Further Results On Odd Mean Graphs

R. Vasuki ${ }^{1}$
Department of Mathematics, Dr. Sivanthi Aditanar College of Engineering Tiruchendur-628 215,Tamil Nadu, India.

Abstract

Let $G=(V, E)$ be a graph with p vertices and q edges. A graph G is said to have an odd mean labeling if there exists a function $f: V(G) \rightarrow\{0,1,2, \ldots, 2 q-1\}$ satisfying f is $1-1$ and the induced map $f^{*}: E(G) \rightarrow\{1,3,5, \ldots, 2 q-1\}$ defined by $$
f^{*}(u v)= \begin{cases}\frac{f(u)+f(v)}{2} & \text { if } f(u)+f(v) \text { is even } \\ \frac{f(u)+f(v)+1}{2} & \text { if } f(u)+f(v) \text { is odd }\end{cases}
$$ is a bijection. A graph that admits an odd mean labeling is called an odd mean graph. Here we study about the odd mean behaviour of some standard graphs.

Keywords: labeling, odd mean labeling, odd mean graph

AMS Mathematics Subject Classification: 05C78

1. INTRODUCTION

All graphs considered in this paper are simple and undirected. Let $G(V, E)$ be a graph with p verticies and q edges. For notation and terminology, we follow [3].

Path on n vertices is denoted by P_{n} and a cycle on n vertices is denoted by $C_{n} . K_{1, m}$ is called a star and it is denoted by S_{m}. The bistar $B_{m, n}$ is the graph obtained from K_{2} by identifying the central vertices of $K_{1, m}$ and $K_{1, n}$ at the end vertices of K_{2} respectively. $B_{m, m}$ is often denoted by $B(m)$. The union of two graphs G_{1} and G_{2} is a graph $G_{1} \cup G_{2}$ with $V\left(G_{1} \cup G_{2}\right)=V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and $E\left(G_{1} \cup G_{2}\right)=E\left(G_{1}\right) \cup E\left(G_{2}\right)$. The union of m disjoint copies of a graph G is denoted by $m G$.

Let G_{1} and G_{2} be any two graphs with p_{1} and p_{2} vertices respectively. Then the cartesian product $G_{1} \times G_{2}$ has $p_{1} p_{2}$ vertices which are $\left\{(u, v) \mid u \in G_{1}, v \in G_{2}\right\}$. The edges
are obtained as follows: $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right)$ are adjacent in $G_{1} \times G_{2}$ if either $u_{1}=u_{2}$ and v_{1} and v_{2} are adjacent in G_{2} or u_{1} and u_{2} are adjacent in G_{1} and $v_{1}=v_{2}$. The product $C_{m} \times P_{n}$ is called a prism. The graph $P_{2} \times P_{2} \times P_{2}$ is called a cube and is denoted by Q_{3}. The H-graph of a path P_{n}, denoted by H_{n} is the graph obtained from two copies of P_{n} with vertices $v_{1}, v_{2}, \ldots, v_{n}$ and $u_{1}, u_{2}, \ldots, u_{n}$ by joining the vertices $v_{\frac{n+1}{2}}$ and $u_{\frac{n+1}{2}}$ if n is odd and the vertices $v_{\frac{n}{2}+1}$ and $u_{\frac{n}{2}}$ if n is even. If m number of pendant vertices are attached at each vertex of G, then the resultant graph obtained from G is the graph $G \odot m K_{1}$. When $m=1, G \odot K_{1}$ is the corona of G.
The graceful labelings of graphs was first introduced by Rosa in 1961 [1] and R.B. Gnanajothi introudced odd graceful graphs [2]. The concept of mean labeling was first introduced by S. Somasundaram and R. Ponraj [7]. The mean labeling of some standard graphs are studied in [5, 7, 8]. Further some more results on mean graphs are discussed in $[6,9,10]$. The concept of odd mean labeling was introduced and studied by K . Manickam and M. Marudai [4].
A graph G is said to have an odd mean labeling if there exists a function $f: V(G) \rightarrow$ $\{0,1,2, \ldots, 2 q-1\}$ satisfying f is $1-1$ and the induced map $f^{*}: E(G) \rightarrow\{1,3,5, \ldots, 2 q-$ 1\} defined by

$$
f^{*}(u v)= \begin{cases}\frac{f(u)+f(v)}{2} & \text { if } f(u)+f(v) \text { is even } \\ \frac{f(u)+f(v)+1}{2} & \text { if } f(u)+f(v) \text { is odd. }\end{cases}
$$

is a bijection. A graph that admits an odd mean labeling is called an odd mean graph [4].

