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Abstract

Con metric spaces are considered as mathematical tools and play a paramount
role in several areas. The purpose of this paper is to introduce a notion of
generalized con metric space and some convergence properties of sequences are
proved. we also discuss the fixed point extended result of contractive mappings.
keyword: Cone metric spaces; contractive mappings; Fixed point theory.

1. Introduction

The study of fixed point theory has been at the center of vigorous activity although they
arise in many other areas of mathematics. We start with the notion of Dhage [4] in
1992, he introduced the notion of generalized metric space or D-metric space. Later
on, Rhoades [9], generalized Dhages contractive condition and he proved two general
fixed point theorems for D-metric spaces. In 2006, Cho and Saadati [3] generalized the
concept of a matric space using a δ-distance on a complete D-metric spaces and some
properties of convergence and bounded. Furthermore, Hunge and Zhang [5] introduced
the notion of a cone metric space in which the real numbers is replaced by an ordering
Banch space and they proved some fixed point theorems for mappings satisfying dif-
ferent contractive condition. Abbas and Rhoades [1] proved some fixed point theorems
in cone metric spaces, including results which generalized in [5]. Mustafa and Sims
[6, 7] introduced a notion of G-metric space, replacing the tetrahedral by an inequality
involving repetition of indices. In 2010, Beg, Abbas and Nazir introduced a notion
of generalized cone metric space. Also, they proved some convergence properties of
sequence and some fixed point theorems for contractive mappings. In this paper, we
give a generalization of cone metric space and discuss some properties of convergence
of sequence. our results generalized some fixed point theorems in metric spaces using
some generalized contractive condition in D*-cone metric space as a probable modifi-
cation of definition of D-metric spaces introduced by Dhage (1992).
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Definition 1.1. [5]. Let E be a real Banach space, P ⊆ E, P is called a cone if and
only if

(i) P is closed, non-empty, P 6= {0},

(ii) for each a, b ≥ 0, x, y ∈ P , then ax+ by ∈ P ,

(iii) P ∩ (−P ) = {0}.

For a given cone P ⊆ E we denote x� y if y− x ∈ IntP , where IntP is the interior
P , The cone P is called normal if there is number M > 0 such that for all 0 ≤ x ≤ y

implies ‖x‖ ≤M ‖y‖, M is called the normal element.

Definition 1.2. [5]. LetXbe a nonempty set. Suppose that the mapping d : X×X →
E ,satisfies :

(i) 0 ≤ d (x, y) ,for all x, y ∈ X and d (x, y) = 0 if and only if x = y;

(ii) d (x, y) = d (y, x), for all x, y ∈ X;

(iii) d (x, y) ≤ d (x, z) + d (z, y) for all x, y, z ∈ X .

Then d is called a cone metric space on X , and (X, d) is called a cone metric space.

Definition 1.3. [3]. Let X be non-empty set, a D-metric space is a function D :

X ×X ×X → R+ defined on X such that for any x, y, z, a ∈ X

(i) D(x, y, z) = 0 if and only if x = y = z for each x, y, z ∈ X ,

(ii) D(x, y, z) = D(x, z, y) = ... (Symmetry in all three variable),

(iii) D(x, y, z) ≤ D(x, y, a) +D(x, a, z) +D(a, y, z)

Beg and et.el [2] are defined the concept of G-cone metric space by replacing the set of
real numbers by an ordered Banach space.

Definition 1.4. [2]. LetX be a non-empty set. Suppose a mappingG : X×X×X →
E satisfies:

(i) G(x, y, z) = 0 if x = y = z,

(ii) 0 < G(x, x, y); whenever x 6= y, for all x, y ∈ X

(iii) G(x, x, y) ≤ G(x, y, z); whenever y 6= z,

(iv) G(x, y, z) = G(x, z, y) = G(y, x, z) = ... (Symmetric in all three variables),

