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Abstract

In this article, we discuss several topics concerning the relationship between the
stochastic process and the geometric structure of the manifolds. The purpose of
the present report is to survey of the recent researches related to the theory of
stochastic differential equations and a standard 7-sphere S?. Since S7 is assumed
to be a measurable space for the stochastic processes. Hence, the Fokker-Planck
equation and elastic fluid equation on S7 is discussed and also the corresponding
entropy rate and Elastic Fluid is derived.

Keywords: Stochastic process; Stratonovich stochastic differential equations;
Fokker-Planck equation; entropy rate; Killing vector fields.

Mathematical Subject Classification:60G05; 60D05; 51H25; 35R60

1. INTRODUCTION

A stochastic process is the mathematical abstraction of an empirical process whose
evolution is governed by the probabilistic laws [1]. Let (2, F,P) a complete
probability space equipped with a right-continuous filtration (F3);>o such that each F;
contains all the events of probability (measure) zero from the o-algebra /. We denote
by Ef = fQ fdP the expectation of a random variable f : {2 — R. The conditional
expectation of f given a sub-o-field G C F will be denoted by F(F|G). Technically, a
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stochastic process as a family of random variables {X;,¢ € T} defined on {2 and
parameterised by time set 7". Here, X, is practically observed at time ¢ [5, 8, 9].

The theory of stochastic differential equations was originally developed by
mathematicians as a tool to explicitly construct the trajectories of diffusion processes
for given of drift and diffusion coefficients. The differential equations for random
functions (stochastic processes) arise in the investigation of numerous physics and
engineering problems [2, 4]. They are usually one of the following two fundamentally
different types. Stochastic differential equations (SDEs) play important roles in
stochastic modeling. For examples, in Economics, the solutions of a SDEs are applied
to model the share prices of a stock price and in Biology, the solutions of the stochastic
partial differential equations describe the number of populations at every point of time

[3].

A n-dimensional unit sphere is the interesting example of a compact Riemannian
homogeneous space. The surface of the sphere is “parametrized” by n-coordinates.
The surface of a sphere is differentiable everywhere. For n > 0, the (unit) n-sphere is
the subset S” C R"™t! defined by S := {(z,--- ,2"") € R | S (29)? = 1}.
Sometimes it is useful to think of an odd-dimensional sphere S?"*! as a subset of
C"*!, by means of the usual identification of C**! with R?"*2 [7]. In mathematical
physics, spheres are topological spaces which are interesting to investigate, and in
many branches of physics, they provide for instance as models for configuration spaces
of some mechanical systems. In Physics, for example, the standard 7-dimensional
sphere S7 is particularly interested in related to supersymmetry breaking [6] and to the
work of Witten [11] in which he used it to cancel the global gravitational anomalies in
1985.

The main aim of this research is to relate geometrical and topological properties of
vector fields of manifolds to the stochastic processes on it. In this case, a standard
7-sphere ST is assumed to be a measurable space for stochastic processes. The Fokker-
Planck equation on ST is discussed and the corresponding entropy rate is derived.

The organization of this paper is as follows. In Subsec. 2.1, we review the theory of
stochastic differential equations on the Riemannian manifold. In Subsec. 2.2, we
review the standard 7-sphere S7. In Sec. 3, we discuss the result, that is, stochastic
differential equations on S7 related to Killing vector fields and also formulate the
Fokker-Planck differential equation associated with the SDEs. In this section, the
concepts of information-theoretic entropy are defined. A natural issue to be addressed
is how the entropy S(f) behaves as a function of time when probability density
function f(z,t) satisfies a Fokker-Planck equation.
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2. PRELIMINARIES

2.1. Stochastic Differential Equations

The definition of stochastic differential equations considered here is similarly defined
by Ikeda and Watanabe [9]. The stochastic differential equations and Fokker-Planck
equation can be formulated for stochastic processes in any coordinate patch of a
manifold in a way that is very similar to the case of R?. Let M be a differentiable
manifold. Consider on M the stochastic differential equations (SDEs):

dxy = X(x¢) o dBy + A(xy)dt. (1)

Here B; is a d-dimensional Brownian motion on a filtered probability space
(92, F, F;,P) (also called as stochastic basis), X is C® from R™ x M to the tangent
bundle T M with X (z) : R™ — T, M a linear map for each z in M, and A is a C?
vector field on M.

