Further Results On Odd Mean Graphs

R. Vasuki¹

Department of Mathematics, Dr. Sivanthi Aditanar College of Engineering Tiruchendur-628 215, Tamil Nadu, India.

Abstract

Let G=(V,E) be a graph with p vertices and q edges. A graph G is said to have an odd mean labeling if there exists a function $f:V(G)\to\{0,1,2,\ldots,2q-1\}$ satisfying f is 1-1 and the induced map $f^*:E(G)\to\{1,3,5,\ldots,2q-1\}$ defined by

$$f^*(uv) = \begin{cases} \frac{f(u) + f(v)}{2} & \text{if } f(u) + f(v) \text{ is even} \\ \frac{f(u) + f(v) + 1}{2} & \text{if } f(u) + f(v) \text{ is odd.} \end{cases}$$

is a bijection. A graph that admits an odd mean labeling is called an odd mean graph. Here we study about the odd mean behaviour of some standard graphs.

Keywords: labeling, odd mean labeling, odd mean graph

AMS Mathematics Subject Classification: 05C78

1. INTRODUCTION

All graphs considered in this paper are simple and undirected. Let G(V, E) be a graph with p verticies and q edges. For notation and terminology, we follow [3].

Path on n vertices is denoted by P_n and a cycle on n vertices is denoted by C_n . $K_{1,m}$ is called a star and it is denoted by S_m . The bistar $B_{m,n}$ is the graph obtained from K_2 by identifying the central vertices of $K_{1,m}$ and $K_{1,n}$ at the end vertices of K_2 respectively. $B_{m,m}$ is often denoted by B(m). The union of two graphs G_1 and G_2 is a graph $G_1 \cup G_2$ with $V(G_1 \cup G_2) = V(G_1) \cup V(G_2)$ and $E(G_1 \cup G_2) = E(G_1) \cup E(G_2)$. The union of m disjoint copies of a graph G is denoted by mG.

Let G_1 and G_2 be any two graphs with p_1 and p_2 vertices respectively. Then the cartesian product $G_1 \times G_2$ has p_1p_2 vertices which are $\{(u,v)|u \in G_1, v \in G_2\}$. The edges

are obtained as follows: (u_1,v_1) and (u_2,v_2) are adjacent in $G_1\times G_2$ if either $u_1=u_2$ and v_1 and v_2 are adjacent in G_2 or u_1 and u_2 are adjacent in G_1 and $v_1=v_2$. The product $C_m\times P_n$ is called a *prism*. The graph $P_2\times P_2\times P_2$ is called a cube and is denoted by Q_3 . The H-graph of a path P_n , denoted by H_n is the graph obtained from two copies of P_n with vertices v_1,v_2,\ldots,v_n and u_1,u_2,\ldots,u_n by joining the vertices $v_{\frac{n+1}{2}}$ and $u_{\frac{n+1}{2}}$ if n is odd and the vertices $v_{\frac{n}{2}+1}$ and $u_{\frac{n}{2}}$ if n is even. If m number of pendant vertices are attached at each vertex of G, then the resultant graph obtained from G is the graph $G\odot mK_1$. When $m=1,G\odot K_1$ is the corona of G.

The graceful labelings of graphs was first introduced by Rosa in 1961 [1] and R.B. Gnanajothi introduced odd graceful graphs [2]. The concept of mean labeling was first introduced by S. Somasundaram and R. Ponraj [7]. The mean labeling of some standard graphs are studied in [5, 7, 8]. Further some more results on mean graphs are discussed in [6, 9, 10]. The concept of odd mean labeling was introduced and studied by K. Manickam and M. Marudai [4].

A graph G is said to have an odd mean labeling if there exists a function $f:V(G)\to \{0,1,2,\ldots,2q-1\}$ satisfying f is 1-1 and the induced map $f^*:E(G)\to \{1,3,5,\ldots,2q-1\}$ defined by

$$f^*(uv) = \begin{cases} \frac{f(u) + f(v)}{2} & \text{if } f(u) + f(v) \text{ is even} \\ \frac{f(u) + f(v) + 1}{2} & \text{if } f(u) + f(v) \text{ is odd.} \end{cases}$$

is a bijection. A graph that admits an odd mean labeling is called an odd mean graph [4].