(v) G(x, y, z) ≤ G(x, a, a) +G(a, y, z) for all x, y, z, a ∈ X

Then G is called a Generalized cone metric on X , and X is called a generalized cone
metric space or more specifically a G-cone metric space.
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The concept of G-cone metric space is more general than that of G-metric space and
cone metric space

Definition 1.5. [4]. Suppose X be a non-empty set, a strong cone D-metric space is
a function D : X ×X ×X → E defined on X such that for any x, y, z, a ∈ X:

(i) D(x, y, z) ≥ 0, for each x, y, z ∈ X , D(x, y, z) = 0 if and only if x = y = z,

(ii) D(x, y, z) = D(p(x, y, z)), p is a permutation,

(iii) D(x, y, z) ≤ D(x, y, a) +D(a, y, z).

Definition 1.6. [1]. A point x ∈ X is a common fixed point of two maps f, g : X →
Y if f(x) = g(x) = x.

Lemma 1.7. [1]. Let f and g be weakly compatible self maps of a set X . If f and g
have a unique point of coincidence w = fx = gx, then w is the unique common fixed
point of fand g.

2. D*-cone metric spaces

Definition 2.1. Suppose X be a nonempty set, a function D : X × X × X → E

defined on X such that for any x, y, z, a ∈ X:

(i) D(x, y, z) ≥ 0, for each x, y, z ∈ X , D(x, y, z) = 0 if and only if x = y = z,

(ii) D(x, y, z) = D(x, z, y) = D(y, x, z) = ..., (symmetric in all three variables)

(iii) D(x, y, z) ≤ D(x, a, a) +D(a, y, z).

Then D is called D*-cone metric space.

Remark 2.2. Any D*-cone metric space is a strong cone D-metric space. But the
covers of the following need not be true and the following example show that.

Example 2.3. Suppose (X, d) be a cone metric space, DefinedD : X×X×X → E

by
D(x, y, z) = d(x, y) + d(y, z) + d(x, z)

is a D*-cone metric space.

Example 2.4. Let E = R3, P = {(x, y, z) ∈ E, x, y, z ≥ 0}, where X = R. Define
D : X ×X ×X → E, by

D(x, y, z) = (|x− y|, |y − z|, |x− z|)

define a D*-cone metric space.
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Example 2.5. Let (X, d) be a cone metric space, Defined D : X ×X ×X → E by

D(x, y, z) = max{d(x, y), d(y, z), d(x, z)}

is D*-cone metric space.

Example 2.6. Let X = Rn, Defined

D(x, y, z) = (‖x− y‖p, ‖y − z‖p, ‖z − x‖p)

for every p ∈ R+ is a D*-cone metric space.

Remark 2.7. In D*-cone metric space D(x, y, y) = D(x, x, y).

Proof. For

(i) D(x, x, y) ≤ D(x, x, x) +D(x, y, y) = D(x, y, y) also

(ii) D(y, y, x) ≤ D(y, y, y) +D(y, x, x) = D(y, x, x).

Hence by (i) and (ii) we get D(x, x, y) = D(x, y, y)

Definition 2.8. An open ball in a D*-cone metric space X with center x and radius
r is denote by

BD = {y ∈ X : D(x, y, y) < r}

.

Definition 2.9. Let (X,D) be a D*-cone metric space and A ⊆ X . If for every
x ∈ A, there exist r > 0 such that BD(x, r) ⊆ A, then subset A is called open subset
of X .

Definition 2.10. Let (X,D) be a D*-cone metric space and A ⊆ X . If for every
x ∈ A, A subset is said to be D-bounded if there exist r > 0 such that

D(x, y, y) < r for all x, y ∈ A

Definition 2.11. Suppose (X,D) be a D*-cone metric space. We say that {xn} is
D-convergent to x if limn,m→∞D(x, xn, xm) = 0, that is for each ε > 0 there exists a
positive integer N such that D(x, xn, xm) < ε for all m,n ≥ N . We call that x is the
limit of the sequence and we write xn → x or limn→∞ xn = x.

