

( ∞∑
k=1

qk

)2

sup
t≥0

E‖u(t)− v(t)‖2.
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Thus

E‖(Ψu)(t)− (Ψv)(t)‖2 ≤ 4

(
L2‖(−A)−β‖2 +M2

1−βL2Γ
2(β)λ−2β +M2L1λ

−2 +M2λ−2

+ L4M
2e−λt +M2

( ∞∑
k=1

qk

)2)
sup
t≥0

E‖u(t)− v(t)‖2.

By the condition (4.1), we claim that Ψ is contractive. So, applying the Banach fixed
point principle, the proof is complete. �

Theorem 2. (Infinite Delays), Under the conditions of Theorem 3.1, the mild solution
to (1.1) exists uniquely and converges to zero in mean square, i.e.,

lim
t→∞

E‖u(t)‖2 = 0. (4.18)

Proof: Denote by S′ the space of all stochastic processes x(t, ω) : (−∞,∞)×Ω→ X

satisfying u(t) = π(t), t ∈ (−∞, 0] and the conditions (i), (ii) in Definition 3.1 and

lim
t→∞

E‖u(t)‖2 = 0. (4.19)

We define the operator ψ on S′ by (ψu)(t) = π(t), t ∈ (−∞, 0] and

(ψu)(t) = T (t)[u0 −G(u) + g(0, φ)]− g(t, ut)−
∫ t

0

AT (t− s)g(s, us)ds

+

∫ t

0

T (t− s)f(s, us)ds+

∫ t

0

T (t− s)σ(s)dWH(s)

+

∫ t

0

T (t− s)
∫
Z

h(s, us, y)Ñ(ds, dy)

+
∑

0<tk<t

T (t− tk)Ik(u(tk)) :=
6∑
i=1

Pi(t), t ≥ 0. (4.20)

Since (ψu)(t) = (φu)(t) on, [0,∞), this implies that ψ is contractive. Hence it
remains to check ψ(S′

) ⊂ S′
. In order to obtain this claim, we need to show that

limt→∞E‖(ψu)(t)‖2 = 0 for all u ∈ S′
.

By the definition of S′
, assumption (H6) and the fact t− r(t)→∞, t→∞, we get

lim
t→∞

E‖P1(t)‖2 = lim
t→∞

E‖P2(t)‖2 = lim
t→∞

E‖P5(t)‖2 = 0. (4.21)
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We further have

E‖P3(t)‖2 = E

∥∥∥∥∫ t

0

AT (t− s)g(s, us))ds

∥∥∥∥2
≤M2

1−βL2

∫ t

0

(t− s)β−1e−λ(t−s)ds
∫ t

0

(t− s)β−1e−λ(t−s)E‖us‖2ds

≤M2
1−βL2Γ(β)λβ

∫ t

0

(t− s)β−1e−λ(t−s)E‖us‖2ds

For any x ∈ S′ and ε > 0 it follows from (3.12) that there exists s1 > 0 such that
E‖u(s− r(s)‖2 < ε for all s ≥ s1. Thus we obtain

E‖P3(t)‖2 ≤M2
1−βL2Γ(β)λβ

∫ t

0

(t− s)β−1e−λ(t−s)E‖us)‖2ds+M2
1−βL2Γ

2(β)λ−2βε,

which proves that

E‖P3(t)‖2 ≤M2
1−βL2Γ

2(β)λ−2βε,∀ε > 0,

and hence, limt→∞E‖P3(t)‖2 = 0. In the same way we also have limt→∞E‖P4(t)‖2 =

0. Furthermore, since

E‖P6(t)‖2 = E

∥∥∥∥∫ t

0

∫
Z

T (t− s)[h(s, us, z)]Ñ(ds, dz)

∥∥∥∥2
≤
∫ t

0

T (t− s)ds
∫ t

0

∫
z

T (t− s)E‖h(s, us, z)‖2Ñ(ds, dz)

≤M2

∫ t

0

e−λ(t−s)
∫ t

0

e−λ(t−s)‖us‖2ds

≤M2λ−1
∫ t

0

e−λ(t−s)‖us‖2ds.

≤M2λ−1
∫ t

0

e−λ(t−s)‖us‖2ds+M2λ−2ε.

proves that,
E‖P6(t)‖2 ≤M2λ−2ε.

Then we have limt→∞E‖P7(t)‖2 = 0. And,

E‖P7(t)‖2 = E

∥∥∥∥ ∑
0<tk<t

T (t− tk)Ik(u(tk))

∥∥∥∥2
≤M2

∑
0<tk<t

qk
∑

0<tk<t

qke
−2λ(t−tk)E‖u(tk)‖2

≤M2

∞∑
k=1

qk
∑

0<tk<t

qke
−2λ(t−tk)E‖u(tk)‖2 +M2(

∞∑
k=1

qk)
2ε,
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we can get that limt→∞E‖P7(t)‖2 = 0. Once again, by applying the Banach fixed
point principle we complete the proof of the theorem. �
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