An odd mean labeling of $B_{3,3}$ is given in Figure 1

Figure 1. An odd mean labeling of $B_{3,3}$

In [11], R. Vasuki and A. Nagarajan studied about the odd mean behaviour of the class of graphs $P_{a,b}, P_a^b$ and $P_{\langle 2a \rangle}^b$. In this paper, we prove that $C_m \times P_n$ for $m \equiv 0 \pmod{4}, n \geq 1, Q_3 \times P_n$, H-graph, corona of a H-graph and $G \odot S_2$ where G is a H-graph are odd mean graphs. Also we prove that if a tree T has an odd mean labeling, then $T_{(n)}$ is an odd mean graph for any $n \geq 1$. Also we establish that union of any number of odd mean graph is an odd mean graph.

2. ODD MEAN GRAPHS

Theorem 2.1. $C_m \times P_n$ is an odd mean graph for $m \equiv 0 \pmod{4}$ and $n \geq 1$.

Proof. Let $V(C_m \times P_n) = \{v_{i_j} : 1 \leq i \leq m, 1 \leq j \leq n\}$ and $E(C_m \times P_n) = \{e_{i_j} = v_{i_j} v_{(i+1)_j}, 1 \leq j \leq n, 1 \leq i \leq m\} \cup \{E_{i_j} : E_{i_j} = v_{i_j} v_{i_{j+1}}, 1 \leq j \leq n-1, 1 \leq i \leq m\}$ where i+1 is taken modulo m.

Let C_m^j denote the j^{th} copy of C_m in $C_m \times P_n$. Let the vertices of C_m^j be $v_{1_j}, v_{2_j}, \ldots, v_{m_j}$ for $1 \le j \le n$. Label the vertices of $C_m, m \equiv 0 \pmod{4}$ as follows:

$$f(v_{i_j}) = \begin{cases} 4i - 4 & \text{if } 1 \le i \le \frac{m}{2} + 1 \text{ and } i \text{ is odd} \\ 4i - 6 & \text{if } 2 \le i \le \frac{m}{2} \text{ and } i \text{ is even} \\ 4m + 3 - 4i & \text{if } \frac{m}{2} + 1 < i < n \text{ and } i \text{ is odd} \\ 4m + 6 - 4i & \text{if } \frac{m}{2} < i \le m \text{ and } i \text{ is even.} \end{cases}$$

If the vertices of ${\cal C}_m^{j-1}$ are labeled then the vertices of ${\cal C}_m^j$ are labeled as follows:

$$f(v_{i_j}) = f(v_{(i-1)_{(j-1)}}) + 4m$$
 where $i-1$ and $j-1$ are taken modulo m .

It can be verified that the label of the edges are $1,3,5,\ldots,2q-1$. Then f is an odd mean labeling of $C_m\times P_n$ for $n\geq 1$ and $m\equiv 0 \pmod 4$. Hence $C_m\times P_n$ is an odd mean graph for $n\geq 1$ and $m\equiv 0 \pmod 4$.

For example, an odd mean labeling of $C_8 \times P_4$ is shown in Figure 2.

Figure 2. An odd mean labeling of $C_8 \times P_4$

Theorem 2.2. $Q_3 \times P_n$ is an odd mean graph.

Proof. Let Q_3^j denote the j^{th} copy of Q_3 in $Q_3 \times P_n$ and for $1 \le i \le 8$, let v_{i_j} denote the i^{th} vertex in Q_3^j , where $1 \le j \le n$.

The vertices and their labels of $Q_3 \times P_2$ are shown in Figure 3.

Figure 3. An odd mean labeling of $Q_3 \times P_2$

If the vertices of Q_3^{j-2} are labeled by f, then the vertices of Q_3^j are labeled as follows: $f(v_{i_j}) = f(v_{i_{j-2}}) + 80$, for $1 \le i \le 8$ and $3 \le j \le n$.

Let E_j be the set of all edges in Q_3^j and $E_{j_{j+1}}$ be the set of all edges having one end in Q_3^j and the other in Q_3^{j+1} .

