Global Journal of Pure and Applied Mathematics. ISSN 0973-1768 Volume 15, Number 2 (2019), pp. 161-168 © Research India Publications http://www.ripublication.com/gjpam.htm

On Some Maps Concerning β -Closed Sets and Related Groups

SanjayTahiliani

PGT/Lecturer N.K.Bagrodia P.S ,Sec 9, Rohini, Delhi,Postal code 110085, India

Abstract

The concept of group of functions, say $\beta ch(X,\tau)$ preserving β -closed sets containing homeomorphism group $h(X,\tau)$ was studied by Arora, Tahiliani and Maki. In continuation to that, we study some new isomorphisms, mappings, subgroups and their properties.

Keywords: α -open, β -open and β -irresolute mappings.

2010 MSC.54C08

1.Introduction and Preliminaries

Throughout this paper we consider spaces on which no separation axiom are assumed unless explicitly stated. The topology of a space (By space we always mean a topological space) is denoted by τ and (X,τ) will be replaced by X if there is no chance of confusion. For $A\subseteq X$, the closure and interior of A in X are denoted by Cl(A) and Int(A) respectively. Let A be a subset of the space (X,τ) . Then A is said to be β -open [1] if $A\subseteq Cl(Int(Cl(A)))$. Its complement is β -closed. The family of all β -open sets containing A is denoted by $\beta O(A)$ and all β -closed sets containing A is denoted by $\beta C(A)$. A is said to be α -open A if $A\subseteq Int(Cl(Int(A)))$ and its complement is α -closed. The union of all β -open sets contained in A is called β -interior of A, denoted by $\beta Int(A)[2]$.

A map $f:(X,\tau) \to (Y,\sigma)$ is called β -irresolute[4] if the inverse image of every β -open set in Y is β -open in X.It is called β c-homeomorphism[5] if f is β -irresolute bijection and f⁻¹ is β -irresolute.

162 Sanjay Tahiliani

2. Subgroups of $\beta ch(X;\tau)$

For a topological space (X,τ) we have $h(X;\tau)=\{f \mid f:(X,\tau) \rightarrow (X,\tau) \text{ is a homeomorphism}\}[5]$ and $\beta ch(X;\tau)=\{f \mid f:(X,\tau) \rightarrow (X,\tau) \text{ is a } \beta c\text{-homeomorphism}\}[5]$.

In this section, we investigate some structures of $\beta ch(H;\tau|H)$ for a subspace $(H,\tau|H)$ of (X,τ) using two subgroups of $\beta ch(X,\tau)$, say $\beta ch(X,X \setminus H;\tau)$ and $\beta ch_0(X,X \setminus H;\tau)$ below.

Definition 2.1. For a topological space (X,τ) and subset H of X, we define the following families of maps:

- (i). $\beta ch(X, X \setminus H; \tau) = \{a | a \in \beta ch(X; \tau) \text{ and } a(X \setminus H) = X \setminus H\}.$
- (ii). $\beta \operatorname{ch}_0(X, X \setminus H; \tau) = \{a | a \in \beta \operatorname{ch}(X, X \setminus H; \tau) \text{ and } a(x) = x \text{ for every } x \in X \setminus H\}.$