Definition 2.12. Suppose (X,D) be a D*-cone metric space. A sequence {xn} is
said to be D-Cauchy sequence for each ε > 0 there exists a positive integer N such that
D(xn, xm, xl) < ε for all n,m, l ≥ N

Definition 2.13. A D*-cone metric space (X,D) is complete if every D-Cauchy se-
quence in X converges to x limit in X
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Theorem 2.14. In any D*-cone metric space, limits of D-convergent sequences are
unique.

Proof. Let (X,D) be a D*-cone metric space and suppose that the sequence {xn} in
X is D-converge to x and z. Let ε > 0 . Since {xn} → x, there exists an index N1 ∈ N
such that

D(xn, y, x) <
ε

2

for n ≥ N1. Since {xn} → z , there exists N2 ∈ N such that

D(xn, y, z) <
ε

2

for n ≥ N2.
Let N = max{N1, N2}. Then both inequalities above hold and so the triangle inequal-
ity gives

D(x, y, z) ≤ D(x, y, xN) +D(xN , y, z) <
ε

2
+
ε

2
= ε

Thus for any ε > 0, D(x, y, z) < ε. This implies that D(x, y, z) = 0 which in turn
implies that x = y = z ⇒ x = z. We conclude that the limits of D-convergent
sequence is unique.

Proposition 2.15. A sequence {xn} in a D*-cone metric space (X,D) converges to
x if and only if

lim
n→∞

D(xn, y, x) = 0

Proof. The {D(xn, y, x)} from a sequence of non negative numbers. This sequence
D-converges to 0 if and only if there for every ε > 0 exists an N ∈ N such that
D(xn, y, x) < ε when n ≥ N . This what the definition says.

Theorem 2.16. Any D-convergent sequence in a D*-cone metric space is a D-
Cauchy sequence.

Proof. Let {xn} D-convergent to x. Let ε > 0 be given. Then there is an element
N ∈ N such that D(xn, x, z) <

ε
2

for all n ≥ N . Suppose n,m ∈ N be such that
m ≥ N , n ≥ N , Then

D(xm, xn, z) ≤ D(xm, x, z) +D(xn, x, z) <
ε

2
+
ε

2
= ε

Hence {xn} is a D-Cauchy sequence.

Remark 2.17. Converse of the above theorem is not true in general and the following
example show that.

Example 2.18. Let X = (0, 1]. Then { 1
n
} is a D-Cauchy sequence which is not

D-convergent in X .
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Definition 2.19. A subsequence of sequence {xn} in a D*-cone metric space X is
a sequence {xnk

} in X consisting of terms of the sequence {xn} such that nk > nh if
k > h.

Theorem 2.20. Suppose that {xn} is a D-convergent sequence in a D*-cone metric
space X . Then any subsequence of {xn} D-converges to the same limits as {xn}.

Proof. Let {xn} be D-converges to x ∈ X . Suppose that {xnk
} is a subsequence of

{xn} and let ε > 0. Since {xn} → x, there exists N1 ∈ N such that

D(xn, x, z) < ε for n ≥ N1

Choose N ∈ N large enough so that nk ≥ N1 for k > Ni in other words, choose
an index N for the subsequence large enough so that the N-term in the subsequence
is beyond the Ni-th term in the original sequence, then for k ≥ N , nk ≥ N1 so
D(xnk

, x, z) < ε We conclude that {xnk
} D-converges to x.

Definition 2.21. Let (X,DX) and (Y,DY ) be a D*-cone metric spaces and let f :

(X,DX) → (Y,DY ) be a function then f is said to be D- continuous at a point a ∈
X if given ε > 0, there exists δ > 0 such that x, y ∈ X , DX(a, x, y) < δ implies
DY (f(a), f(x), f(y)) < ε. A function f is D-continuous on X if and only if it is D-
continuous at all a ∈ X

Theorem 2.22. Let f : (X,DX) → (Y,DY ) be a function between D*-cone metric
spaces, the the following are equivalent.

(i) f is D-continuous at a point a ∈ X .

