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Abstract 

This research introduces the Bayesian approach which is applied to the logistic 

regression coefficients via Markov Chain Monte Carlo algorithm for posterior 

distribution to be obtained. Coefficients of the variables of interest are first 

generated via maximum likelihood estimation and the significant variables are 

further identified. These coefficients of the significant variables were then 

estimated using the Bayesian logistic regression method with the incorporation 

of both non-informative flat prior and a non-flat prior distribution. These 

results were compared with those generated via the method of maximum 

likelihood. It was shown that both the Frequentist logistic regression and 

Bayesian logistic regression suggest that family history, waist circumference 

and body mass index are significant risk factors associated with the Type 2 

diabetes mellitus,  Bayesian logistic regression model with the non-

informative flat prior distribution and frequentist logistic regression model 

yielded similar results, while the non-informative non-flat model showed a 

different result compared to the frequentist logistic regression model and also 

a significant decrease of the standard errors associated with the coefficients 

generated from the Bayesian analysis with the non-flat prior distribution its 

being shown. Consequently, making the coefficients in the model more stable. 

Thus, the non-flat prior yielded better model than the maximum likelihood 

estimate and the Bayesian with the non-informative flat prior. 

Keywords: Binary logistic regression, bayesian logistic regression, coefficient 

estimate, posterior distribution, prior, maximum likelihood estimate. 
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1. INTRODUCTION 

Logistic regression as a model has the advantage of combing a few but efficient 

independent variable which serves as one of the outstanding properties (Kerlinger & 

Pedhezar, 1973).   

 The dependent variable which is the type 2 diabetes assumes a value of 1 for the 

probability of occurrence of the disease and 0 for the probability of non-occurrence.  

The logistic model is seen to be an approved method for statistical analysis in most 

areas of study in the past ten years and more (Lemeshow and Hosmer, 2000). On the 

other hand, (Pen et al., 2002) suggest that the logistic regression model is suitable for 

explaining and also for hypotheses testing about a categorical dependent variable and 

one or more categorical or continuous independent variables. Similarly, the logistic 

regression which is often known as a logit model, models the relationship between 

several independent variable and categorical outcome, see (Park, 2013). In addition, 

the frequentist logistic regression (FLR) makes use of the maximum likelihood 

estimate (MLE) in order to maximize the probability of obtaining the observed results 

via the fitted regression parameters. Thus, the FLR brings about point parameter 

estimates together with standard errors. The uncertainty related to the estimation of 

parameters or coefficients is measured by means of confidence interval based on the 

normality assumption. On the contrary, Bayesian logistic regression (BLR) method 

makes use of Markov Chain Monte Carlo (MCMC) method in other to obtain the 

posterior distribution of estimation based on a prior distribution and the likelihood. 

Thus findings suggest that using the iterative Markov Chain Monte Carlo simulation, 

BLR provides a rich set of results on parameter estimation. Several studies conclude 

that BLR performs better in posterior parameter estimation in general and the 

uncertainty estimation in particular than the ordinary logistic regression. Further 

reading can be sort from (Lau, 2006) and (Nicodemus, 2001).  (Gilks et al., 1996) 

proposed that in Bayesian, the unknown coefficients β are obtained from posterior 

distribution, inferences are made based on moment, quantile and the highest density 

region shown in posterior outcome of the parameter π. Further, the bias of maximum 

likelihood estimates is significant in relation to small samples and this weakness can 

be confronted by making use of the Bayesian logistic regression as an alternative 

method. The Bayesian approach is flexible and does not need to conform with 

challenging assumptions as proposed in the method of maximum likelihood or as in 

the frequentist approach. However, the use of Markov Chain Monte Carlo (MCMC) 

improves the flexibility of the Bayesian method and the advancement of the MCMC 

methods has made it feasible to fit several non-linear regression models, see (Acquah, 

2013). This research aims at applying the BLR model to T2DM to determine the 

associated risk factors. Uncertainty associated in estimation of the parameters is 

expressed by means of the posterior distribution. The estimates for the coefficients are 

obtained by means of FLR, then BLR is also applied on the same variables for 

coefficient estimation, and the significance of every coefficient estimate is assessed 

by means of the posterior density generated from the Bayesian analysis. In the present 

study, factors influencing the occurrence of the disease were determined by applying 

the Bayesian logistic regression and assuming a non-informative flat and not- 
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perfectly non- flat prior distributions for every unknown coefficient in the model. 