We are mainly interested in non-degenerate stochastic differential equations. Recall that
(1) is said to be a Brownian system (with drift A) if it has generator %A(—i—A) for A the
Laplacian. It is called a gradient Brownian system (with drift A) if X is given by an
isometric immersion j : M — R™, i.e. for each e € R™ and z € M, X (z)(e) is
given by A(j(x),e). The solution flow to the stochastic differential equations is then a
Brownian flow or gradient Brownian flow respectively. If A = VA for some function A
on the manifold, then we have h-Brownian systems [9].

2.2. Standard 7-Sphere S7

It is easy to construct a C*° atlas on S”, showing that S7 has some differential structures.
The topological space S” equipped with a standard differential structure is called the
standard 7-sphere S7. Every vector fields on ST will be orthogonal to every point, it is
clear that every vector fields on S7 orthogonal to the radial vector field N, defined by

;0
Y @

)
1 p

N, —

8
p

)

at every p € ST with respect to the Euclidean product (-, -) of R®. Let X(S7) be the

set of all differentiable vector fields on S7. In particular, we have the following vector
fields on S7:

U, = 2281—2182+Z483—2384+2685—2566+2887—Z788

0 0 0 0 0 0 0 0
_ (29 29\ (39 49\ (59 69\ (79 89
B (z 922~ 821) (Z 921~ 5‘23) (z 96~ 025) <Z I 6‘27>

= —Uia—Us3s—Us6—Urs
Uy, = 2381—2482—Zla3+2284—27354-2’8864—2587—2688
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0 0 0 0 0 0 0 0
_ 1 9 39 2 0 49 5 9 7 6 8
B < 925~ 921 )+<Z 9.4~ 822>+(2 027 (‘325) < 028 8z6>

= —Uiz+Us+Us7—Uss

U3 = 24814*2332*2283* 1844’2885‘#2786*2687*2588

0 0 0 0 0 0 0 0
_ 1 9 49 29 39\ (59 89\ (69 170
B <Z 9.4~ 62’1) (2 928 822> (Z 928~ 825) <Z 927~ 826>

= —U14—U23—Uss—Usr
U, = z561—2682+z783—z864—2185+z286—z367+z488

0 5] d 9] 0 0 9] 9]
_ (a9 59 2 9 69 \_ (39 19 1 9 89
B (z 925 8zl)+<z 928~ (3',22) (z 027~ 823)+<Z R 8z4>

= —Uis+Uzxp—Us7+Uss
Us = 2501+2°0,—2805—2704— 2205 — 2 05+ 2207 + 2305

o .0 o .0 o .0 o .0
_ 17_ 6_~ |\ __ 2 _ 5 Y 3. Y .8 Y 4 7
= (Z 920 821) (Z 95 ¢ 822>+( PR 8z3>+<2 927 3z4>

= —Uis—Uz+Uss+Usr
Us = 781* 8(92* 5834*26844*2335* 486*2’1674*2:238

(a0 a0 N (20 s 0N (a0 5O\ (4D 4D
927 7 921 028 022 025 0z3 026 7 924

= —Ui7+Ups+Uss—Usg

U, = 2801427042505+ 2°0,— 2205 — 2305 — 220, — 21 05
0 0 0 0 0 0 0 0
_ 1 9 89\ _ (29 79 \_ (39 69\ (9% _ 59
B (z 028 82’1) (Z 927~ 8z2> (Z 926~ 82’3) (Z 95~ 8z4>
= —Uis—Uzr—Us3s—Uss. 3
All the vector fields mentioned above form a frame {Uy,Us, -+ ,Ur}, ie., at every point p € ST
{U1(p),Uz(p), - ,Uz(p)} is a basis of tangential space T,,S7. All vector fields contained in the frame
are Killing vector fields on 557, for the vector fields of the form
0 ; 0
— =2 — i#] 4
Z 82] 6217 1 # J ( )