Denote the set of edge labels for the edges of E by $f^*(E)$. Then, it is observed that

$$f^*(E_j) = \{40 + f^*(e) : e \in E_{j-1}\}, 2 \le j \le n$$

$$f^*(E_{j_{j+1}}) = \{40 + f^*(e) : e \in E_{(j-1)_j}\}, 2 \le j \le n - 1.$$

Then, f is an odd mean labeling of $Q_3 \times P_n$.

For example, an odd mean labeling of $Q_3 \times P_4$ is shown in Figure 4.

Figure 4. An odd mean labeling of $Q_3 \times P_4$

Let T be any tree. Denote the tree, obtained from T by considering two copies of T and adding an edge between them, by $T_{(2)}$ and in general, the graph obtained from $T_{(n-1)}$ and T by adding an edge between them is denoted by $T_{(n)}$. Note that $T_{(1)}$ is nothing but T.

Theorem 2.3. If a tree T has an odd mean labeling, then $T_{(n)}$ is an odd mean graph for any $n \ge 1$.

Proof. We prove this result by induction on n.

When n=1, the result is obvious. Let n=2. Assume that $f:V(T)\to \{0,1,2,\ldots,2q-1\}$ is an odd mean labeling of T. Let T_1 and T_2 be two copies of T in $T_{(2)}$. Define a labeling l of $T_{(2)}$ as follows:

$$l(v) = \left\{ \begin{array}{ll} f(v) & \text{if } v \in T_1 \\ f(v) + 2p & \text{if } v \in T_2 \text{ where } p \text{ is the number of vertices in } T. \end{array} \right.$$

Then, l is an odd mean labeling and hence the result is true when n=2.

Assume that $T_{(n)}$ is an odd mean graph for any $n \ge 1$. Let g be an odd mean labeling of $T_{(n)}$. To complete the induction process, it is enough to prove that $T_{(n+1)}$ is an odd mean graph.

Define a labeling l of $T_{(n+1)}$ as follows:

$$l(v) = \left\{ \begin{array}{ll} g(v) & \text{if } v \in T_{(n)} \\ f(v) + 2np & \text{if } v \in T_{n+1} \text{ where } T_{n+1} \text{ is a} \\ & (n+1)^{th} \text{ copy of } T \text{ in } T_{(n+1)} \end{array} \right.$$

Clearly, l is an odd mean labeling of $T_{(n+1)}$. Hence, T(n) is an odd mean graph for any $n \ge 1$.

For example, an odd mean labelings of $T, T_{(2)}$ and $T_{(3)}$ are shown in Figure 5.

Figure 5. An odd mean labelings of T, T₍₂₎ and T₍₃₎

Corollary 2.4. $B(m)_{(n)}$ is an odd mean graph for any $m \ge 0$ and $n \ge 1$.

Proof. It is enough to show that B(m) has an odd mean labeling. Let the vertices of B(m) be v_0, v_1, \ldots, v_m and u_0, u_1, \ldots, u_m . Label the vertices of B(m) by

$$f(v_0) = 0$$

$$f(v_i) = 4i - 2, 1 \le i \le m$$

$$f(u_0) = 4m + 2$$

$$f(u_i) = 4i, 1 \le i \le m.$$

Then, f is an odd mean labeling of B(m). Therefore, by Theorem 2.3, $B(m)_{(n)}$ is an odd mean graph.

For example, an odd mean labeling of $B(5)_{(3)}$ is illustrated in Figure 6.

Figure 6. An odd mean labeling of $B(5)_{(3)}$

Corollary 2.5. $P_{n_{(m)}}$ is an odd mean graph for any $n \geq 1, m \geq 1$.

Proof. It is enough to show that P_n has an odd mean labeling. Let the vertices of P_n be v_1, v_2, \ldots, v_n . Label the vertices of P_n by $f(v_i) = 2i - 2$ for $1 \le i \le n$. Then, f is an odd mean labeling of P_n . Hence, by Theorem 2.3, $P_{n_{(m)}}$ is an odd mean graph. \square

For example, an odd mean labeling of P_6 , $P_{6_{(2)}}$ and $P_{6_{(3)}}$ are shown in Figure 7.