Although, several studies also used the BLR method with a non-informative flat prior 

distribution, there have not been many studies on the risk factors of type 2 diabetes 

mellitus using the Bayesian logistic regression method with a non-informative non-

flat prior distribution. Therefore, we decided to incorporate this  non-flat prior for the 

estimation of the parameters which to the best of our knowledge has not been used for 

the study of T2DM in Malaysia. 

Several studies have employed the Binary logistic regression model to examine and 

analyse the impacts of the covariates on the binary outcome. For example, In a study, 

(aksu, 2006) reports the risk factors that are associated with Type 2 diabetes mellitus 

(T2DM) and determine the groups at risk for a public health program intervention in 

Nilufer district, Bursa, Turkey. The study comprised of 727 randomly selected 

patients of which 382 were women and 345 were men. Age, gender, education, family 

history of diabetes, hypertension, cigarette smoking, alcohol, occupational activity, 

physical exercise and body mass index were the predictor variables included in the 

model. A  logistic regression analysis was performed which showed that out of all the 

predictors, only age, family history, hypertension and overweight (body mass index 

greater than 25kg/m^2) were statistically significant  that is to say they were the risk 

factors which  influenced T2DM in Nilufer. 

However, a different study predicts cigarette smoking behaviour in high school 

student. (Adwere, 2011) evaluates the effect of a set of covariates in cigarette 

smoking behaviour of high school student by the use of logistic regression model for 

the analysis. In addition, the target outcome was current frequent cigarette use with 

five predictor variables such as race, frequency of cocaine use, initial cigarette 

smoking age, feeling sad or hopeless and physical inactive behaviour were 

considered. Consequently, all the predictors in the study were significant statistically 

and a conclusion was drawn, that all the predictors were associated with frequent 

cigarette use among high school students.   

However, in recent years,  (Majgi, 2012) in a study reveals the underlying risk factors 

causing diabetes mellitus in rural Puducherry India using cross-sectional data obtained 

from two villages. The body mass index, physical activities, family history of 

diabetes, smoking and rate of intake of alcohol were the variables considered. 

Univariate analysis of the prevalence rate of selected risk factors was carried out and 

the significant variables were used in the analysis of the binary logistic regression. 

The significant variables for the univariate analysis are age, BMI, family history of 

diabetes, and the type of occupation. 

These variables also make up the independent risk factors for diabetes in the binary 

logistic regression. 

The analysis of the risk factors using logistic regression model, showed that higher 

Age, BMI, and occupation skill level were significantly contributing risk factors. The 

study also concluded that while maternal history of diabetes could be helpful in 

preventing diabetes, increase physical activity reduces the risk of diabetes mellitus. 
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Following the prevalence of osteoporosis and its associated factors among older men 

with Type 2 diabetes,  (Chen, 2013)  findings show that, no differences in terms of 

age, blood pressure, waist-to-hip ratio, body mass index, and testosterone levels 

observed. Consequently, the prevalence of low bone mineral density was significantly 

higher in Type 2 diabetes mellitus group compared to the control group and the risk of 

developing low bone mineral density (BMD) and fracture in T2DM subjects was 

increased by 46- and 26-fold respectively compared to control subjects. 

In actual fact, logistic regression models have made a significant impact in different 

fields of study, as a result of the non-linearity of the logistic model. Conclusion is 

drawn by the maximum likelihood, although the method of maximum likelihood has 

its weaknesses which can be solved by the use of Bayesian which is a more flexible 

method. Following this, several fields of study have applied the Bayesian logistic 

regression. For example, (Mila, 2003) evaluate the extent of uncertainty associated 

with the estimation of coefficients generated from the logistic regression analysis of 

the prevalence of soybean sclerotinia stem rot. The study re-examines the Bayesian 

logistic regression of soybean sclerotinia stem rot (SSR) prevalence in the north-

central region of the United States. Estimates from the posterior distribution for the 

coefficients were generated via the Gibbs sampler and both the informative and the 

non-informative prior distributions were considered. However, the informative and 

non-informative priors were examined and compared, and the predictor variables 

included were chosen on the basis of past logistic regression analysis. These predictor 