Theorem2.2. Let H be a subset of a topological space (X,τ) . Then

- (i) The family $\beta ch(X, X \setminus H; \tau)$ forms a subgroup of $\beta ch(X, \tau)$.
- (ii) The family $\beta ch_0(X, X \setminus H; \tau)$ forms a subgroup of $\beta ch(X, X \setminus H; \tau)$ and hence $\beta ch_0(X, X \setminus H; \tau)$ forms a subgroup of $\beta ch(X, \tau)$.
- Proof.(i). It is shown obviously that $\beta ch(X, X \setminus H; \tau)$ is a non empty subset of $\beta ch(X,\tau)$, because $1_X \in \beta ch(X, X \setminus H; \tau)$. Moreover, we have that $\omega_X(a,b^{-1})=b^{-1}o$ $a \in \beta ch(X, X \setminus H; \tau)$ for any elements $a,b \in \beta ch(X, X \setminus H; \tau)$, where $\omega_X = \omega|(\beta ch(X, X \setminus H; \tau)) \times \beta ch(X, X \setminus H; \tau)$) as ω is the binary operation of the group $\beta ch(X,\tau)$. Evidently, the identity map 1_X is the identity element of $\beta ch(X, X \setminus H; \tau)$.
- (ii).It is shown that $\beta ch_0(X, X \setminus H; \tau)$ is a non empty subset of $\beta ch(X, X \setminus H; \tau)$ because $1_X \in \beta ch_0(X, X \setminus H; \tau)$. We have that $\omega_{X,0}(a,b^{-1})=b^{-1}o$ $a \in \beta ch_0(X, X \setminus H; \tau)$ for any elements $a,b \in \beta ch_0(X, X \setminus H; \tau)$, where $\omega_{X,0}=\omega_X|$ ($\beta ch_0(X, X \setminus H; \tau)$). Thus $\beta ch_0(X, X \setminus H; \tau)$) is a subgroup of $\beta ch(X, X \setminus H; \tau)$ and the identity map 1_X is the identity element of $\beta ch_0(X, X \setminus H; \tau)$. By using (i), $\beta ch_0(X, X \setminus H; \tau)$ forms a subgroup of $\beta ch(X, \tau)$.

Let H and K be the subsets of X and Y respectively. For a map $f:X \to Y$ satisfying a property K=f(H), we define the following map $r_{H,K}(f):H \to K$ by $r_{H,K}(f)(x)=f(x)$ for every $x \in H$. Then, we have that $j_K \text{or}_{H,K}(f)=f|H:H \to Y$, where $j_K:K \to Y$ be an inclusion defined by $j_K(y)=y$ for every $y \in K$ and $f|H:H \to Y$ is a restriction of f to H defined by (f|H)(x)=f(x) for every $x \in H$. Especially, we consider the following case that $X=Y,H=K\subseteq X$ and a(H)=H, b(H)=H for any maps $a,b:X \to X$. Thus $r_{H,H}(boa)=r_{H,H}(b)\text{or}_{H,H}(a)$ holds. Moreover, if a map $a:X \to X$ is a bijection such that a(H)=H, then $r_{H,H}:H \to H$ is bijective and $r_{H,H}(a^{-1})=(r_{H,H}(a))^{-1}$.

We recall well known properties on β -open sets of subspace topological spaces:

- **Theorem 2.3**. For a topological space (X,τ) and subsets H and U of X and A \subseteq H,V \subseteq H and B \subseteq H,the following properties hold:
- (i). Arbitrary union of β -open sets of (X,τ) is β -open in (X,τ) . The intersection of an open set of (X,τ) and a β -open set in (X,τ) is β -open in (X,τ) .
- (ii).(ii-1).If A is β -open in (X,τ) and $A\subseteq H$, then A is β -open in a subspace $(H,\tau|H)$.
- (ii-2). If $H \subseteq X$ is open or α -open in (X,τ) and a subset $U \subseteq X$ is β -open in (X,τ) , then $H \cap U$ is β -open in a subspace $(H,\tau|H)$.
- (iii). Let $V \subset H \subset X$.
- (iii-1). If H is β-open in (X,τ) , then $Int_H(V) \subseteq \beta Int(V)$ holds.
- (iii-2). If H is β -open in (X,τ) and V is β -open in a subspace $(H,\tau|H)$ then V is β -open in (X,τ) .
- (iv).Let $B \subseteq H \subseteq X$.If H is β -closed in (X,τ) and B is β -closed in a subspace $(H,\tau|H)$, then B is β -closed in (X,τ) .
- (v). (v-1). Assume that H is a open subset of (X,τ) . Then, $\beta O(X,\tau)|H\subseteq \beta O(H,\tau|H) \text{ holds,where }\beta O(X,\tau)|H=\{W\cap H|\ W\in \beta O(X,\tau)\}.$
- (v-2). Assume that H is a β-open subset of (X,τ) . Then,
 - $\beta O(H,\!\tau|H) \subseteq \beta O(X,\!\tau)|H \text{ holds}.$
- (v-3). Assume that H is a β-open subset of (X,τ) . Then, $\beta O(H,\tau|H) = \beta O(X,\tau)|H \text{ holds.}$
- Proof.(i).Clear from Remark 1.1 of [1] and Theorem 2.7 of [3].
- (ii).(ii-1).Clear.(ii-2).Its Lemma 2.5 of [1].
- (iii-1).Let $x \in Int_H(V)$.There exists a subset $W(x) \in \tau$ such that $W(x) \cap H \subseteq V$. By (i), $W(x) \cap H \in \beta O(X,\tau)$.This shows that $x \in \beta Int(V)$ and so $Int_H(V) \subset \beta Int(V)$.
- (iii-2) and (iv). Its clear from Lemma 2.7 of [1].
- (v). (v-1).Let $V \in \beta O(X,\tau)|H$. For some set $W \in \beta O(X,\tau), V=W \cap H$ and so we have $W \cap H \in \beta O(H,\tau|H)$ (from ii-2). Hence $V \in \beta O(H,\tau|H)$ holds.
- (v-2). Let $V \in \beta O(H,\tau|H)$. Since $H \in \beta O(X,\tau)$, we have $V \in \beta O(X,\tau)$ by (iii-2). Thus $V = V \cap H \in \beta O(X,\tau)|H$.
- (v-3). It follows from (v-1) and (v-2).
- **Lemma2.4.** (i).If $f:(X,\tau) \to (Y,\sigma)$ is β -irresolute and a subset H is α -open in (X,τ) , then $f|H:(H,\tau|H) \to (Y,\sigma)$ is β -irresolute.

164 Sanjay Tahiliani

(ii).Let (1) and (2) be properties of two maps $k:(X,\tau) \to (K,\sigma|K)$, where $K\subseteq Y$, and $j_{K}ok:(X,\tau)\to (Y,\sigma)$ as follows:

- (1). $k:(X,\tau) \rightarrow (K,\sigma|K)$ is β -irresolute.
- (2). $j_K ok$: $(X,\tau) \rightarrow (Y,\sigma)$ is β -irresolute.

Then, the following implications and equivalence hold:

- (ii-1). Under the assumption that K is α -open in (Y,σ) , $(1) \Rightarrow (2)$.
- (ii-2). Conversely, under the assumption that K is β -open in (Y,σ) , $(2) \Rightarrow (1)$.
- (ii-3). Under the assumption that K is β-open in (Y,σ) , $(1) \Leftrightarrow (2)$.
- (iii). If $f:(X,\tau) \to (Y,\sigma)$ is β -irresolute and a subset H is α -open in (X,τ) and f(H) is β -open in (Y,σ) , then $r_{H,f(H)}(f):(H,\tau|H) \to (f(H),\sigma|f(H))$ is β -irresolute.
- Proof.(i).Let $V \in \beta O(Y, \sigma)$. Then, we have $(f \mid H)^{-1}(V) = f^{-1}(V) \cap H$ and $(f \mid H)^{-1}(V) \in \beta O(H, \tau \mid H)$. (Theorem 2.3 (ii-2)).
- (ii).(ii-1) (1) \Rightarrow (2).Let $V \in \beta O(Y,\sigma)$.Since $(j_K ok)^{-1}(V) = k^{-1}(V \cap K)$ and $V \cap K \in \beta O(K,\sigma|K)$ (Theorem 2.3 (ii-2)),we have that $(j_K ok)^{-1}(V) \in \beta O(X,\tau)$ and hence $j_K ok$ is β -irresolute.
- (ii-2) (2) \Rightarrow (1).Let $U \in \beta O(K, \sigma | K)$.Since $U \in \beta O(Y, \sigma)$ (Theorem2.3 (iii-2)),we have $k^{-1}(U) = (j_K o k)^{-1}(U) \in \beta O(X, \tau)$. Thus k is β -irresolute.
- (ii-3). Obvious in the view of fact that every α -open set is β -open, it is obtained by (ii-1) and(ii-2).
- (iii). By (i), $f|H:(H,\tau|H) \rightarrow (Y,\sigma)$ is β -irresolute. The map $r_{H,f(H)}(f)$ is β -irresolute, because $f|H=i_{f(H)}o\ r_{H,f(H)}(f)$ holds.