An odd mean labeling of $B_{3,3}$ is given in Figure 1

Figure 1. An odd mean labeling of $B_{3,3}$
In [11], R. Vasuki and A. Nagarajan studied about the odd mean behaviour of the class of graphs $P_{a, b}, P_{a}^{b}$ and $P_{\langle 2 a\rangle}^{b}$. In this paper, we prove that $C_{m} \times P_{n}$ for $m \equiv$ $0(\bmod 4), n \geq 1, Q_{3} \times P_{n}, H$-graph, corona of a H-graph and $G \odot S_{2}$ where G is a H-graph are odd mean graphs. Also we prove that if a tree T has an odd mean labeling, then $T_{(n)}$ is an odd mean graph for any $n \geq 1$. Also we establish that union of any number of odd mean graph is an odd mean graph.

2. ODD MEAN GRAPHS

Theorem 2.1. $C_{m} \times P_{n}$ is an odd mean graph for $m \equiv 0(\bmod 4)$ and $n \geq 1$.

Proof. Let $V\left(C_{m} \times P_{n}\right)=\left\{v_{i_{j}}: 1 \leq i \leq m, 1 \leq j \leq n\right\}$ and $E\left(C_{m} \times P_{n}\right)=\left\{e_{i_{j}}\right.$: $\left.e_{i_{j}}=v_{i_{j}} v_{(i+1)_{j}}, 1 \leq j \leq n, 1 \leq i \leq m\right\} \cup\left\{E_{i_{j}}: E_{i_{j}}=v_{i_{j}} v_{i_{j+1}}, 1 \leq j \leq n-1,1 \leq\right.$ $i \leq m\}$ where $i+1$ is taken modulo m.
Let C_{m}^{j} denote the $j^{\text {th }}$ copy of C_{m} in $C_{m} \times P_{n}$. Let the vertices of C_{m}^{j} be $v_{1_{j}}, v_{2_{j}}, \ldots, v_{m_{j}}$ for $1 \leq j \leq n$. Label the vertices of $C_{m}, m \equiv 0(\bmod 4)$ as follows:

$$
f\left(v_{i_{j}}\right)= \begin{cases}4 i-4 & \text { if } 1 \leq i \leq \frac{m}{2}+1 \text { and } i \text { is odd } \\ 4 i-6 & \text { if } 2 \leq i \leq \frac{m}{2} \text { and } i \text { is even } \\ 4 m+3-4 i & \text { if } \frac{m}{2}+1<i<n \text { and } i \text { is odd } \\ 4 m+6-4 i & \text { if } \frac{m}{2}<i \leq m \text { and } i \text { is even. }\end{cases}
$$

If the vertices of C_{m}^{j-1} are labeled then the vertices of C_{m}^{j} are labeled as follows:
$f\left(v_{i_{j}}\right)=f\left(v_{(i-1)_{(j-1)}}\right)+4 m$ where $i-1$ and $j-1$ are taken modulo m.
It can be verified that the label of the edges are $1,3,5, \ldots, 2 q-1$. Then f is an odd mean labeling of $C_{m} \times P_{n}$ for $n \geq 1$ and $m \equiv 0(\bmod 4)$. Hence $C_{m} \times P_{n}$ is an odd mean graph for $n \geq 1$ and $m \equiv 0(\bmod 4)$.

For example, an odd mean labeling of $C_{8} \times P_{4}$ is shown in Figure 2.

Figure 2. An odd mean labeling of $C_{8} \times P_{4}$

Theorem 2.2. $Q_{3} \times P_{n}$ is an odd mean graph.
Proof. Let Q_{3}^{j} denote the $j^{\text {th }}$ copy of Q_{3} in $Q_{3} \times P_{n}$ and for $1 \leq i \leq 8$, let $v_{i_{j}}$ denote the $i^{\text {th }}$ vertex in Q_{3}^{j}, where $1 \leq j \leq n$.
The vertices and their labels of $Q_{3} \times P_{2}$ are shown in Figure 3.