are Killing and the fact that the Lie derivative of the metric g satisfies Ly wg = Ly g+Lw g for
arbitrary vector fields V and W on S7. For those vector fields in the frame, we obtain the following
systems of Stratonovich stochastic differential equations

dzut = U;L(zt)odwtv (/.LZ 172a"' 77) (5)
or
[ 220dW; ] [ 280dW, ]
—ztodW, ZZOth
ztodW, 280dW;
3 5
| =z odWy o _ | zpodW,
let - ZtGOth ’ ) dZ?t - —Z?Oth ) (6)
—z)odWy —z30dW,;
25 odW; —zZodW,;
_—ZZOth_ _—ztl odW, ]
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where W, is a semimartingale. Semimartingales are the most general and natural setup for stochastic
integration and differentiation, in the sense that stochastic differential equations formulated using
semimartingales have semimartingales as solutions.

Since Uy, Us, - - -, and Uy are Killing vector fields, the flows generated by equation (5) are isometric.
The isometric stochastic flows z,; will be called frame isometric stochastic flows. Due to equation (6)
and properties of Wy, the process Z,,; is a semimartingale forall y = 1,--- , 7.

3. RESULTS AND DISCUSSION

The equation (6) can be written as follows:

8
dzf, = Z 8ir Uy, (Z0) 0dWr, )
k=1
where U, U2, - - -, U} are the components of U,,.

Associated to stochastic differential equations (7) there are the Fokker-Planck equations representing or
controlling the probability density function for the position or the velocity of the particle whose motion is
described by equation (7). The Fokker-Planck equations corresponding to (7) that describes the evolution
of the probability density function f(z,t) for this process are given by

afzt) 11 &
ot _5,/0(2);

(% TS NAULLHG R ge)

0
azi =1 6zk

R .9
2, /G(2) = 827(92]

where G(z) is the determinant of the metric tensor on the Riemannian manifold.

8
(X 0atis,UiG) 10 VEE). @
k=1

In physics, entropy is a measure of randomness or disorder in a statistical mechanical system. Entropy
is related to distribution function or probability density function [3, 10]. The entropy of a probability
density function (8) on S7 is defined as

S(f(zt)) = - / T Dlog 1) /EE(2), ©)

where D C R8 is the coordinate domain.
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Now the vector fields Uy, Us, - - - , U; can be expressed in the spherical coordinate system by

0 . 0 0 .
Uy COS (g —— —COt 71 SIN Yo —— +COS Y4 —— — COt Y3 SIN Y4 —— +COS Pg=——

¢ dpa O3 dp4 dps
0
— cot 5 sin g —— ——
dps  Opr
. 0 0
Us = sinyscosps—=——+| (cot g3 cosps—cscgs) cos pq+cot p1 cos @g cos s | —
6@1 6(,02
0
+ | (cot @3 cos 3 —csc @s3) cot Y1 CSc o — ot Pa COS Y3 COS P4 Jon
¥3
. 0 . 0 i 3]
—+ cot g €SC Y3 SIn g —— +SIN Pg COS Y7 =——+ | COt Y5 COS Pg COS Y7 +SIn 7 | ——
Oy s D
0
+ ( cot g cos w7 —cot 5 csc Pg Sin <p7) —
D7
. . 0 . 0
Us = sinpysinpgcosps——-+| cot i cos s sin ¢s cos ps+cos s | —
01 O
. 0
+( cot 1 csc g €os w3 €os w4 —Cot g Sin p3 EP
¥3
: 9 . . 0 . 9]
— cot 1 €sC Y2 €SC 3 SN P —— 51N g SIN Y7 —— 4| cot Y5 COS Yg SIN Y7 —COS P7 | =——
g4 D5 Dpe
0
+ ( cot wg sin 7 4-cot 5 csc pg cos <p7> —
D7
. . . 0
Uy = sinys sin s sin o4 cos ps
dp1