Definition 2.5. For an α -open subset H of (X,τ) , the following maps

- $(r_H)^*$: $\beta ch(X, X \setminus H; \tau) \rightarrow \beta ch(H;\tau|H)$ and $(r_H)^*,_0$: $\beta ch_0(X, X \setminus H; \tau) \rightarrow \beta ch(H;\tau|H)$ are well defined as follows(Lemma 2.4 (iii)),respectively:
- $(r_H)^*(f)=r_{H,H}(f)$ for every $f \in \beta ch(X, X \setminus H; \tau)$;
- $(r_H)^*,_0(g) = r_{H,H}(g)$ for every $g \in \beta ch_0(X, X \setminus H; \tau)$. Indeed ,in Lemma 2.4 (iii),we assume that $X = Y, \tau = \sigma$ and H = f(H).

Then, under the assumption that H is α -open hence β -open in (X,τ) , it is obtained that $r_{H,H}(f) \in \beta ch(H;\tau|H)$ holds for any $f \in \beta ch(X, X \setminus H; \tau)$ (resp. $f \in \beta ch_0(X, X \setminus H; \tau)$).

We need the following lemma and then we prove that $(r_H)^*$ and $(r_H)^*$,0 are onto homomorphisms under the assumptions that H is α -open and α -closed in (X,τ) .

Let $X=U_1\cup U_2$ for some subsets U_1 and U_2 and $f_1:(U_1,\tau|U_1)\to (Y,\sigma)$ and

 $f_2:(U_2,\tau|U_2)\to (Y,\sigma)$ be the two maps satisfying a property $f_1(x)=f_2(x)$ for every $x\in U_1\cap U_2$. Then, a map $f_1\nabla f_2$ is well defined as follows:

 $(f_1\nabla f_2)(x)=f_1(x)$ for every $x\in U_1$ and $(f_1\nabla f_2)(x)=f_2(x)$ for every $x\in U_2$.

We call this map a combination of f_1 and f_2 .

Lemma 2.6. For a topological space (X,τ) , we assume that $X = U_1 \cup U_2$, where U_1 and U_2 are subsets of X and $f_1:(U_1,\tau|U_1) \to (Y,\sigma)$ and $f_2:(U_2,\tau|U_2) \to (Y,\sigma)$ be the two maps satisfying a property $f_1(x)=f_2(x)$ for every $x \in U_1 \cap U_2$. Then if $U_i \in \beta O(X,\tau)$ for each $i \in \{1,2\}$ and f_1 and f_2 are β -irresolute, then its combination $f_1 \nabla f_2:(X,\tau) \to (Y,\sigma)$ is β -irresolute.

Proof. Clear from Theorem 2.3 (i) and (iii-2).

Theorem 2.7.Let H be a subset of a topological space (X,τ) .