Figure 3. An odd mean labeling of $Q_{3} \times P_{2}$

If the vertices of Q_{3}^{j-2} are labeled by f, then the vertices of Q_{3}^{j} are labeled as follows: $f\left(v_{i_{j}}\right)=f\left(v_{i_{j-2}}\right)+80$, for $1 \leq i \leq 8$ and $3 \leq j \leq n$.
Let E_{j} be the set of all edges in Q_{3}^{j} and $E_{j_{j+1}}$ be the set of all edges having one end in Q_{3}^{j} and the other in Q_{3}^{j+1}.
Denote the set of edge labels for the edges of E by $f^{*}(E)$. Then, it is observed that $f^{*}\left(E_{j}\right)=\left\{40+f^{*}(e): e \in E_{j-1}\right\}, 2 \leq j \leq n$
$f^{*}\left(E_{j_{j+1}}\right)=\left\{40+f^{*}(e): e \in E_{(j-1)_{j}}\right\}, 2 \leq j \leq n-1$.
Then, f is an odd mean labeling of $Q_{3} \times P_{n}$.

For example, an odd mean labeling of $Q_{3} \times P_{4}$ is shown in Figure 4.

Figure 4. An odd mean labeling of $Q_{3} \times P_{4}$
Let T be any tree. Denote the tree, obtained from T by considering two copies of T and adding an edge between them, by $T_{(2)}$ and in general, the graph obtained from $T_{(n-1)}$ and T by adding an edge between them is denoted by $T_{(n)}$. Note that $T_{(1)}$ is nothing but T.

Theorem 2.3. If a tree T has an odd mean labeling, then $T_{(n)}$ is an odd mean graph for any $n \geq 1$.

Proof. We prove this result by induction on n.
When $n=1$, the result is obvious. Let $n=2$. Assume that $f: V(T) \rightarrow\{0,1,2, \ldots, 2 q-$ $1\}$ is an odd mean labeling of T. Let T_{1} and T_{2} be two copies of T in $T_{(2)}$. Define a labeling l of $T_{(2)}$ as follows:

$$
l(v)= \begin{cases}f(v) & \text { if } v \in T_{1} \\ f(v)+2 p & \text { if } v \in T_{2} \text { where } p \text { is the number of vertices in } T\end{cases}
$$

Then, l is an odd mean labeling and hence the result is true when $n=2$.
Assume that $T_{(n)}$ is an odd mean graph for any $n \geq 1$. Let g be an odd mean labeling of $T_{(n)}$. To complete the induction process, it is enough to prove that $T_{(n+1)}$ is an odd mean graph.
Define a labeling l of $T_{(n+1)}$ as follows:

$$
l(v)= \begin{cases}g(v) & \text { if } v \in T_{(n)} \\ f(v)+2 n p & \text { if } v \in T_{n+1} \text { where } T_{n+1} \text { is a } \\ & (n+1)^{t h} \text { copy of } T \text { in } T_{(n+1)}\end{cases}
$$

Clearly, l is an odd mean labeling of $T_{(n+1)}$. Hence, $T(n)$ is an odd mean graph for any $n \geq 1$.

For example, an odd mean labelings of $T, T_{(2)}$ and $T_{(3)}$ are shown in Figure 5.

Figure 5. An odd mean labelings of $T, T_{(2)}$ and $T_{(3)}$

Corollary 2.4. $B(m)_{(n)}$ is an odd mean graph for any $m \geq 0$ and $n \geq 1$.
Proof. It is enough to show that $B(m)$ has an odd mean labeling. Let the vertices of $B(m)$ be $v_{0}, v_{1}, \ldots, v_{m}$ and $u_{0}, u_{1}, \ldots, u_{m}$. Label the vertices of $B(m)$ by
$f\left(v_{0}\right)=0$
$f\left(v_{i}\right)=4 i-2,1 \leq i \leq m$
$f\left(u_{0}\right)=4 m+2$
$f\left(u_{i}\right)=4 i, 1 \leq i \leq m$.
Then, f is an odd mean labeling of $B(m)$. Therefore, by Theorem 2.3, $B(m)_{(n)}$ is an odd mean graph.