(ii) For all sequences {xn} D-converging to a, the sequence {f(xn)} is D-continuous
to f(a).

Proof. (i) implies (ii): We show that for any ε > 0 there is an element N ≥ N such
that DY (f(xn), f(a), f(z)) < ε when n ≥ N . Since f is D-continuous at a , there
is a δ > 0 such that DY (f(xn), f(a), F (z)) < ε whenever D(x, a, z) < δ. Since xn
D-converges to a, there is an N ∈ N such that DX(xn, a, z) < δ when n ≥ N . But
then DY (f(xn), f(a), f(z)) < ε for all n ≥ N .
(ii) implies (i): Suppose that f is not D-continuous at a. We must show that there is
a sequence {xn} D-converging to a such that {f(xn)} dose not D-converges to f(a).
That f is not D-continuous at a means that there is an ε > 0 such that no matter
how small we choose δ > 0, there is an element x such that DX(x, a, z) < δ, but
DY (f(x), f(a), f(z)) ≥ ε. In particular, we can for each n ∈ N find xn such that
DX(xn, a, z) <

1
n

, but DY (f(xn), f(a), f(z)) ≥ ε.
Then {xn} D-converges to a, but {f(xn)} dose not D-converge to f(a).
The composition of two D-continuous functions is D-continuous.
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3. Fixed Point Theorems

In this section we prove some fixed point theorems in D*-cone metric space.

Theorem 3.1. Let (X,D) be a complete D*-cone metric space, P be a cone normal
with a normal constant M ≤ 1, suppose the mapping T : X → X satisfy the con-
tractive condition, thus D(Tx, Ty, Tz) ≤ kD(x, y, z) for all x, y, z ∈ X , k ∈ [0, 1) is
constant. Then T has a unique fixed point in X .

Proof. Let x0 be an arbitrary point inX , define the iterative sequences {xn} by x0, x1 =
Tx0, x2 = Tx1 = T 2x0, ..., xn+1 = Txn = T n+1x0. So, we have

D(xn+1, xn+1, xn) = D(Txn, Txn, Txn−1) = D(xn+1, xn+1, xn)

≤ kD(xn, xn, xn−1) ≤ k2D(xn−1, xn−1, xn−2)

≤ ... ≤ knD(x1, x1, x0).

So, for n > m we have

D(xn, xn, xm) ≤ D(xn, xn, xn−1) +D(xn−1, xn, xm).

By definition, we obtain

D(xn, xn, xm) ≤ D(xn, xn, xn−1) +D(xn−1, xn−1, xn−2)

+ ...+D(xm+1, xm+1, xm)

Therefore

D(xn, xn, xm) ≤ (kn−1 + kn−2 + ....+ km)D(x1, x1, x0)

So
D(xn, xn, xm) ≤ (km/1− k)D(x1, x1, x0)

And since P is normal we have

‖D(xn, xn, xm)‖ ≤M(km/1− k)‖D(x1, x1, x0)‖

as m → ∞, km/1− k → 0 And we have ‖D(xn, xn, xm)‖ → 0, n,m → ∞ so
D(xn, xn, xm) → 0, n,m → ∞ therefore {xn} is a D-Cauchy sequence, since X is
complete metric space, there exist a point x in X such that xn → x.
Now we shows x is a fixed point of the mapping T . It follows from

D(Tx, Tx, x) ≤ D(Tx, Tx, Txn) +D(Txn, Tx, x)

By the definition we obtain

D(Tx, Tx, x) ≤ D(Txn, Tx, Tx) +D(Txn, Txn, x)
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This implies that

D(Tx, Tx, x) ≤ D(xn, x, x) +D(xn+1, xn+1, x)

And we get

‖D(Tx, Tx, x)‖ ≤M‖D(xn, x, x) +D(xn+1, xn+1, x))‖

since {xn} is a D-Cauchy sequence in the complete D*-cone metric space, there exist
c � 0 such that D(xn, x, x) � c and so D(xn, x, x) → 0, as n → ∞ and similarly
D(xn+1, xn+1, x) � c,D(xn+1, xn+1, x) → 0, as n → ∞, then ‖D(Tx, Tx, x)‖ → 0

and we have Tx = x. This show that x is a fixed point of T .
If y is another fixed point,