variables were average air temperature of July and August, total precipitation of July 

and August, an indicator variable for tillage effect and an indicator variable which 

represent state effect. In other words, based on the findings, which show that with the 

use of the non-informative prior distribution, the posterior estimates are similar with 

the coefficients estimate obtained from the logistic regression analysis, whereas the 

use of the informative prior has influence on the posterior distributions of the 

parameters, with result suggesting that the dataset may not have had enough 

information in order to yield estimates that can be trusted to influence some of the 

predictor variables on the prevalence of SSR. Hence, reliable estimate are essential for 

generating robust inferences and making sound predictions. On the other hand, (Sta 

Romana, 2007) investigate the relationship between type 2 diabetes mellitus (T2DM) 

and osteoporosis, a flat non- informative prior distribution was incorporated which 

expressed ignorance of the relationship between type 2 diabetes and osteoporosis and 

the coefficients of the variables of interest were generated. Findings show that, type 2 

diabetes is found to be a protective factor for osteoporosis in this referred population 

of women. However, diabetes related factors like peripheral neuropathology can cause 

muscle imbalance, possibly hypoglycaemia that can bring about dizziness, nocturia, 

visual impairment affect fracture risk. Consequently, recommending that assessment, 

screening for osteoporosis and fracture risk reduction be performed among diabetic 

patients. 

(Mutshinda 2009) in a study, performs a Bayesian analysis using a Bayesian logistic 

regression model, for posterior estimates to be generated. A non-informative flat prior 

was incorporated. This method was done on a real world data from a biological assay 
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experiment. Further, the generated estimates from the posterior distribution were 

compared with the estimates obtained via the method of maximum likelihood. Finding 

has it that five replicates  by dose level  considered resulted in low precision 

estimation, due to the estimates of the standard errors being large. On the other hand, 

in a study on Bayesian logistic regression modelling via Markov Chain Monte Carlo 

(MCMC) algorithm, (Acquah, 2013), applies the Bayesian logistics regression for the 

estimation of parameters on economy data. A comparison was made between the 

classical logistic regression and the Bayesian logistic regression which suggests that 

higher per-capital income is associated with free trade of countries. The results show 

that there was a reduction in the standard errors associated with the parameters 

generated from the Bayesian analysis. As a result, causing greater stability to the 

parameters. 

Here, both the frequentist and Bayesian logistic regression logistic regression methods 

where applied to the type 2 diabetes dataset. 

 

MATERIALS AND METHODS 

Permission was sought from clinical research centre Kuala Lumpur. The procedure 

was spearheaded by a family medical specialist who was invited to take part in the 

study. The main research group organised site feasibility study to recognise clinics 

that were eligible. Eligibility was based on personal willingness, readiness and 

agreement to be fully involved and be part of the research group. The research was 

based on a cluster randomised trial such that the clinics that were selected were done 

randomly because they met the inclusion criterion. The unit of randomization for the 

study was the primary health care clinics with males and females ≥28 years of age 

that were diagnosed with T2DM. Individuals with type 1 diabetes and severe 

hypertension Systolic blood pressure >180mmHg and Diastolic blood pressure >110 

mmHg were excluded. A self-management booklet was shared to all the participants 

after the training was over and the necessary details were extracted from them. The 

variables collected during the study were as follows: Demography, social and 

biological variables and behavioural components. 

Logistic regression model will be considered for the occurrence of type 2 diabetes as a 

discrete and binary response variable, and factors such as, age, sex, ethnicity, physical 

activity, family history of diabetes, hypertension, body mass index and waist 

circumference as explanatory variables. A statistical analysis was carried out to 

determine the effect of these factors with respect to type 2 diabetes occurrence. 

Suppose the Binary logistic regression model is given as: 

Logit (𝜋𝑖) = 𝛽0+𝛽1𝑥1 +…+𝛽𝑘𝑥𝑘,  

π= P(𝑦𝑖=1| 𝑥1,…, 𝑥𝑘).                          (1) 
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Then the estimates of the model can be of the form: 

Logit (𝜋̂𝑖) =𝛽0+𝛽1𝑥1+…+𝛽𝑘𝑥𝑘.   (2) 

Where β=(𝛽0, 𝛽1,…, 𝛽𝑘) are estimates of the coefficient β and 𝒙𝒊 =( 𝑥𝑖, 𝑥2,…, 𝑥𝑘) are 

the k independent variables, 𝜋̂𝑖 is the estimate of the likelihood of type 2 diabetes 

occurrence. 