For example, an odd mean labeling of $B(5)_{(3)}$ is illustrated in Figure 6.

Figure 6. An odd mean labeling of $B(5)_{(3)}$

Corollary 2.5. $P_{n_{(m)}}$ is an odd mean graph for any $n \geq 1, m \geq 1$.
Proof. It is enough to show that P_{n} has an odd mean labeling. Let the vertices of P_{n} be $v_{1}, v_{2}, \ldots, v_{n}$. Label the vertices of P_{n} by $f\left(v_{i}\right)=2 i-2$ for $1 \leq i \leq n$. Then, f is an odd mean labeling of P_{n}. Hence, by Theorem 2.3, $P_{n_{(m)}}$ is an odd mean graph.

For example, an odd mean labeling of $P_{6}, P_{6_{(2)}}$ and $P_{6_{(3)}}$ are shown in Figure 7.

Figure 7. An odd mean labeling of $P_{6}, P_{6_{(2)}}$ and $P_{6_{(3)}}$

Theorem 2.6. The H-graph G is an odd mean graph.
Proof. Let $v_{1}, v_{2}, \ldots, v_{n}$ and $u_{1}, u_{2}, \ldots, u_{n}$ be the vertices of the H-graph G.
Define $f: V(G) \rightarrow\{0,1,2, \ldots, 2 q-1\}$ as follows:

$$
\begin{array}{lll}
f\left(v_{i}\right) & =2 i-2, & \\
f\left(u_{i}\right) & =2 n+2 i-2, & 1 \leq i \leq n \\
f\left(u_{n}\right) & =4 n-3 . &
\end{array}
$$

The induced edge labels are given by

$$
\begin{array}{llll}
f^{*}\left(v_{i} v_{i+1}\right) & =2 i-1, & & 1 \leq i \leq n-1 \\
f^{*}\left(u_{i} u_{i+1}\right) & =2 n+2 i-1, & & 1 \leq i \leq n-1 \\
f^{*}\left(v_{\frac{n+1}{2}} u_{\frac{n+1}{2}}\right) & =2 n-1 & & \text { if } n \text { is odd } \\
f^{*}\left(v_{\frac{n}{2}+1} u_{\frac{n}{2}}\right) & =2 n-1 & & \text { if } n \text { iseven. }
\end{array}
$$

Then, f is an odd mean labeling. Hence, the H-graph G is an odd mean graph.

For example, an odd mean labeling of H_{7} and H_{6} are shown in Figure 8.

Figure 8. An odd mean labeling of H_{7} and H_{6}

Theorem 2.7. For a H-graph $G, G \odot K_{1}$ is an odd mean graph.
Proof. By Theorem 2.6, there exists an odd mean labeling f for G. Let $v_{1}, v_{2}, \ldots, v_{n}$ and $u_{1}, u_{2}, \ldots, u_{n}$ be the vertices of G.
Let $V\left(G \odot K_{1}\right)=V(G) \cup\left\{v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n}^{\prime}\right\} \cup\left\{u_{1}^{\prime}, u_{2}^{\prime}, \ldots, u_{n}^{\prime}\right\}$ and $E\left(G \odot K_{1}\right)=$ $E(G) \cup\left\{v_{i} v_{i}^{\prime}, u_{i} u_{i}^{\prime}: 1 \leq i \leq n\right\}$.
Define $g: V\left(G \odot K_{1}\right) \rightarrow\{0,1,2, \ldots, 2 q-1\}$ as follows:

$$
\begin{aligned}
g\left(v_{i}\right) & =f\left(v_{i}\right)+2 i-1, & & 1 \leq i \leq n \\
g\left(u_{i}\right) & =f\left(u_{i}\right)+2 n+2 i-1, & & 1 \leq i \leq n-1 \\
g\left(u_{n}\right) & =f\left(u_{n}\right)+4 n & & \\
g\left(v_{i}^{\prime}\right) & =f\left(v_{i}\right)+2 i-2, & & 1 \leq i \leq n \\
g\left(u_{i}^{\prime}\right) & =f\left(u_{i}\right)+2 n+2 i-2, & & 1 \leq i \leq n-1 \\
g\left(u_{n}^{\prime}\right) & =f\left(u_{n}\right)+4 n-1 . & &
\end{aligned}
$$