D(x, y, y) = D(Tx, Ty, Ty) ≤ kD(x, y, y)

And we have the following inequality ‖D(x, y, y)‖ ≤ kM‖D(x, y, y)‖, since kM ≤
1 we get ‖D(x, y, y)‖ ≤ ‖D(x, y, y)‖ and so D(x, y, y) = 0, and x = y, so x is
unique.

Theorem 3.2. Let (X,D) be a complete D*-cone metric space on, P be a cone
normal with a normal constant M ≤ 1, and T contraction mapping on X , satisfy

D(Tx, Ty, Tz) ≤ k(D(x, x, x) +D(y, y, y) +D(z, z, z))

for all x, y, z ∈ X, k ∈ [0, 1) is a constant. Then T has a unique fixed point in X .

Proof. Let x0 be an arbitrary point in X , set the iterative sequences {xn} by

x0, x1 = Tx0, x2 = Tx1 = T 2x0, ..., xn+1 = Txn+1 = T n+1x0

So

D(xn+1, xn+1, xn) = D(Txn, Txn, Txn−1)

≤ k(D(Txn, xn, xn) +D(Txn, xn, xn +D(Txn−1, xn−1, xn−1))

= k(D(Txn, xn, xn) +D(Txn, xn, xn +D(xn, xn−1, xn−1)).

This implies that

D(xn+1, xn+1, xn) ≤ k(D(xn+1, xn, xn) +D(xn+1, xn, xn) +D(xn, xn−1, xn−1))

This implies that

D(xn+1, xn+1, xn) ≤ k(D(xn+1, xn+1, xn) +D(xn, xn−1, xn−1))
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And we have

‖D(xn+1, xn+1, xn)‖ ≤ kM‖(D(xn+1, xn+1, xn) +D(xn, xn−1, xn−1)‖

By easy steps calculation we get

‖D(xn+1, xn+1, xn)‖ ≤ kM/(1− kM)‖D(xn, xn−1, xn−1)‖

kM/(1−kM) := h ≤ 1, soD(xn+1, xn+1, xn) ≤ hD(xn, xn−1, xn−1) andD(xn+1, xn+1, xn) ≤
hnD(x1, x1, x0) Consequently we get

D(xn, xn, xm) ≤ D(xn, xn, xn−1) +D(xn−1, xn−1, xn−2) + .....+D(xm+1, xm+1, xm)

Thus

D(xn, xn, xm) ≤ (hn−1 + hn−2 + .....+ hm)D(x1, x1, x0) = hm/(1− h)D(x1, x1, x0)

For c � 0, c ∈ E, choose natural number N such that hm/(1 − h)D(x1, x1, x0) �
c ∀m > N , so we get D(xn, xn, xm) � c ∀n,m > N and this show that {xn} is a
D-Cauchy sequence, and since X is complete D*-cone metric space, there exist a point
x in X such that xn → x.
To show that x is a fixed point, we have

D(Tx, Tx, x) ≤ D(Tx, Tx, Tx) +D(Tx, Tx, x)

So, since P is normal we have a normal element M satisfy

‖D(Tx, Tx, x)‖ ≤M(‖D(Tx, Tx, Tx)‖+ ‖D(Tx, Tx, x)‖)

This implies that

‖D(Tx, Tx, x)‖ ≤M/(1−M)‖D(Tx, Tx, Tx)‖

From the first condition of the D*-cone metric space we get D(Tx, Tx, Tx) = 0, thus
‖D(Tx, Tx, x)‖ → 0 and we have Tx = x.
We shall show x is unique, for another fixed point y ∈ X

D(Tx, Ty, Ty) = D(x, y, y) ≤ k(D(Tx, x, x) +D(Ty, y, y) +D(Ty, y, y))