0
+ <(cot (P1 COS g+ €Ot Y5 COS Pg —SEC Y5 CSC Y5 COS Pg ) SN Y3 Sin Y4 COoS <p5) o
¥2
+ (( COS g COt Yg COS Y7 +CSC Yg COS Y7+ ot Y cos w3 sin g cot cpg) sin @5
) : )
+ cot 1 csc Y3 coS Y3 cos @5 | Sin g —
D3
+ (( cot 1 csc 2 —cot g sin @5) CSC (3 COS Y5 — ( cot @3 cos w7 +sin <p7) sin @5 sin 906>

0
cos @45 + <(cot (5 COS (5 — CSC P55 ) COt (1 CSC P2 CSC Y3 CSC P4 —
4

1o}
¥s

((COt oy sin ©7 +cot ©3 CSC 4 COS (p7) sin Y6 +cot @2 CSC 3 CSC Y4 COS (,06) COS (p5) )
+ (( cot 5 €sc g —cot g cot pg cos <p6) CSC (3 CSC Py
. 0
_ ( cot 4 SIn Y7 +cot Y3 €sC Y4 COS <p7) COS g | €SC Y5 87
Y6

0
+ ( cot @3 csc 4 sin w7 —cot 4 cos @7) CSC (5 CSC Vg Jon
P7
(10)
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Us = sin s sin s sin g4 sin @5 cos pg—=——
D1

0
+ < CoS Y5+ ( CSC (5 — COS Y5 COt g05) cot 1 €oS pg cos 906> sin @3 sin 30487
¥2

0
+ ( cot 1 CSC g COS (3 sin Y5 cos Yg+Ccot Ya COS Y3 COs Y5 —Sin Y5 Sin g sin <p7> sin g4 Fon
¥3

+ (( cot 1 €sc g sin w5 cos pg+cot Yy cos cp5) CSC (V3 COS (P4

g
—|—( cot 3 cos @4 sin py74-cos g07) sin @5 sin <P6) Bon
P4

+ <( cot (1 CSC g COS Y5 COS Y — COt Y CSC Y5 +COS Y2 COS P5 cot @5) CSC (3 CSC (4

0
— ( cot 4 cos @7 +-cot 3 csc @y sin <p7) COS 5 Sin %) For
5

+ (( cot g COS pg —Csc <p6) cot 1 €CSC Y2 CSC Y3 CSC P4 — ( cot 4 Ccos 7
. 0
=+ cot 3 csc @4 sin <p7) COS g | €SC Y5 ——
Dpg

0
+ < cot g4 sin 7 —cot 3 csc 4 cos g07> CSC (p5 CSC %67
Y7

Us = sin pgsin p3sin @4 sin @5 sin g cos p7 —

dp1

0
+ ( cot 1 cos g cos 7 +sin @7) sin (3 sin 4 sin @5 sin 90687
P2

0
+ (( cot (9 sin 7 +cot 1 csc g cos <p7) €Os (3 sin s sin g+ cos 305> sin @487

¥3
+ (( CSC (P5 CSC (g — COt Y5 COS Y5 SiN (g —CSC 5 COt Yg COS <p6) cot g csc 3 sin @7

0
+ cot 3 cos w5+ cot 1 csc s csc w3 sin s sin g cos <p7> COS ¥y B
P4

+ ( cot 3 csc g cot s cos w5+ ( cot 4 COS g
—(cot g sin @7+ cot 1 €SC Y3 COS P7) CSC P3 CSC Py Sin <p6) COS ©5
0
+ cot 3 csc 4 CSC ga5> —
dps
+ <(csc 6 —COt (g COS Yg) COt Yy
. 0
+(cot 1 csc oot pa sin @7) €SC Y3 CSC P4 COS P | CSC Y5 on
Y6