Figure 7. An odd mean labeling of $P_6, P_{6_{(2)}}$ and $P_{6_{(3)}}$

Theorem 2.6. The H-graph G is an odd mean graph.

Proof. Let v_1, v_2, \ldots, v_n and u_1, u_2, \ldots, u_n be the vertices of the H-graph G. Define $f: V(G) \to \{0, 1, 2, \ldots, 2q - 1\}$ as follows:

$$f(v_i) = 2i - 2,$$
 $1 \le i \le n$
 $f(u_i) = 2n + 2i - 2,$ $1 \le i \le n - 1$
 $f(u_n) = 4n - 3.$

The induced edge labels are given by

$$f^*(v_i v_{i+1}) = 2i - 1, 1 \le i \le n - 1$$

$$f^*(u_i u_{i+1}) = 2n + 2i - 1, 1 \le i \le n - 1$$

$$f^*(v_{\frac{n+1}{2}} u_{\frac{n+1}{2}}) = 2n - 1 \text{if } n \text{ is odd}$$

$$f^*(v_{\frac{n}{2}+1} u_{\frac{n}{2}}) = 2n - 1 \text{if } n \text{ iseven.}$$

Then, f is an odd mean labeling. Hence, the H-graph G is an odd mean graph. \square

For example, an odd mean labeling of H_7 and H_6 are shown in Figure 8.

Figure 8. An odd mean labeling of H_7 and H_6

Theorem 2.7. For a H-graph G, $G \odot K_1$ is an odd mean graph.

Proof. By Theorem 2.6, there exists an odd mean labeling f for G. Let v_1, v_2, \ldots, v_n and u_1, u_2, \ldots, u_n be the vertices of G.

Let
$$V(G \odot K_1) = V(G) \cup \{v_1', v_2', \dots, v_n'\} \cup \{u_1', u_2', \dots, u_n'\}$$
 and $E(G \odot K_1) = E(G) \cup \{v_i v_i', u_i u_i' : 1 \le i \le n\}.$

Define $g:V(G\odot K_1)\to \{0,1,2,\ldots,2q-1\}$ as follows:

$$g(v_i) = f(v_i) + 2i - 1, 1 \le i \le n$$

$$g(u_i) = f(u_i) + 2n + 2i - 1, 1 \le i \le n - 1$$

$$g(u_n) = f(u_n) + 4n$$

$$g(v'_i) = f(v_i) + 2i - 2, 1 \le i \le n$$

$$g(u'_i) = f(u_i) + 2n + 2i - 2, 1 \le i \le n - 1$$

$$g(u'_n) = f(u_n) + 4n - 1.$$

The induced edge labeling g^* is obtained as follows:

$$g^*(v_i v_{i+1}) = f^*(v_i v_{i+1}) + 2i, 1 \le i \le n - 1$$

$$g^*(u_i u_{i+1}) = f^*(u_i u_{i+1}) + 2n + 2i, 1 \le i \le n - 1$$

$$g^*(v_i v_i') = f(v_i) + 2i - 1, 1 \le i \le n$$

$$g^*(u_i u_i') = f(u_i) + 2n + 2i - 1, 1 \le i \le n$$

$$g^*(v_{\frac{n+1}{2}} u_{\frac{n+1}{2}}) = 2f^*(v_{\frac{n+1}{2}} u_{\frac{n+1}{2}}) + 1 \text{if } n \text{ is odd}$$

$$g^*(v_{\frac{n}{2}+1} u_{\frac{n}{2}}) = 2f^*(v_{\frac{n}{2}+1} u_{\frac{n}{2}}) + 1 \text{if } n \text{ is even.}$$

Then, g is an odd mean labeling and hence $G \odot K_1$ is an odd mean graph.

For example, an odd mean labelings of $H_5 \odot K_1$ and $H_4 \odot K_1$ for the H-graphs H_5 and H_4 are shown in Figure 9.

Figure 9. An odd mean labeling of $H_5, H_4, H_5 \odot K_1$ and $H_4 \odot K_1$

Theorem 2.8. For a H-graph $G, G \odot S_2$ is an odd mean graph.