Given the explanatory variables 𝑥𝑖, 𝑥2,…, 𝑥𝑘, 𝜋𝑖  can be estimated as:  

 𝜋𝑖̂=
exp(𝛽0+𝛽1𝑥1+⋯+𝛽𝑘𝑥𝑘)

1+exp(𝛽0+𝛽1𝑥1+⋯+𝛽𝑘𝑥𝑘)
                    (3) 

However, Bayesian framework is the combination of the likelihood function and the 

prior distribution to yield the posterior distribution. Consequently, the response 

variable 𝑦𝑖 follows a Bernoulli distribution with probability π and is given as: 

  𝑦𝑖 ~Bernoulli (𝜋𝑖),    

𝜋̂𝑖   = 
exp(𝒙𝒊 𝜷̀ )

1+exp (𝒙𝒊 𝜷̀ )
 . 

Where,  β =(𝛽0, 𝛽1,…, 𝛽𝑘),  𝒚𝒊 = (𝑦1, 𝑦2,…, 𝑦𝑛) and  𝒙𝒊 =( 𝑥1, 𝑥2,…, 𝑥𝑘). 

The distribution of   (𝑦𝑖 |𝒙𝒊 𝜷̀ ) =   𝜋𝑦𝑖(𝜋1−𝑦𝑖) 

For   i =…, n, 𝑦𝑖 is the number of successes and 1- 𝑦𝑖 is the number of failures.  

 

2.1 The likelihood function 

The likelihood function is the probability density function of the data which is seen as 

a function of the parameter treating the observed data as fixed quantities. 

For a given sample size n, the likelihood function is given as: 

L(Y|Xβ) = ∏  𝑛
𝑖=1 (𝑦𝑖 |𝒙𝒊 𝜷̀  ).  

Recall that 

(𝑦𝑖 |𝒙𝒊 𝜷̀ ) =  𝜋𝑦𝑖(𝜋1−𝑦𝑖). 

Where  

 𝜋𝑖=  
exp(𝒙𝒊 𝜷̀ )

1+exp (𝒙𝒊 𝜷̀ )
 . 
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And 

1-𝜋𝑖 =  
1

1+exp (𝒙𝒊 𝜷̀ )
 . 

Therefore, the likelihood function is of the form: 

=  (
exp (𝑥𝑖𝛽̀)

1+exp(𝑥𝑖𝛽̀)
)

𝑦𝑖

(
1

1+exp(𝑥𝑖𝛽̀)
)

1−𝑦𝑖

         (4) 

Hence, the likelihood function can be of the form: 

= exp( ∑  𝑛
𝑖=1  𝑦𝑖 𝑥𝑖𝛽̀

) ∏  𝑛
𝑖=1 ( 

exp (𝑥𝑖𝛽̀)

1+exp(𝑥𝑖𝛽̀)
)       (5) 

 

2.2 Prior distribution 

After the model for our data has been selected, the specification of our prior 

distribution for the unknown model parameters is made. We assign a prior distribution 

to all the unknown parameters. Firstly we assume a non-informative flat prior with 

mean zero and a large variance to all the parameters. However, we also assume a prior 

distribution to all the unknown parameters with mean zero and small variance 1, this 

influences the posterior distribution.  In Bayesian analysis, precision is used rather 

than the variance, a large variance is chosen for it to be considered as non-informative 

while a small variance makes the prior not to be perfectly flat. Our choice of large 

variance is 10000 (104). We assign a normal distribution as prior to each unknown 

parameters, and the normal distribution is of the form: 

P (𝛽𝑗) = ∏  𝑘
𝑗=0

1

√2𝜋𝜎𝑗
 exp{−

1

2
(

𝛽𝑗−𝜇𝑗

𝜎𝑗
)

2

}        (6) 

Each β is assigned with mean zero and precision 0.0001, and it is expressed as 

𝛽𝑗 ~ N (0, 0.0001), j=0,…,k. 

 

Where 𝛽𝑗 includes all the coefficients having normal prior distributions with very 

large variance. 