0
+ ( cot g cos 7 —cot 1 csc g sin <p7) CSC (3 CSC (P4 CSC P55 CSC Pg Jon
P

U, = sinpysin p3sin g, sines sin gg sin g7 —

i1
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0
+ ( cot 1 €os g sin 7 —cos g07> sin 3 sin ¢4 sin s sin 90687
P2

+ ( COS g COt (g —Csc <,06) cot g CSC Y3 COos Y7 +cot Y3 Cos Yg

0
+ ( cos g — (cot g cos 7 —cot 1 csc s sin pr) cos @3 sin <p6) sin @y sin 5
Y3

0
+ ( CSC (g —COS g cot (pg) cot 1 €SC g CSC 3 Sin @7] COS (p4 sin @5 +cos <p5> o
P4

+ ( cot g cos? (5 4ot Y3 csC Y4 COS Y — COt (P2 CSC (P3 CSC P4 SIN Yg COS Y7

0
+ ( cot 1 —cot 1 cos <p6) CSC (P2 CSC (3 CSC (Y4 SiN @7] COS (5 —COt (4 CSC <p5> 3
145
+ ((cot (Vg COS P — CSC Pg) COt 3
. 0
+(cot 1 esc g sin w7 —cot g oS P7) CSC P3 COS Pg | CSC P4 CSC Y5 Yor
Y6
. 0
4| cot 2 sin w7 +cot 1 csc 2 Cos Y7 | CSC 3 CSC P4 CSC Y5 CSC Vg on an
P7

The Fokker-Planck equation for Stratonovich version (8) in the spherical coordinate system is given by

d 1 -1 9 [ O
87{ = —§<\/G(8017"' 7907)> ;M(U;‘&pl: fVG(pr, - 7<P7)>
1 1 82 2
+§< Gler, - 7907)) ng(Ufb JRVACICIVERE 7<P7)>7 (12)

i=1
where the volume element is given by

dstV(p1, 7)) = VG(p1, 1) dprdpadpsdpsdpsdpsdpr
= sin®(¢p1) sin®(2) sin (ip3) sin®(p4) sin® () sin(pe)

dp1dpardpsdpsdps dpsdpr. (13)
The entropy of the conditional transition probability density function f(¢1,--- ,@7;t) describing the
distribution of states of a random fields z on S7 is given by the integral
s =~ [ fifdgy. (14)
57
Quantities of the form S(f (1, ,p7;t)) is information-theoretic entropy playing a central role in

information theory as measures of information, choice and uncertainty.

Differentiating (14) with respect to time gives
7 2
ds 1 ;2 1/ 0f 0% f
— = —= E U, | —= dg7V. 15
dt 2 /S.Z i=1 . < f <8<Pi> +8g01—2 5 (1

For example, if we choose ;2 = 1 and we substitute Ul1 = COS Y2, U12 = —cot 1 sin 2, Uf’ = COS @4,
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Ul = —cots sinpy, UP = cos g, US = —cot s sinpg, U{ = —1 to equation (12), the Fokker-
Planck equation is given by

of 1 o 0 cos pa N )
5 = _2< G(<p1,-~',<,07)> lasﬁ(msw 901 fVG(p1,- -, 07)
) . 0( cot 1 sin
+<cot 1 sin @y ( o1 @Q)f G(p1,- - a@?))