Proof. By Theorem 2.6, there exists an odd mean labeling f for G. Let v_1, v_2, \ldots, v_n and u_1, u_2, \ldots, u_n be the vertices of G. Let V(G) together with $v_1', v_2', \ldots, v_n', v_1'', v_2'', \ldots, v_n'', u_1'', u_2', \ldots, u_n'$ and $u_1'', u_2'', \ldots, u_n''$ form the vertex set of $G \odot S_2$ and the edge set is E(G) together with $\{v_i v_i', v_i v_i'', u_i u_i', u_i u_i'' : 1 \le i \le n\}$.

Define $g: V(G \odot S_2) \rightarrow \{0, 1, 2, \dots, 2q-1\}$ as follows:

$$g(v_i) = f(v_i) + 4i - 2, \qquad 1 \le i \le n$$

$$g(v_i') = f(v_i) + 4i - 4,$$
 $1 \le i \le n$

$$g(v_i'') = f(v_i) + 4i, \qquad 1 \le i \le n$$

$$g(u_i) = f(u_i) + 4n + 4i - 2, \quad 1 \le i \le n$$

$$g(u_i') = f(u_i) + 4n + 4i - 4, \quad 1 \le i \le n$$

$$g(u_i'') = f(u_i) + 4n + 4i,$$
 $1 \le i \le n.$

The induced edge labeling f^* is given as follows:

$$g^*(v_i v_{i+1}) = f^*(v_i v_{i+1}) + 4i,$$
 $1 \le i \le n-1$

$$g^*(v_i v_i') = f(v_i) + 4i - 3,$$
 $1 \le i \le n$

$$g^*(v_i v_i'') = f(v_i) + 4i - 1,$$
 $1 \le i \le n$

$$g^*(u_i u_{i+1}) = f^*(u_i u_{i+1}) + 4n + 4i, \quad 1 \le i \le n-1$$

$$g^*(u_i u_i') = f(u_i) + 4n + 4i - 3, \qquad 1 \le i \le n$$

$$g^*(u_i u_i'') = f(u_i) + 4n + 4i - 1, \qquad 1 \le i \le n.$$

$$g^*(v_{\frac{n+1}{2}}u_{\frac{n+1}{2}}) \ = 3f^*(v_{\frac{n+1}{2}}u_{\frac{n+1}{2}}) + 2 \qquad \text{if n is odd}$$

$$g^*(v_{\frac{n}{2}+1}u_{\frac{n}{2}}) = 3f^*(v_{\frac{n}{2}+1}u_{\frac{n}{2}}) + 2$$
 if n is even

Then, g is an odd mean labeling and hence $G \odot S_2$ is an odd mean graph.

For example, an odd mean labelings of $H_7 \odot S_2$ and $H_6 \odot S_2$ for the H-graphs H_7 and H_6 are shown in Figure 10.

Figure 10. An odd mean labeling of $H_7, H_6, H_7 \odot S_2$ and $H_6 \odot S_2$

Theorem 2.9. If $G_1, G_2, G_3, \ldots, G_m$ are odd mean graphs, then $G_1 \cup G_2 \cup G_3 \cdots \cup G_m$ is an odd mean graph.

Proof. If $G_1=(p_1,q_1), G_2=(p_2,q_2), G_3=(p_3,q_3),\ldots,G_m=(p_m,q_m)$ are any m odd mean graphs with odd mean labelings f_1,f_2,\ldots,f_m respectively, then $G_1\cup G_2\cup G_3\cdots\cup G_m$ has $p_1+p_2+\cdots+p_m$ vertices and $q_1+q_2+\cdots+q_m$ edges. Let $u_{1_i}(1\leq i\leq p_1),\,u_{2_i}(1\leq i\leq p_2),\ldots,u_{m_i}\,(1\leq i\leq p_m)$ and $e_{1_i}(1\leq i\leq q_1),e_{2_i}(1\leq i\leq q_2),\ldots,e_{m_i}(1\leq i\leq q_m)$ be the vertices and edges of the graphs G_1,G_2,G_3,\ldots,G_m respectively.