However, to have a prior that is not perfectly flat, using the normal prior distribution 

we give each unknown parameter a mean of zero and a variance of 1 with a known 

precision given as: 

𝛽𝑗 ~ N (0, 1), j=0,…,k. 

Where 𝛽𝑗 include all the coefficients having normal prior distributions with very 

small variance. 
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2.3 Posterior distribution 

The posterior distribution of the coefficients 𝛽 is obtained by multiplying the 

likelihood function in Equation (5) by the prior distribution in Equation (6). The 

posterior is given as 

P(𝛽|yx)∝ ∏   𝑛
𝑖=1 L(y|𝑥𝑖𝛽̀) × ∏  𝑘

𝑗=0 P(𝛽𝑗) 

The above expression can be written as  

p(𝛽|yx)∝ {exp ( ∑  𝑛
𝑖=1   𝑦𝑖 𝑥𝑖𝛽̀

) ∏  𝑛
𝑖=1 ( 

exp (𝑥𝑖𝛽̀)

1+exp(𝑥𝑖𝛽̀)
) × ∏  𝑘

𝑗=0 [
1

√2𝜋𝜎𝑗
 exp (−

1

2
 

(𝛽𝑗−𝜇𝑗)

𝜎𝑗

2

)]}  (7) 

 

In the above expression, showing the posterior distribution, the latter part of the 

equation is seen to be the normal prior distribution for the unknown beta parameters. 

On the other hand, the posterior distribution here has no standard form, in other 

words, the metropolis algorithm is used to solving and approximating the features of 

the marginal posterior density of every coefficient. In actual fact, to estimating the 

posterior distribution of the coefficients of the Bayesian logistic regression, the 

random walk metropolis algorithm will be used. 

 

Metropolis Hastings Algorithm: 

The Metropolis Hasting (MH) algorithm is an iterative algorithm that generates a 

Markov chain and allows the estimation of the posterior distribution. 

The metropolis-Hastings algorithm does not need availability of full conditionals. 

Rather, it generates a sequence of samples from a probability distribution by using the 

full joint density function and proposal distribution. The basic MH algorithm can be 

described by the following steps: 

1. Set a starting value  
0  

2. The value i  in the first step becomes the starting value 
0   

3. Draw a candidate parameter value 
*

  from an arbitrary proposal density, g(.) 

which is uniform. The value being simulated is taken to be candidate because it 

has not been automatically accepted as a sample from the distribution of interest 

and this is based on the acceptance ratio. 

4. Calculate the ratio at the candidate parameter value 
*

  and the current value i   

* *

*

( ) ( | 
 1,  

( ) ( | 

i

i i

f g

f g
   

  

 
 
  
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5. The next value for 
i  is given as 

 
1i 
  *

  With probability α ,  
i  with probability 1- α.   

6. Generate U from uniform (0,1). 

7. Accept 
*

  if U < α and go back to step 2, otherwise accept
i and return to step 2. 

 

3.  RESULTS AND DISCUSSION 

The data used in the analysis consist of eight variables of which result show that five 

significantly contributed to the occurrence of type 2 diabetes Mellitus. Factors such as 

family history of diabetes, body mass index, and waist circumference were 

significant, whereas physical activity, ethnicity, and gender, hypertension and age 

showed no significance. 

The estimates for all the predictor variables generated via the method of maximum 

likelihood are displayed in Table. 1 which consists of the variable, estimate, standard 

error, p-value, odds and the significance level for all variables. The extent of 

contribution exhibited by the variables in the model is due to their interaction and 

significance level. 

 

Table 1: Analysis of Maximum Likelihood Estimate for all the  

variables in the model. 

     

Variable Estimate Standard error P-value Odds ratio 

Intercept -3.899 1.063 <0.001 0.020 

Age 0.011 0.010 0.247 1.011 

Gender -0.109 0.201 0.589 0.897 

Hypertension 0.103 0.186 0.051 0.697 

Physical activity -0.102 0.182 0.592 0.903 

Family history of diabetes -0.360 0.127 0.008 3.149 

Ethnicity 0.058 0.012 <0.584 1.108 

Waist circumference 1.147 0.195 <0.001 1.060 

Body mass index -0.077 0.027 0.004 0.926 

 

Table.2 shows the Coefficient estimates of via the method of maximum likelihood 

and the posterior distribution summaries of coefficient via Random walk metropolis 

algorithm for Type 2 diabetes occurrence with reference to the significant factors with 

non-informative (flat) prior distribution. 
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Table 2: Coefficient estimates of via the method of maximum likelihood and the 

posterior distribution summaries of coefficient via Random walk metropolis  

algorithm for type 2 diabetes occurrence with reference to the significant  

factors with non-informative (flat) prior distribution. 