Opa

) 0 cos @y \/7
<cos V4 Do FVG(pr, -, <P7)>
Jd( cot sin
(cot p3 Sin g ( 33 @4) fFVG(p1,- - ’907))
Y4

0 0 cos g )
2 N e
9on ( oS g Do f (o1 ©7)

9 .

cot @5 sin pg (Comg;:m%)f \/G(%’l,"' ,<P7)>
fJ<%wwﬂ

2 (COS2 P2 f \Y G(gplv' o 7@7))

2
+—— | cot? ey sin®py f/G(p1,- -, 07) | + cos® o4 f /Glp1, -, 07)
8@2

@m%an%ff¢qu @@%fw<%ww)

<00t2805 sin® g f /G(e1,- ,<P7> <f VG(p1,-- 07 >] (16)

32

+
dps”

By substituting /G (01, - - , p7) = sin®(i;) sin®(p2) sin® (p3) sin®(¢4) sin?(ps5) sin(g) to equation
(16), we obtain the following Fokker-Planck equation

of 9 . 9 15 . of 1 ., %
% = cot cp1<(3943sm @2)f+zsm2<pga—<p2+§sm wgw
0 102
+ cos <p2( 3f+6e0ts016jf+28@;f>
92
+cot2cp3< (18— 21 sin” <p4)f+—181n2g04§—f+%sm 3048 f>
42
3 of 1 09%f
+ cos @4( 3 —1—400‘54,038 3+§6g032
0 1 0?
+cot2<p5<5 7 sin? we)f+-— sm2<p68—f—&—§sm cpga f)
Y6
af 1 0*f 10%f
+ cos <p6( f+2cot<po +28<p5 3 92 17

By substituting again U, UZ, - - - U7 to equation (15), the rate of information-theoretic entropy is obtained
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as follows:
ds 1 9 1/0f\2 O0*f 9 . 9 1/0f\2 O0*f
- - _Z S t _ =L
dt 2 /53 o @2( / (3801) +6<p12 reotpsin e f (5902) + dp2”
1/ 0f\2 82f> 9 . o <1 of \2 82f>
+ cos? —=l=) + +cot sin ——=lz) +
%( f( <p3> Dp3” R <3304) ds
1, af\2, 9% ) .2<18f282f>
+ cos ——= =) + +cot Sin ——= =) +
%( f ( ©s 52 PoSI w6\ T (84,06) 96>
170f\2 O*f >
| () + dg7V. (18)
( f ( 907) 39072 5
3.1. 7n-Almost Everywhere Stochastic Flow on S
Let M be a differentiable compact d-dimensional Riemannian manifold, and let Vg, V1, Vo, -+, Vi be
k+1-vector fields on M. Consider now the following stochastic differential equation z; on M given by
k .
dze = Vo(ze)dt+ Y _ Vi(z)odWy, (19)
i=1

where odW/} denotes the Stratonovich stochastic differential equation and (W,!);>o,

(W2)i>0,- -, (W[)>0 are independent k-dimensional Brownian motions on the classical Wiener space
(Q, F, P; (Ft)i>0), where  is the space of all continuous function from R to R with locally uniform
convergence topology, F is the Borel o-field on €2 generated by the topology, P is the Wiener measure
on F, and (F;)¢>o is the filtration generated by Wi (w) = w;.

There are at least two ways to solve the differential equation [4, 9]. It is well-known that the two above-
mentioned ways work well only if the drift vector field V; and the other vector fields V; (i = 1,--- , k)
appering in the above differential equation are differentiable (at least C2). For the case of V; be a Sobolev
vector fields with bounded divergence and V; (i = 1,--- , k) are C?, Zhang [12] has shown the existence,
uniqueness and stability of the so called n-almost everywhere stochastic invertible flows of stochastic
differential equation, where 7 is the Riemannian measure (Lebesgue measure) on M

Definition 3.1. (Zhang [12]) Let z;(w, z) be an M-valued measurable stochastic field on R x Q2 x M.
The flow z:(z) is called a n-almost everywhere stochastic flow of (19) corresponding to vector fields
Vi(i =1, ,k)if

1. For n-almost all z € M, t — z(z) is continuous and (F;)-adapted stochastic process and,
satisfies that for any ¢ > 0 and £ € C°°(M)