This implies that

D(Tx, Ty, Ty) = D(x, y, y) ≤ k(D(x, x, x) +D(y, y, y)

+D(y, y, y))→ 0⇒ D(x, y, y) = 0⇒ x = y.
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Theorem 3.3. Let (X,D) be a D*-cone metric space, and T contraction mapping
on X , satisfy

D(Tx, Ty, Tz) ≤ k(D(Tx, y, z) +D(Ty, z, x) +D(Tz, x, y))

for all x, y, z ∈ X, k ∈ [0, 1/2) is a constant. Then T has a unique fixed point in X .

Proof. We set for an arbitrary point in x0 ∈ X ,the above iterative sequence’s {xn}

x0, x1 = Tx0, x2 = Tx1 = T 2x0, ..., xn+1 = Txn+1 = T n+1x0

So

D(xn+1, xn+1, xn) = D(Txn, Txn, Txn−1)

≤ k(D(Txn, xn, xn−1) +D(Txn, xn, xn−1 +D(Txn−1, xn, xn)

Therefore

D(xn+1, xn+1, xn) ≤ k(2D(Txn, xn, xn−1) +D(xn, xn, xn))

We note that the last term in the right side is zero from the first condition of the D*-cone
metric space, then

D(xn+1, xn+1, xn) ≤ 2kD(Txn, xn, xn−1) = 2kD(Txn+1, xn, xn−1)

2kD(Txn−1, xn, xn+1) ≤ 2k(D(xn, xn−1, xn) +D(xn, xn−1, xn+1))

≤ 2k(D(xn, xn, xn−1) +D(xn+1, xn+1, xn)

From that we get

‖D(xn+1, xn+1, xn)‖ ≤ 2kM(‖(D(xn, xn, xn−1)‖+ ‖D(xn+1, xn+1, xn)‖)

Hence
‖D(xn+1, xn+1, xn)‖ ≤ 2kM/(1− 2kM)‖(D(xn, xn, xn−1)‖

Denote 2kM/(1−2kM) =: h ≤ 1 this givesD(xn+1, xn+1, xn) ≤ h‖D(xn, xn, xn−1)‖
analogy as the above theorems we get D(xn, xn, xm)→ 0 as n,m→∞ and {xn} be a
D-Cauchy sequence, and since X is complete D*-cone metric space, so xn D-converge
to a point x in X .
We show that x is a fixed point of the mapping T as follows

D(Tx, Tx, x) ≤ D(Tx, Tx, Tx) +D(Tx, Tx, x)

I t follows analogy from the proof of the above theorems that D(Tx, Tx, x) = 0 and so
Tx = x.
To prove the uniqueness of the fixed point x, we consider y is another fixed point, so

D(Tx, Ty, Tz) = D(x, y, z) ≤ k(D(Tx, y, y) +D(Ty, x, y) +D(Ty, x, y))

= k(D(x, y, y) +D(y, x, y) +D(y, x, y)) = 3kD(x, y, y).
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This means that D(x, y, z) ≤ 3kD(x, y, y) hence D(x, y, z) = 0 and so x = y. There-
fore the fixed point x of T is unique.

Theorem 3.4. Let (X,D) be a D*-cone metric space. Suppose the self maps f, g :

X → X satisfy the contractive condition ‘

D(fx, fy, fz) ≤ kD(gx, gy, gz) for all x, y, z ∈ X (1)

where k ∈ [0, 1) is a constant. If the range of f is contained in range of g and rang of
g is a complete subspace of X . More over if f and g are weakly compatible, f and g
have a unique common fixed point.