Variable Estimate 

from FLR 

Posterior 

mean 

Posterior 

Standard 

deviation 

Quantiles  of 

posterior distribution 

95% Credible 

interval 

2.5% 97.5% 

Intercept -3.233 -3.257 0.811 -4.882 -1.685 

Family history of 

diabetes 

1.100 1.111 0.185 0.753 1.478 

Waist 

Circumference 

0.054 0.054 0.013 0.030 0.079 

Body mass index -0.069 -0.070 0.025 -0.119 -0.201 

 

Considering the Bayesian logistic regression via the Random walk metropolis 

algorithm which was applied to type 2 diabetes data in other to draw up inferences 

about the effects of several risk factors contributing to the disease. Using the non-

informative prior (flat), the means of the posterior distribution of every coefficient are 

similar to the coefficient estimates generated via the method of maximum likelihood. 

This is as a result of the Bayesian analysis making use of non-informative prior which 

basically uses the available information by the sample data.  

The random walk metropolis algorithm allows the use of several values of the 

variances in order to achieve the required acceptance rate.  

We tried several tuning parameters afterwards 25.3 was finally adopted which is close 

to the target value of 0.25 or 25 percent. With (roberts1997), suggesting that in 

Random walk metropolis algorithm, the optimal acceptance rate is around 25 percent. 

The Random walk metropolis algorithm using the non-informative prior (flat) 

distribution assumed a normal density with zero mean and precision 0.0001 and also 

with zero (0) mean and precision one (1). 

The posterior summaries are shown in Table.2. Consists of three significant 

independent variables. A prior distribution was assigned to the variables and the 

posterior distributions were obtained. Summaries of the posterior estimates are shown 

in the above mentioned tables, with the inclusion of the credible interval and posterior 

standard deviation. 
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The first column shows the significant variables, the second contains estimate 

generated via the method of maximum likelihood, the third column contains the 

posterior means of the variables that is the posterior estimates of variables, and the 

fourth column contains the posterior standard deviation for each significant variable, 

which is a Bayesian equivalent of the standard error. The posterior standard deviation 

shows how good the mean estimates the samples. So the smaller the sample size, the 

smaller the posterior standard deviation and the closer the sample means to the 

population means. The smaller the posterior standard deviation and the closer the 

sample means to the population means. For the last column, this represents the 95% 

credible interval this is a Bayesian equivalent of the confidence interval. However, in 

Bayesian, the level or degree of belief is being reflected by the probability 

distribution. In other words, constructing the credible interval or credible region for 

our posterior estimates or posterior means, if the true value can be found in the 

credible interval then we can say that, given the observed data, there is a 95% 

probability that the true value falls within the credible interval. In other words, the 

credible interval values for the estimated coefficients of the predictor variable family 

history of diabetes, for the Random walk algorithm with a flat prior distribution, has a 

posterior mean of 1.111, there is 95% probability that the true value of the mean for 

FDM falls within the credible region of 0.753 and 1.478. Whereas, the waist 

circumference and the body mass index, having posterior means of 0.054 and -0.070 

respectively we can say that  there is 95% probability that the true value of the 

posterior means for  waist circumference (WC) and body mass index (BMI) fall 

within the credible region of 0.030 and 0.079, -0.119 and -0.201. 