&(ze(2)) = f(z)—i—/o Vo €(2:(2)) dT—i—/o Vi &(2¢(2))odW?! Vit > 0. (20)

2. For arbritary ¢ > 0 and P-almost all w € Q, (noz;)(w, -) < 1. For any T' > 0, there is a positive
constant K7 v, v, such that for all non-negative measurable function £ on M

sup E/M E(ze(2))n(dz) < Krpy,.v, /M &(2)n(dz). 21

te[0,T)

Furthermore, the n-almost everywhere stochastic flow z;(z) of (19) is said to be invertible if for all ¢ > 0
and P-almost all w € (2, there exists a measurable invers z; ~*(w, -) of z;(w, -) so that noz, 1 (w,-) =
pt(w, -)n, where the density p;(z) is given by

t t
pe(2) = exp [ / divVy(z;)dr+ / divm(zt)odw;’] (22)
0 0
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Let C'(T M) be the set of all C'-differentiable vector fields on M, for every | € NU{oco}. For every
p > 1, we define

Vil = [ /. |v<z>Pn<dz>} v 23)
and
Wl i= VIt | [ 9V v 24)

for every V € C°°(T'M), where V is the Levi-Civita connection associated to the metric tensor g on
M. The completions of C°°(T'M) with respect to ||-||, and ||-||1,, will be denoted by LP(T'M) and
HY (T M) respectively. In this case, let L>(T'M) to denote the set of all bounded measurable vector
fields. Then Zhang found the following fact.

Theorem 3.2. (Zhang [12]) Let Vo € L>=(TM)NHY (T M) for some p > 1, div Vy € L>®(M), and
foreachi = 1,2,---  k, V; € C*(TM). Then there exists a unique n-almost everywhere stochastic
invertible flow z(z) of (19) in the sense of Definition 3.1

Now consider the case where M is the standard sphere S7 provided with the natural Riemannian metric
tensor ¢ induced from Euclidean metric in R8. Here we study the stochastic differential equation (19)
and its n-almost everywhere stochastic flow where the drifting vector fields are the frame vector fields
Uu(n=1,---,7) as being discussed in section 2.2. However, since U, (1 = 1,--- , 7) is a differentiable
vector field on S7, there exists a unique 7-almost everywhere stochastic invertible flow z;(z) of (19) in
the sense of Definition 3.1.

Consider now for instance the vector field U; on S7,

0 . 0 0 . 0
Ui = cospa—— —cotb i sin g ——+c0o8 4 —— —cotb 3 sin ¢4 —— +co8s g =——
D1 02 03 torn dps
0 0
—cot i _— 25
COl @5 SIN PYg 8()06 8()07 ( )

Divergence of a vector field U = U; on S? with metric g that
divU = Y (8iU)+Y_T,U;
J

\/G(§0117<P7) Zaz‘(\/ G(pr - a<P7)Uz‘)
0.

(26)

where

0
(\/ Gpr-- 7@7)COS<P2) = 6y G(p1---,p7)cot ] cosps

o1
0 :
%(— Glpr- pr)cotprsings) = —6y/Gp1-+,p7)cotpr cos s
2
13
87@3( Glp1--+ ,pr)cosps) = 4y/G(p1--- ,pr)cotpscos gy
0 .
87904<_ G(p1-++ ,pr)cotpssingy) = —4y/G(p1---,p7) cot o3 cos @y

0
(VG(p1--- ,p7)cospg) = G(p1- -+, p7) cot 5 cos s

95
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0 .
—(—\/G(cpy--,gm)cotgpg,smgoﬁ) = —v/G(p1--,@7)cot s cospg

dps
2 (Va0 @n
o7
For the case of U, be a differentiable vector field, it can be proved that ||div U, (x = 1,---,7)|| < 1.

Proved that div U, (u =1, ,7) € L>=(S7).
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