Define $g: V(G_1 \cup G_2 \cup \cdots \cup G_m) \to \{0, 1, 2, 3, \dots, 2(q_1 + q_2 + \cdots + q_m) - 1\}$ as follows:

$$g(u_{1_i}) = f_1(u_{1_i})$$

$$g(u_{2_i}) = f_2(u_{2_i}) + 2q_1, 1 \le i \le p_2$$

$$g(u_{3_i}) = f_3(u_{3_i}) + 2(q_1 + q_2), 1 \le i \le p_3$$

$$g(u_{4_i}) = f_4(u_{4_i}) + 2(q_1 + q_2 + q_3), 1 \le i \le p_4$$

$$\dots \dots$$

$$g(u_{m_i}) = f_m(u_{m_i}) + 2(q_1 + q_2 + q_3 + \dots + q_{m-1}), 1 \le i \le p_m$$

The induced edge labels are given by

$$g^*(e_{1_i}) = f_1^*(e_{1_i}), 1 \le i \le q_1$$

$$g^*(e_{2_i}) = f_2^*(e_{2_i}) + 2q_1, 1 \le i \le q_2$$

$$g^*(e_{3_i}) = f_3^*(e_{3_i}) + 2(q_1 + q_2), 1 \le i \le q_3$$

$$g^*(e_{4_i}) = f_4^*(e_{4_i}) + 2(q_1 + q_2 + q_3), 1 \le i \le q_4$$

$$\dots$$

$$g^*(e_{m_i}) = f_m^*(e_{m_i}) + 2(q_1 + q_2 + q_3 + \dots + q_{m-1}), 1 \le i \le q_m.$$

Then, g is an odd mean labeling. Hence, $G_1 \cup G_2 \cup G_3 \cdots \cup G_m$ is an odd mean graph. \Box

For example, an odd mean labelings of G_1, G_2, G_3, G_4 and $G_1 \cup G_2 \cup G_3 \cup G_4$ are shown in Figure 11.

Figure 11. An odd mean labeling of G_1, G_2, G_3, G_4 and $G_1 \cup G_2 \cup G_3 \cup G_4$

Corollary 2.10. If G is an odd mean graph, then mG is also an odd mean graph, for all $m \ge 1$.

Proof. The proof follows from Theorem 2.9, by taking $G_1 = G_2 = G_3 = \ldots, G_m = G$.

REFERENCES

- [1] J.A. Gallian, A dynamic survey of graph labeling, *Electron. J. Combin.*, (2017), # DS6.
- [2] R.B. Gnanajothi, *Topics in Graph Theory*, Ph.D. thesis, Madurai Kamaraj University, India, 1991.
- [3] F. Harary, *Graph Theory*, Addison-Wesley, Reading Mass., (1972).
- [4] K. Manickam and M. Marudai, Odd mean labelings of graphs, *Bulletin of Pure and Applied Sciences*, **25E**(1) (2006), 149-153.

[5] R. Ponraj and S. Somasundaram, Mean labeling of graphs obtained by identifying two graphs, *Journal of Discrete Mathematical Sciences & Cryptography*, **11**(2)(2008), 239-252.

- [6] Selvam Avadayappan and R. Vasuki, Some results on mean graphs, *Ultra Scientist of Physical Sciences*, **21**(1)M (2009), 273-284.
- [7] S. Somasundaram and R. Ponraj, Mean labelings of graphs, *National Academy Science letter*, **26** (2003), 210-213.
- [8] S. Somasundaram and R. Ponraj, Some results on mean graphs, *Pure and Applied Mathematika Sciences*, **58**(2003), 29-35.
- [9] R. Vasuki and A. Nagarajan, Meanness of the graphs $P_{a,b}$ and P_a^b , International Journal of Applied Mathematics, **22**(4) (2009), 663-675.
- [10] R. Vasuki and A. Nagarajan, Further results on mean graphs, *Scientia Magna*, **6**(3) (2010), 1-14.
- [11] R. Vasuki and A. Nagarajan, Odd mean labeling of the graphs $P_{a,b}$, P_a^b and $P_{\langle 2a \rangle}^b$, Kragujevac Journal of Mathematics, **36**(1) (2012), 141–150.