Similarly, the Bayesian logistic regression via the Random walk metropolis algorithm 

incorporating a non-informative prior (not perfectly flat). The posterior distribution 

summaries of the parameters using the non-informative not perfectly flat prior are 

shown in Table 3. The use of this prior distribution influenced the posterior 

distribution of the intercept and the regression coefficients.  The Table consists of the 

Variable, posterior mean, posterior standard deviation and the quantiles of the 

posterior distribution, which lies the credible interval of the variables. On the other 

hand, considering the posterior standard deviation and credible interval (which are the 

Bayesian equivalent of the confidence interval and standard error) for every 

coefficient assuming a non-informative not perfectly flat prior, shows that each 

standard deviation is smaller to that of the Bayesian analysis with the non-informative 

flat prior and the Frequentist analysis, implying that the smaller the standard deviation 

the better the model. In addition, based on the credible interval estimation for every 

coefficient in Table 3, the credible interval values for the estimated coefficients of the 

predictor variable family history of diabetes, for the Random walk algorithm with a 

non-flat prior distribution in has a posterior mean of 1.051, there is 95 probability that 

the true value of the mean for FDM falls within the credible region of 0.706 and 

1.405. 
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Table 3: Posterior distribution summaries of the coefficients via Random walk 

metropolis algorithm for type 2 diabetes mellitus occurrence with reference to the 

significant factors with non-informative (not perfectly flat or non-flat) prior 

distribution. 

Variable Posterior 

mean 

Posterior Standard 

deviation 

Quantiles of posterior 

distribution 

95% Credible interval 

2.5% 97.5%  

Intercept -1.990 0.617 -3.212 -0.786  

Family history 1.051 0.180 0.706 1.405 

Waist 

Circumference 

0.038 0.011 0.017 0.058 

Body mass index -0.058 0.024 -0.105 -0.113  

 

Whereas, the waist circumference and the body mass index, having posterior means of 

0.038 and -0.058 respectively we can say that  there is 95% probability that the true 

value of the posterior means for  waist circumference (WC) and body mass index 

(BMI) fall within the credible region of 0.017 and 0.058, -0.105 and -0.113. Since all 

the coefficients have shorter interval  in the model with the non-flat prior compared to 

the MLE and the Bayesian logistic regression model with the non-informative flat 

prior, this is as a  of the the interval bounds of the variable in that particular model 

having the shortest interval compared to the other models. That is to say that the 

model result that gives a shortest interval is considered to be reliable. In other words, 

the shorter the length of the interval for each coefficient, the better the model. In 

comparing the non-informative flat prior with the MLE method on T2DM data. The 

prior (flat) which is considered will overlap each other because a very large variance 

for the normal distribution brings about a very small precision which on the other 

hand yields results that are similar to those of the MLE. So making a comparison 

between the two methods, one can hardly say with confidence that the model is better 

than the other. However, with the use of another method, (that is a known variance 

that results in an informed or known precision) which will still be non- informative 

but not perfectly flat yielded a better results than the MLE and Bayesian with the flat 

prior. 

Further, the inclusion of information about parameter values into the analysis through 

the choice of non- perfectly non-flat prior had an influence on the model. Owing to 

the fact that a known variance was used resulting to a known precision. On the other 

hand, when the standard deviation is small, the sample mean is close to each of the 

sample point, thereby making the result reliable.  

Convergence can be checked visually. For instance, the unimodal shape of the kernel 

density can indicate convergence, this is to say, when there is no convergence, the 

density plots shows no unimodality. In addition, the 75000 represents the chain being 

run for every coefficient, that is 75000 iterations for each of the chains as displayed in 
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Fig. 1  Convergence was checked also by the use of the density plots and the trace 

plots as shown in the figures mentioned above.  The plots in Fig 1 show the history of 

trace plots and the density distribution for Random walk algorithm of the 

corresponding posterior coefficient estimates for the variable of interest. 

 

Figure1: Trace plots and density distribution of the corresponding posterior estimates 

of the Intercept, family history of diabetes (FDM) and waist circumference (WC) and 

body mass index (BMI) via Random walk metropolis algorithm. 

 

CONCLUSION 

In this study, the type 2 diabetes and its associated risk factors were addressed by the 

use of Bayesian logistic regression (BLR) model via the random walk metropolis 

algorithm. The Bayesian method incorporated a non-informative flat prior distribution 

and also another prior, which is still non informative but not perfectly flat. These 
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models allowed us to analyse the uncertainty associated with the parameter 

estimation. Comparison between the frequentist logistic regression and Bayesian 

logistic regression models revealed a similarity in the model results owing to the use 

of non-informative flat prior distribution. Therefore, our study shows that the use of 

non -informative but not perfectly flat yielded better results than the MLE and 

Bayesian with the flat prior. 
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