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Abstract 

In this paper, some types of stability such as Lyapunov, orbital and structural 

stabilities were considered. The relationship between stability, asymptotic 

stability and exponential stability was also stated. Conditions under which 

some systems fail to be stable were also explained. 
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1. INTRODUCTION 

A non linear system refers to a set of non linear equations used to describe a physical 

device or process that may not be described by a set of linear equations of any kind. 

Dynamical control system is used as a synonym for Mathematical or Physical system 

when the describing equations represent evolution of a solution with time control 

input parameters. 

The Theory of non linear dynamical control systems has been greatly advanced since 

nineteenth century [9]. Today, non linear dynamical control systems are used to 

describe a great variety of scientific and engineering phenomenon ranging from 

social, life and physical sciences to engineering and technology. See [4], [7], [8]. 

Stability Theory plays a central role in system engineering, especially in the field of 
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dynamical control systems with regard to both dynamics and control [5]. The basic 

concept of stability emerged from the study of an equilibrium state of mechanical 

systems such as the equilibrium of a rigid body under natural force of gravity [6]. 

 

2. PRELIMINARIES 

A continuous-time non linear control system is generally described by a different 

equation of the form  

�̇� = 𝑓(𝑥, 𝑡, 𝑢), 𝑡 𝜖 [𝑡0, ∞)                                                                              (1.1) 

where 𝑥 =  𝑥(𝑡) is the state of the system usually in 𝐸𝑛, u is the control input vector 

belonging to 𝐸𝑚,  (𝑤𝑖𝑡ℎ 𝑚 ≤ 𝑛) and f is a Lipschitz or continuously differentiable 

non linear function. We want to study the stability of (1.1). In studying the stability of 

(1.1), we have special interest in the following types of stabilities. 

 

2.0 Stabilities 

We intend to look into these three types of stabilities: - Lyapunov stability of a system 

with respect to its equilibra, the orbital stability of a system output trajectory, and the 

structural stability of a system itself. These are of fundamental importance in the 

studies of nonlinear dynamical control systems. 

 

2.1 Lyapunov Stability 
Lyapunov stability of a system with respect to its equilibrium of interest is roughly 

the behavior of the system output toward the equilibrium state. Without loss of 

generality, let us assume that the origin 𝑥 =  0 is the system’s equilibrium of interest. 

We note that Lyapunov stability theory is concerned with various stabilities of the 

system with respect to this equilibrium. We note that if another equilibrium is to be 

considered, the new equilibrium is first of all shifted to zero by a change of variables 

and then the transformed system is then studied in the same way. 

Let us now consider a dynamical system without explicitly involving control inputs. 

This dynamical system is of the form 

�̇� = 𝑓(𝑥, 𝑡)       𝑥(𝑡0) = 𝑥0 𝜖 𝐸𝑛                                                                             (2.1) 

 

Definition 1.  Lyapunov Stability [10] 

System (2.1) is said to be stable in the sense of Lyapunov with respect to the 

equilibrium x = 0 if for 𝜖 > 0 and any initial time t0 > 0, there exists a constant 𝛿 =
𝛿(휀, 𝑡0), such that  

‖𝑥∗(𝑡0)‖ < 𝛿 ⟹ ‖𝑥∗(𝑡)‖ < 휀 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ≥ 𝑡0                                                 (2.2) 

Here, we emphasize that the constant 𝛿 generally depends on both 휀 𝑎𝑛𝑑 𝑡0  
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We note also that the above stability, in the sense of Lyapunov, is said to be uniform 

with respect to the initial time if 𝛿 = 𝛿(휀) and does not depend explicitly on 𝑡0 over 

the entire interval of time in [0,∞)  

 

Definition 2. Lyapunov Asymptotically Stability. 