- (i).(i-1).If H is α -open in (X,τ) , then the maps $(r_H)^*$: $\beta ch(X, X \setminus H;\tau) \to \beta ch(H;\tau|H)$ and $(r_H)^*,_0$: $\beta ch_0(X, X \setminus H;\tau) \to \beta ch(H;\tau|H)$ are homomorphism of groups. (Definition 2.5).Morever $(r_H)^* \mid \beta ch_0(X, X \setminus H;\tau) = (r_H)^*,_0$ holds.
- (i-2). If H is α -open and α -closed in (X,τ) , then the maps $(r_H)^*$: $\beta ch(X, X \setminus H; \tau) \rightarrow \beta ch(H;\tau|H)$ and $(r_H)^*_0$: $\beta ch_0(X, X \setminus H; \tau) \rightarrow \beta ch(H;\tau|H)$ are onto homomorphism of groups.
- (ii). For an α -open subset H of (X,τ) , we have the following isomorphisms of groups:
 - (ii-1). β ch(X, X \ H; τ) |Ker(r_H)* is isomorphic to Im(r_H)*;
 - (ii-2). $\beta ch_0(X, X \setminus H; \tau)$ is isomorphic to $Im(r_H)^*$,
 - where $Ker(r_H)^*=\{a\in\beta ch(X,\ X\backslash H;\ \tau)\ | (r_H)^*(a)=1_X\}$ is a normal subgroup of $\beta ch(X,\ X\backslash H;\ \tau);\ Im(r_H)^*=\{(r_H)^*(a)\ |\ a\in\beta ch(X,\ X\backslash H;\ \tau)\}$ and $Im(r_H)^*,0=\{(r_H)^*,_0(b)\ |\ b\in\beta ch_0(X,\ X\backslash H;\ \tau)\}$ are subgroups of $\beta ch(X,\tau)$.
- (iii). For an α -open and α -closed subset H of (X,τ) , we have the following isomorphisms of groups:
 - (iii-1). $\beta ch(H;\tau|H)$ is isomorphic to $\beta ch(X, X \mid H; \tau) \mid Ker(r_H)^*$.
 - (iii-2). $\beta ch(H;\tau|H)$ is isomorphic to $\beta ch_0(X, X \setminus H; \tau)$.

Proof.(i).(i-1).Let $a,b \in \beta ch(X, X \setminus H; \tau)$.Since H is α -open in (X,τ) ,the maps $(r_H)^*$ and $(r_H)^*,_0$ are well defined(Definition2.5).Then we have that $(r_H)^*(\omega_X(a,b)) = (r_H)^*(boa) = r_{H,H}(boa) = r_{H,H}(b)$ o $r_{H,H}(a) = \omega_X((r_H)^*(a), (r_H)^*(b))$ hold, where ω_H is a binary operation of $\beta ch(H;\tau|H)([5]$ Theorem 4.4 (iv)).Thus $(r_H)^*$ is a homomorphism of groups.For the map $(r_H)^*_0$: $\beta ch_0(X, X \setminus H; \tau) \to \beta ch(H;\tau|H)$, we have that $(r_H)^*$, $_0(\omega_{X,0}(a,b)) = (r_H)^*$, $_0(boa) = r_{H,H}(boa) = r_{H,H}(b)$ o $r_{H,H}(a) = \omega_X((r_H)^*(a), (r_H)^*(b))$ hold, where ω_X is a binary operation of $\beta ch(H;\tau|H)$ (Theorem 2.3 (ii)).Thus $(r_H)^*$, $_0$ is also a homomorphism of groups.It is obviously shown that $(r_H)^* \mid \beta ch_0(X, X \setminus H; \tau) = (r_H)^*$, $_0$ holds.(Definitions 2.1 and 2.5).