The induced edge labeling g^{*} is obtained as follows:

$$
\begin{array}{lll}
g^{*}\left(v_{i} v_{i+1}\right) & =f^{*}\left(v_{i} v_{i+1}\right)+2 i, & \\
g^{*}\left(u_{i} u_{i+1}\right) & =f^{*}\left(u_{i} u_{i+1}\right)+2 n+2 i \leq n-1 \\
g^{*}\left(v_{i} v_{i}^{\prime}\right) & =f\left(v_{i}\right)+2 i-1, & \\
g^{*}\left(u_{i} u_{i}^{\prime}\right) & =f\left(u_{i}\right)+2 n+2 i-1, & \\
g^{*}\left(v_{\frac{n+1}{2}} u_{\frac{n+1}{2}}\right) & =2 f^{*}\left(v_{\frac{n+1}{2}} u_{\frac{n+1}{2}}\right)+1 & \\
& \text { if } n \text { is odd } \\
g^{*}\left(v_{\frac{n}{2}+1} u_{\frac{n}{2}}\right) & =2 f^{*}\left(v_{\frac{n}{2}+1} u_{\frac{n}{2}}\right)+1 & \\
\text { if } n \text { is even. }
\end{array}
$$

Then, g is an odd mean labeling and hence $G \odot K_{1}$ is an odd mean graph.
For example, an odd mean labelings of $H_{5} \odot K_{1}$ and $H_{4} \odot K_{1}$ for the H-graphs H_{5} and H_{4} are shown in Figure 9.

Figure 9. An odd mean labeling of $H_{5}, H_{4}, H_{5} \odot K_{1}$ and $H_{4} \odot K_{1}$

Theorem 2.8. For a H-graph $G, G \odot S_{2}$ is an odd mean graph.

Proof. By Theorem 2.6, there exists an odd mean labeling f for G. Let $v_{1}, v_{2}, \ldots, v_{n}$ and $u_{1}, u_{2}, \ldots, u_{n}$ be the vertices of G. Let $V(G)$ together with $v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n}^{\prime}, v_{1}^{\prime \prime}, v_{2}^{\prime \prime}, \ldots, v_{n}^{\prime \prime}$, $u_{1}^{\prime}, u_{2}^{\prime}, \ldots, u_{n}^{\prime}$ and $u_{1}^{\prime \prime}, u_{2}^{\prime \prime}, \ldots, u_{n}^{\prime \prime}$ form the vertex set of $G \odot S_{2}$ and the edge set is $E(G)$ together with $\left\{v_{i} v_{i}^{\prime}, v_{i} v_{i}^{\prime \prime}, u_{i} u_{i}^{\prime}, u_{i} u_{i}^{\prime \prime}: 1 \leq i \leq n\right\}$.

Define $g: V\left(G \odot S_{2}\right) \rightarrow\{0,1,2, \ldots, 2 q-1\}$ as follows:

$$
\begin{array}{lll}
g\left(v_{i}\right) & =f\left(v_{i}\right)+4 i-2, & \\
g\left(v_{i}^{\prime}\right) & =f\left(v_{i}\right)+4 i-4, & \\
g\left(v_{i}^{\prime \prime}\right) & =f\left(v_{i}\right)+4 i, & \\
g\left(u_{i}\right) & =f\left(u_{i}\right)+4 n+4 i-2, & \\
& 1 \leq i \leq n \\
g\left(u_{i}^{\prime}\right) & =f\left(u_{i}\right)+4 n+4 i-4, & \\
g\left(u_{i}^{\prime \prime}\right) & =f\left(u_{i}\right)+4 n+4 i, & \\
& 1 \leq i \leq n \\
\end{array}
$$