System (2.2) is said to be asymptotically stable about its equilibrium point x* = 0 if it 

is stable in the sense of Lyapunov and furthermore, there exists a constant 𝛿 =
𝛿(𝑡0) > 0 such that  

‖𝑥∗(𝑡0)‖ < 𝛿 ⟹ ‖𝑥∗(𝑡)‖ ⟶ 0 𝑎𝑠 𝑡 ⟶ ∞.                                               (2.3) 

We have to note also that asymptotic stability is said to be uniform if 𝛿 is independent 

of 𝑡0 over the finite interval [0, ∞). 

 

Definition 3.  Exponential Stability [2] 

System (2.2) is said to be exponential stable if for two positive constants c and 𝜎, we 

have  

‖𝑥(𝑡0)‖ < 𝛿 ⟹ ‖𝑥(𝑡)‖ ≤  𝑐 𝑒−𝜎𝑡𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ≥ 𝑡0              

Clearly, we have to observe that exponential stability implies asymptotic stability and 

asymptotic stability in turn implies stability in the sense of Lyapunov. Note that the 

reverse need not be true. 

For Lyapunov stability, let us consider, for example, the following time varying 

system with discontinuous coefficient. Let us take for instance 

�̇�(𝑡) =
1

1−𝑡
𝑥(𝑡),   𝑥(𝑡0) = 𝑥0                                                                        (2.4) 

Note that (2.4) has the solution of the form 

𝑥(𝑡) = 𝑥0
1−𝑡0

1−𝑡
, 0 ≤ 𝑡0 ≤ 𝑡 < ∞                                                                    (2.5) 

We also note (2.5) is stable in the sense of Lyapunov about the equilibrium x* = 0 

over the entire time domain [0,∞) if and only if t0 = 1. This shows that the initial time 

t0 plays an important role in the stability of a non-autonomous system. 

 

2.2 Orbital Stability. 

Let 𝑄𝑡(𝑡0) be a p-periodic solution, 𝑃 >  0, of the autonomous system 

�̇�(𝑡) = 𝑓(𝑥), 𝑥(𝑡0) = 𝑥0 𝜖 𝐸𝑛                                                                        (2.6)̇  

and let  represent the closed orbit of Qt(x) in the state space. 

i.e.       Γ = {y|y = Qt(x0), 0 ≤ t < 𝑃}                                                                     (2.7) 
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If, for any 휀 > 0, there exists a constant 𝛿 = 𝛿(휀) > 0, 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  𝑓𝑜𝑟 𝑎𝑛𝑦 𝑥0 

satisfying  

𝑑(𝑥0 , Γ): =  
inf
yϵΓ

‖x0 − y‖ < 𝛿, 

The solution of the system 𝑄𝑡(𝑡0) satisfies  

𝑑(𝑄𝑡(𝑥0) , Γ) < 휀, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ≥ 0 

Then this P-periodic solution trajectory 𝑄𝑡(x0) is said to be orbitally stable [3]. If we 

talk of equilibrium of certain point in the space, we may refer to property of the 

system located at such a point. We can see a kind of equilibrium we encounter in the 

earth motion around the sun. In this case, we do not have an equilibrium situation like 

the one that was described just above. Still, this system is also in some kind of 

equilibrium in the sense that this system repeats its motion periodically. We have a 

closed part which, after a year repeats itself. It is meaningful to ask the question about 

stability in both of these cases. However, these two phenomenon are so different that 

they require different concepts of stability in order to catch the important property of 

each system. 

The orbital stability differs from Lyapunov stability described above in that it is 

concerned with the stability of a system output trajectory under small external 

perturbations. [6] 

 

2.3 Structural Stability 

Two systems are said to be topologically orbitally equivalent if there exists a 

homomorphism that transforms the family of trajectories of the first system to that of 

the second while preserving their motion directions [6]. For instance, systems �̇� =

𝑥 𝑎𝑛𝑑 �̇� = 2𝑥 are topologically equivalent, but are not so between �̇� = 𝑥 𝑎𝑛𝑑 �̇� = √𝑥 

. 

So, if the dynamics of the system in the state space changes radically, for example by 

the appearance of a new equilibrium or a new periodic orbit, due to small external 

perturbation, then the system is said to be structurally unstable [5] 

 Let us consider the following set of functions. 