- (i-2).In order to prove that $(r_H)^*$ and $(r_H)^*_0$ are onto ,let $h \in \beta ch(H;\tau|H)$.Let j_H : $(H;\tau|H) \rightarrow (X,\tau)$ and $J_{X \setminus H}$: $(X \setminus H,\tau| \ X \setminus H) \rightarrow (X,\tau)$ be the inclusions defined $j_H(x)=x$ for every $x \in H$ and $J_{X \setminus H}$ (x)=x for every $x \in X \setminus H$.We consider the combination $h_1=(j_H oh) \ \nabla (j_X \setminus H o \ 1_{X \setminus H})$: $(X,\tau) \rightarrow (X,\tau)$.By Lemma 2.4 (ii-1),under the assumption of α -openness on H, it is shown that two maps j_H oh : $(H;\tau|H) \rightarrow (X,\tau)$ and j_H oh · · · ($H;\tau|H) \rightarrow (X,\tau)$ are β -irresolute; moreover under the assumption of α -openness on $X \setminus H$, $J_{X \setminus H}$ o $1_{X \setminus H}$: $(X \setminus H,\tau|X \setminus H) \rightarrow (X,\tau)$ is β -irresolute.Using lemma 2.6, for a β -open cover $\{H, X \setminus H\}$ of X,the combination above h_1 : $(X,\tau) \rightarrow (X,\tau)$ is β -irresolute. Since h_1 is bijective, its inverse map $h_1^{-1}=(j_H oh^{-1}) \ \nabla (j_{X \setminus H} o \ 1_{X \setminus H})$ is also β -irresolute. Thus under the assumption that both H and $X \setminus H$ are β -open in (X,τ) ,we have $h_1 \in \beta ch(X,\tau)$.Since $h_1(x)=x$ for every point $x \in X \setminus H$,we conclude that $h_1 \in \beta ch_0(X, X \setminus H; \tau)$ and so $h_1 \in \beta ch(X, X \setminus H; \tau)$.Moreover, $(r_H)^*,_0(h_1)=(r_H)^*(h_1)=r_{H,H}((h_1)=h$, hence $(r_H)^*$ and $(r_H)^*,_0$ are onto, under the assumption that H is α -open and α -closed subset of (X,τ) .
- (ii).By (i-1) above and the first isomorphism theorem of group theory, it is shown that there are group isomorphism below, under the assumption that H is α -open in (X,τ) :
- (*). $\beta ch(X, X \mid H; \tau) \mid Ker(r_H)^*$ is isomorphic to $Im(r_H)^*$; and (**). $\beta ch_0(X, X \mid H; \tau) \mid Ker(r_H)^*_0$ is isomorphic to $Im(r_H)^*_0$.

where $\text{Ker}(r_H)^*_0 = \{a \in \beta ch_0(X, X \setminus H; \tau) \mid (r_H)^*_0(a) = 1_X \}$. Moreover, under the assumption of α -openness on H,it is shown that $\text{Ker}(r_H)^*_0 = \{1_H\}$. Therefore, using (**) above, we have the isomorphism (ii-2).

(iii).By (i-2) above, it is shown that $(r_H)^*$ and $(r_H)^*$,0 are onto homomorphism of groups,under the assumption that H is α -open and α -closed in (X,τ) . Therefore ,by (ii) above, the isomorphisms (iii-1) and (iii-2) are obtained.

Remark 2.8. Under the assumption that H is α -open and α -closed in (X,τ) , Theorem 2.7 (iii) is proved. Let (X,τ) be a topological space where $X=\{a,b,c\}$ and $\tau=\{\phi, X,\{a\},\{b,c\}\}$, and $(H;\tau|H)$ is a subspace of (X,τ) , where $H=\{a\}$. Then

 $\beta O(X,\tau)=P(X)$ (the power set of X) and H is α -open and α -closed in (X,τ) . We apply Theorem 2.7 (iii) to the present case, we have the group isomorphisms. Directly, we obtain the following date on groups: $\beta ch(X,\tau)$ is isomorphic to S_3 , the symmetric group of degree 3, $\beta ch(X, X \setminus H; \tau)=\{1_X, h_a\}$, $Ker(r_H)^*=\{1_X, h_a\}$, $\beta ch(H; \tau \setminus H)=\{1_H\}$ and so $\beta ch_0(X, X \setminus H; \tau)=\{1_X\}$, where $h_a:(X,\tau) \to (X,\tau)$ is a map defined by $h_a(a)=a$, $h_a(b)=c$ and $h_a(c)=b$. Therefore in this example, we have $\beta ch(H;\tau|H)$ is isomorphic to $\beta ch(X, X \setminus H; \tau)$ | $Ker(r_H)^*$ and $\beta ch(H;\tau|H)$ is isomorphic to $\beta ch_0(X, X \setminus H; \tau)$. Moreover we have $h(X,\tau)=\{1_X, h_a\}$.