The induced edge labeling f^{*} is given as follows:

$$
\begin{array}{lll}
g^{*}\left(v_{i} v_{i+1}\right) & =f^{*}\left(v_{i} v_{i+1}\right)+4 i, & \\
g^{*}\left(v_{i} v_{i}^{\prime}\right) & =f\left(v_{i}\right)+4 i-3, & \\
g^{*}\left(v_{i} v_{i}^{\prime \prime}\right) & =f\left(v_{i}\right)+4 i-1, & \\
g^{*}\left(u_{i} u_{i+1}\right) & =f^{*}\left(u_{i} u_{i+1}\right)+4 n+4 i, & \\
1 \leq i \leq n \\
g^{*}\left(u_{i} u_{i}^{\prime}\right) & =f\left(u_{i}\right)+4 n+4 i-3, & \\
g^{*}\left(u_{i} u_{i}^{\prime \prime}\right) & =f\left(u_{i}\right)+4 n+4 i \leq i \leq n-1 \\
g^{*}\left(v_{\frac{n+1}{2}} u_{\frac{n+1}{2}}\right)=3 f^{*}\left(v_{\frac{n+1}{2}} u_{\frac{n+1}{2}}\right)+2 & & 1 \leq i \leq n . \\
g^{*}\left(v_{\frac{n}{2}+1} u_{\frac{n}{2}}\right) & =3 f^{*}\left(v_{\frac{n}{2}+1} u_{\frac{n}{2}}\right)+2 & \\
\text { if } n \text { is odd } \\
\text { if } n \text { is even }
\end{array}
$$

Then, g is an odd mean labeling and hence $G \odot S_{2}$ is an odd mean graph.

For example, an odd mean labelings of $H_{7} \odot S_{2}$ and $H_{6} \odot S_{2}$ for the H-graphs H_{7} and H_{6} are shown in Figure 10.

Figure 10. An odd mean labeling of $H_{7}, H_{6}, H_{7} \odot S_{2}$ and $H_{6} \odot S_{2}$

Theorem 2.9. If $G_{1}, G_{2}, G_{3}, \ldots, G_{m}$ are odd mean graphs, then $G_{1} \cup G_{2} \cup G_{3} \cdots \cup G_{m}$ is an odd mean graph.

Proof. If $G_{1}=\left(p_{1}, q_{1}\right), G_{2}=\left(p_{2}, q_{2}\right), G_{3}=\left(p_{3}, q_{3}\right), \ldots, G_{m}=\left(p_{m}, q_{m}\right)$ are any m odd mean graphs with odd mean labelings $f_{1}, f_{2}, \ldots, f_{m}$ respectively, then $G_{1} \cup$ $G_{2} \cup G_{3} \cdots \cup G_{m}$ has $p_{1}+p_{2}+\cdots+p_{m}$ vertices and $q_{1}+q_{2}+\cdots+q_{m}$ edges. Let $u_{1_{i}}\left(1 \leq i \leq p_{1}\right), u_{2_{i}}\left(1 \leq i \leq p_{2}\right), \ldots, u_{m_{i}}\left(1 \leq i \leq p_{m}\right)$ and $e_{1_{i}}(1 \leq i \leq$ $\left.q_{1}\right), e_{2_{i}}\left(1 \leq i \leq q_{2}\right), \ldots, e_{m_{i}}\left(1 \leq i \leq q_{m}\right)$ be the vertices and edges of the graphs $G_{1}, G_{2}, G_{3}, \ldots, G_{m}$ respectively.

Define $g: V\left(G_{1} \cup G_{2} \cup \cdots \cup G_{m}\right) \rightarrow\left\{0,1,2,3, \ldots, 2\left(q_{1}+q_{2}+\cdots+q_{m}\right)-1\right\}$ as follows:

$$
\begin{aligned}
g\left(u_{1_{i}}\right) & =f_{1}\left(u_{1_{i}}\right) \\
g\left(u_{2_{i}}\right) & =f_{2}\left(u_{2_{i}}\right)+2 q_{1}, 1 \leq i \leq p_{2} \\
g\left(u_{3_{i}}\right) & =f_{3}\left(u_{3_{i}}\right)+2\left(q_{1}+q_{2}\right), 1 \leq i \leq p_{3} \\
g\left(u_{4_{i}}\right) & =f_{4}\left(u_{4_{i}}\right)+2\left(q_{1}+q_{2}+q_{3}\right), 1 \leq i \leq p_{4} \\
& \cdots \cdots \cdots \\
& \cdots \cdots \cdots \\
g\left(u_{m_{i}}\right) & =f_{m}\left(u_{m_{i}}\right)+2\left(q_{1}+q_{2}+q_{3}+\cdots+q_{m-1}\right), 1 \leq i \leq p_{m}
\end{aligned}
$$