Proof. Suppose that x0 ∈ X be arbitrary. Choose x1 ∈ X such that f(x0) = g(x1).
This possible since f(X) ⊆ g(X).
Continuing this process, choose xn+1 ∈ X such that

f(xn) = g(xn+1) (2)

Now,

D(gxn+1, gxn+1, gn) = D(fxn, fxn, fxn+1) ≤ kD(gxn, gxn, gxn−1) (3)

this is by using (1)
Now, by Repeated application of (1),we get

D(gxn+1, gxn+1, gxn) < knD(gx1, gx1, gx0) (4)

For n > m,

D(gxn, gxn, gxm) ≤ D(gxn, gxn, gxn−1) +D(gxn−1, gxn−1, gxn−2)

+ ...+D(gxm+1, gxm+1, gxm)

≤ (kn−1 + kn−2 + ...+ km)D(gx1, gx1, gx0)

≤ kn(1 + k + k2 + ...+ ...)D(gx1, gx1, gx0)

=
km

1− k
D(gx1, gx1, gx0)

(5)

Let 0� c be given. Choose n1 ∈ N such that

km

1− k
D(gx1, gx1, gx0)� c ∀m ≥ n1 ∈ N (6)

From (5) and (6),we get

D(gxn, gxn, gxm)� c ∀m ≥ n1 ∈ N
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Since {gxn} is an D-Cauchy sequence in g(X), then {gxn} is an D-convergent se-
quence in g(X), from g(X) is complete in X .
Let {gxn} is D-convergent to q ∈ g(X) is complete in X . Consequently, there is

p ∈ Xsuch that gp = q (7)

For the same given c ∈ E, choose n2 ∈ N such that

D(gxn−1, gxn−1, gp)�
c

k
∀n ≥ n2 ∈ N (8)

Hence, using 8

D(gxn, gxn, fp) = D(fxn−1, fxn−1, fp) ≤ kD(gxn−1, gxn−1, gp)� c, (9)

Then D(gxn, gxn, fp)� c ∀n ≥ n2 ∈ N .
That mean gxn → fp.
Hence {gxn} D-converges to both q and fp. By uniqueness property of limit

fp = gp = q (10)

Then q is the point of coincidence of f and g.
Let r ∈ X be any other coincidence point of f and g, then

fr = gr be the point of coincidence f and g (11)

Now,D(gr, gr, gp) = D(fr, fr, fp) ≤ kD(gr, gr, gp), thenD(gr, gr, gp) ≤ kD(gr, gr, gp).
That mean (k − 1)D(gr, gr, gp) ∈ P
Multiplying with positive real number (1−k), we get D(gr, gr, gp) ∈ P . But, we have
D(gr, gr, gp) ∈ P .
From the definition of cone and D*- cone metric, we get

gr = gp. (12)

From (10),(11),(12), f and g have unique point of coincidence.
Finally, let f and g are weakly compatible self-maps having unique point of coinci-
dence. Using the Lemma 1.7, f and g have a unique common fixed point.

Now, let defined coupled fixed point in D*-cone metric space.

Definition 3.5. Let (X,D) be a D*-cone metric space. An element (x, y) ∈ X ×X
is said to be a coupled fixed point of the mapping F : X ×X → X if F (x, y) = x and
F (y, x) = y.
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Theorem 3.6. Suppose that (X,D) be a complete D*-cone metric space. Suppose
that the mapping F : X ×X → X satisfies the following contractive condition for all
x, y, w, z, u, v ∈ X:

D(F (x, y), F (w, z), F (u, v)) ≤ kD(x,w, u) + lD(y, z, v), (13)

where k, l are non-negative constants with k+ l+m < 1. Then F has a unique coupled
fixed point.

Proof. Choose x0, y0 ∈ X and set x1 = F (x0, y0),y1 = F (y0, x0), ..., xn+1=F (xn, yn), yn+1 =

F (yn, xn). Then by (13) we have

D(xn, xn, xn+1) = D(F (xn−1, yn−1), F (xn−1, yn−1), F (xn, yn))

≤ kD(xn−1, xn−1, xn) + lD(yn−1, yn, yn+1),

and similarly,

D(yn, yn, yn+1) = D(F (yn−1, xn−1), F (yn−1, xn−1), F (yn, xn))

≤ kD(yn−1, yn−1, yn) + lD(xn−1, xn−1, xn),

Therefore,by letting

Dn = D(xn, xn, xn+1) +D(yn, yn, yn+1),

we have

Dn = D(xn, xn, xn+1) +D(yn, yn, yn+1)

≤ kD(xn−1, xn−1, xn) + lD(yn−1, yn−1, yn) + kD(yn−1, yn−1, yn) + lD(xn−1, xn−1, xn)

≤ (k + l)(D(xn−1, xn−1, xn) +D(yn−1, yn−1, yn))

= (k + l)Dn−1.