(iii). Even if a subset H of a topological space (X,τ) is not α -closed and it is α -open, we have the possibilities to investigate isomorphisms of groups corresponding to a subspace $(H, \tau|H)$ and $(r_H)^*$ using Theorem 5.7(ii). For example, Let (X,τ) be a topological space where $X=\{a,b,c\}$ and $\tau=\{\phi,X,\{a,b\}\}$, and $(H;\tau|H)$ is a subspace of (X,τ) , where $H=\{a,b\}$. Then $\beta O(X,\tau)=P(X)$ (the power set of X) except $\{c\}$ $\tau^{\alpha}=\tau$. The subset X is X-open but not X-closed in X-close

(*-1). $\beta ch(X, X \setminus H; \tau)/Ker(r_H)^*$ is isomorphic to $Im(r_H)^*$. (*-2). $\beta ch_0(X, X \setminus H; \tau)/Ker(r_H)^*$ is isomorphic to $Im(r_H)^*$,0.

We need notation on maps as follows: let $h_c\colon (X,\tau)\to (X,\tau)$ and $t_{a,b}\colon (H,\tau|H)\to (H,\tau|H)$ are the maps defined by $h_c(a)=b$, $h_c(b)=a$, $h_c(c)=c$ and $t_{a,b}(a)=b$, $t_{a,b}(b)=a$,respectively. Then it is directly shown that $\beta ch(X,X\setminus H;\tau)=\{1_X,h_c\}$ which is isomorphic to Z_2 , $(h_c)^2=1_X$, and $Ker(r_H)^*=\{a\in\beta ch(X,X\setminus H;\tau)|\ (r_H)^*(a)=1_H$ $\}=\{1_X\}$, because $(r_H)^*(1_X)=1_H$ and $(r_H)^*(h_c)=t_{a,b}$ not equal to 1_H . By using (*-1) above, $Im(r_H)^*$ is isomorphic to $\beta ch(X,X\setminus H;\tau)=\{1_X,h_c\}$ and so $Im(r_H)^*=\{1_H,t_{a,b}\}$. Since $Im(r_H)^*\subseteq\beta ch(H;\tau|H)\subseteq\{1_H,t_{a,b}\}$, we have that $Im(r_H)^*=\beta ch(H,\tau|H)=\{1_H,t_{a,b}\}$ and hence $(r_H)^*$

is onto. Namely, we have an isomorphism $(r_H)^*$: $\beta ch(X, X \setminus H; \tau)$ is isomorphic to $\beta ch(H;\tau|H)$ which is isomorphic to Z_2 .Morever it is shown that $\beta ch_0(X, X \setminus H; \tau) = \{a \in \beta ch(X, X \setminus H; \tau) | a(x) = x \text{ for any } x \in \{c\}\} = \{1_X, h_c\} = \beta ch(X, X \setminus H; \tau) \text{ hold and so } (r_H)^* = (r_H)^*,_0 \text{ holds.}$

REFERENCES

- [1] M.E.Abd El-Monsef, S.N.El-Deeb and R.A.Mahmoud, *β-open sets and β-continuous mappings*,Bull.Fac. Sci. Assint Univ.,12(1983), 77-90.
- [2] M.E.Abd El-Monsef, R.A.Mahmoud and E.R.Lashin, β -closure and β -interior, J.Fac.Edu.Ain shams Univ.,10 (1986), 235-245.
- [3] D.Andrijevic, *Semi-preopen sets*, Mat. Vesnik., 38 (1) (1986), 24-32.

168 Sanjay Tahiliani

[4] S.C.Arora, Sanjay Tahiliani and H.Maki, On π generalized β -closed sets in topological spaces II, Scientiae Mathematica Japonice, 71 (1) (2010),43-54.

- [5] R.A.Mahmoud and M.E.Abd-El-Monsef, *β-irresolute and β-topological invariant*, Proc.Pakistan.Acad.Sci., 27(1990), 285-296.
- [6] O.Njastad, On some class of nearly open sets, Pacific.Jour.Math., 15 (1965), 961-970.