The induced edge labels are given by

$$
\begin{aligned}
g^{*}\left(e_{1_{i}}\right) & =f_{1}^{*}\left(e_{1_{i}}\right), 1 \leq i \leq q_{1} \\
g^{*}\left(e_{2_{i}}\right) & =f_{2}^{*}\left(e_{2_{i}}\right)+2 q_{1}, 1 \leq i \leq q_{2} \\
g^{*}\left(e_{3_{i}}\right) & =f_{3}^{*}\left(e_{3_{i}}\right)+2\left(q_{1}+q_{2}\right), 1 \leq i \leq q_{3} \\
g^{*}\left(e_{4_{i}}\right) & =f_{4}^{*}\left(e_{4_{i}}\right)+2\left(q_{1}+q_{2}+q_{3}\right), 1 \leq i \leq q_{4} \\
& \ldots \cdots \cdots \\
& \ldots \cdots \cdots \\
g^{*}\left(e_{m_{i}}\right) & =f_{m}^{*}\left(e_{m_{i}}\right)+2\left(q_{1}+q_{2}+q_{3}+\cdots+q_{m-1}\right), 1 \leq i \leq q_{m} .
\end{aligned}
$$

Then, g is an odd mean labeling. Hence, $G_{1} \cup G_{2} \cup G_{3} \cdots \cup G_{m}$ is an odd mean graph.

For example, an odd mean labelings of $G_{1}, G_{2}, G_{3}, G_{4}$ and $G_{1} \cup G_{2} \cup G_{3} \cup G_{4}$ are shown in Figure 11.

Figure 11. An odd mean labeling of $G_{1}, G_{2}, G_{3}, G_{4}$ and $G_{1} \cup G_{2} \cup G_{3} \cup G_{4}$

Corollary 2.10. If G is an odd mean graph, then $m G$ is also an odd mean graph, for all $m \geq 1$.

Proof. The proof follows from Theorem 2.9, by taking $G_{1}=G_{2}=G_{3}=, \ldots, G_{m}=$ G.

REFERENCES

[1] J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin., (2017), \# DS6.
[2] R.B. Gnanajothi, Topics in Graph Theory, Ph.D. thesis, Madurai Kamaraj University, India, 1991.
[3] F. Harary, Graph Theory, Addison-Wesley, Reading Mass., (1972).
[4] K. Manickam and M. Marudai, Odd mean labelings of graphs, Bulletin of Pure and Applied Sciences, 25E(1) (2006), 149-153.
[5] R. Ponraj and S. Somasundaram, Mean labeling of graphs obtained by identifying two graphs, Journal of Discrete Mathematical Sciences \& Cryptography, 11(2)(2008), 239-252.
[6] Selvam Avadayappan and R. Vasuki, Some results on mean graphs, Ultra Scientist of Physical Sciences, 21(1)M (2009), 273-284.
[7] S. Somasundaram and R. Ponraj, Mean labelings of graphs, National Academy Science letter, 26 (2003), 210-213.
[8] S. Somasundaram and R. Ponraj, Some results on mean graphs, Pure and Applied Mathematika Sciences, 58(2003), 29-35.
[9] R. Vasuki and A. Nagarajan, Meanness of the graphs $P_{a, b}$ and P_{a}^{b}, International Journal of Applied Mathematics, 22(4) (2009), 663-675.
[10] R. Vasuki and A. Nagarajan, Further results on mean graphs, Scientia Magna, 6(3) (2010), 1-14.
[11] R. Vasuki and A. Nagarajan, Odd mean labeling of the graphs $P_{a, b}, P_{a}^{b}$ and $P_{\langle 2 a\rangle}^{b}$, Kragujevac Journal of Mathematics, 36(1) (2012), 141-150.