𝜑 = {𝑔(𝑥)|‖𝑔(𝑥)‖ < ∞, ‖
𝜕𝑔(𝑥)

𝜕𝑥
‖ < ∞ 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 𝜖 𝐸𝑛}                            (2.8) 

If for any 𝑔 𝜖 𝜑, there exists an 휀 > 0 such that orbits of the two systems 

�̇� = 𝑓(𝑥)  and  �̇� = 𝑓(𝑥) + 휀𝑔(𝑥)                                                                          (2.9) 

are topologically orbitally equivalent, then the autonomous system (2.6), the first 

unperturbed system, is said to be structurally stable. 
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Example 

Let �̇� = 𝑥. This is structurally stable but �̇� = 𝑥2 is not in the neighbourhood of the 

origin. This is because when the second system is slightly perturbed, to become, say 

�̇� = 𝑥2 + 휀, where 휀 > 0, then the resulting system has two equilibria 𝑥1
∗ =

√휀 𝑎𝑛𝑑 𝑥2
∗ = −√휀. This has more numbers of equilbria than the original system that 

has only one equilibrium 𝑥∗ = 0 

 

3. TOTAL STABILITY: STABILITY UNDER PERSISTENT PERTURBATIONS. 

Consider a non-autonomous systems of the form  

�̇� = 𝑓(𝑥, 𝑡) + ℎ(𝑥, 𝑡), 𝑥(𝑥0) = 𝑥0 𝜖 𝐸𝑛                                                    (3.1) 

where f is continuously differential, with f(0,t) = 0 and h is a persistent perturbation, 

in the sense that for any 휀 > 0, there are two positive constants 

𝛿1, 𝛿2 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑖𝑓 ‖ℎ(𝑥∗, 𝑡)‖ < 𝛿1 𝑓𝑜𝑟  𝑡 𝜖 [𝑡0, ∞)𝑎𝑛𝑑 𝑖𝑓 ‖𝑥∗(𝑡0)‖ < 𝛿2, 
 𝑡ℎ𝑒𝑛 ‖𝑥∗(𝑡)‖ < 휀. 

The equilibrium 𝑥∗ = 0 of the unperturbed system, i.e. system 

�̇� = 𝑓(𝑥, 𝑡), 𝑥(𝑥0) = 𝑥0 𝜖 𝐸𝑛                                                                        (3.2) 

is said to be totally stable if the persistently perturbed system (3.1) remains to be 

stable in the sense of Lyapunov [10] In this case, all uniformly and asymptotically 

stable systems with persistent perturbations are totally stable. i.e. stable orbit starting 

from a neighbourhood of another will stay nearly. See [4]. [5]. These lead us to the 

following theorems without proofs. 

 

Theorem 3.1 

If the unperturbed system (3.2) is uniformly and asymptotically stable about its 

equilibrium 𝑥∗ = 0, then it is totally stable, namely, the persistently perturbed system 

(3.1) remains stable in the sense of Lyapunov. 

If we consider an autonomous system have the following 

     �̇� = 𝑓(𝑥) +  ℎ(𝑥, 𝑡), 𝑥 𝜖 𝐸𝑛                                                                        (3.3) 

We have the following; 

 

Theorem 3.2 (Perturbed orbital stability Theorem) 

If 𝑄𝑡(𝑡0) is an orbitally stable solution of the unperturbed autonomous systems (i.e. 

(3.3) with ℎ =  0 there in, then it is totally stable. i.e. the perturbed system (3.3) 

remains orbitally stable under persistent perturbations. 
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4. CONCLUDING REMARKS 

This paper has offered a brief introduction to the basic theory of methodology of 

Lyapunov stability, orbital stability and structural stability. Several important classes 

of nonlinear systems have been omitted in the discussion of various stability issues. 

Discussion of more advanced nonlinear systems, such as infinite-dimensional 

nonlinear systems, differential equations, non-linear stochastic systems are beyond the 

scope of this elementary expository paper. 
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