Consequently, if δ = k + 1 then for each n ∈ N we have

0 ≤ Dn ≤ δDn−1 ≤ δ2Dn−2 ≤ ... ≤ δnD0.

IfD0 = 0 then (x0, y0) is a coupled fixed point of F . Now, letD0 > 0. For each n > m

we have

D(xn, xn, xm) ≤ D(xn, xn, xn−1) +D(xn−1, xn−1, xn−2) + ...+D(xm+1, xm+1xm),

D(yn, yn, ym) ≤ D(yn, yn, yn−1) +D(yn−1, yn−1, yn−2) + ...+D(ym+1, ym+1, ym).

Therefore,

D(xn, xn, xm) +D(yn, yn, ym) ≤ Dn−1 +Dn−2 + ...+Dm

≤ (δn−1 + δn−2 + ...+ δm)D0

≤ δm

1− δ
D0



220 H. S. Al-Saadi and R. M. Badagaish

which implies that {xn} and {yn} are D-Cauchy sequences in X , and there exist
x∗, y∗ ∈ X such that limn→∞ xn = x∗ and limn→∞yn = y∗. Let c ∈ E with
0 � c. For every m ∈ N there exists N ∈ N such that D(xn, xn, x

∗) � c/2m and
d(yn, yn, y

∗)� c/2m for all n ≥ N . Thus

D(F (x∗, y∗), F (x∗, y∗), x∗) ≤ D(F (x∗, y∗), F (x∗, y∗), xN+1) +D(xN+1, xN+1, x
∗)

= D(F (x∗, y∗), F (x∗, y∗), F (xN , yN)) +D(xN+1, xN+1, x
∗)

≤ kD(xN , xN , x
∗) + lD(yN , yN , y

∗) +D(xN+1, xN+1, x
∗)

� (k + l)
c

2m
+

c

2m
≤ c

m
.

Consequently, D(F (x∗, y∗), F (x∗, y∗), x∗)� c/m for all m ≥ 1. Thus , D(F (x∗, y∗),
F (x∗, y∗), x∗) = 0 and hence F (x∗, y∗) = x∗. Similarly, we have F (y∗, x∗) = y∗

meaning that (x∗, y∗) is coupled fixed point of F .
Now, if (x′, y′) is another coupled fixed point of F , then

D(x′, x′, x∗) = D(F (x′, y′), F (x′, y′), F (x∗, y∗)) ≤ kD(x′, x′, x∗) + lD(y′, y′, y∗),

D(y′, y′, y∗) = D(F (y′, x′), F (x′, y′), F (y∗, x∗)) ≤ kD(y′, y′, y∗) + lD(x′, x′, x∗),

and therefore,

D(x′, x′, x∗) +D(y′, y′, y∗) ≤ (k + l)(D(x′, x′, x∗) +D(y′, y′, y∗)). (14)

Since k + l < 1,(14) implies that D(x′, x′, x∗) + D(y′, y′, y∗) = 0. Hence, we have
(x′, y′) = (x∗, y∗) and the proof of the theorem is complete.

Lemma 3.7. Let (X, d) be a D*-cone metric space, Let F : X × X → X satisfies
the following contractive condition for all x, y, w, z, u, v ∈ X:

D(F (x, y), F (w, z), F (u, v)) ≤ k

2
(D(x,w, u) +D(y, z, v)),

where k ∈ [0, 1) is a constant. Then F has a unique fixed point.

Proof. The prove is the same of the theorem above.
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