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Abstract

In this paper, we introduce and study the notions of D(u,a)-sets, D(u,o)-sets,
D(a,0)-sets, D,,(u, a)-sets, D, (i, 0)-sets and D, («, 0)-sets. Also we obtain de-
compositions of (i,,, A)-continuity.
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1. Introduction

In 2002, Csaszar introduced the notions of generalized topology and generalized conti-
nuity. Let X be a nonempty set and u be a collection of subsets of X. Then u is called
a generalized topology [1] (briefly GT) on X, if # € p and an arbitrary union of ele-
ments of  belongs to . The p-interior of a subset A of (X, ) is denoted by i,,(A), is
the union of p-open sets contained in A. The p-closure ¢, (A) is the smallest p-closed
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subset of X containing A. A subset A of a space (X, i) is pu-o-open [2] (resp. p-semi-
open [2], w-pre-open [2], u-B-open [2]), if A C iycuiy(A) (resp. A C cuiy(A),
A Ciycu(A), A C cuiycu(A)). Let us denote by a(u) the class of all p-a-open
sets, o () by that of all p-semi-open sets, 7w () by that of all u-pre-open sets, S(u)
by that of all u-B-open sets. The wu-a-interior [2] (resp. p-semi-interior [2]) of a
subset A of a generalized topological space (X, i) denote by i, A (resp. iy(A)) is de-
fined by the union of all u-a-open (resp. u-semi-open) sets of (X, u) contained A. Let
(X, ) and (Y, A) be GTS’s. Then a function f : (X, ) — (Y, X) is (u, A)-continuous
[1] (resp. (a, A)-continuous (3], (o, A)-continuous [3]), if for each A-open set U in Y,
) is pn-open (resp. p-a-open, p-semi-open) in (X, ). Throughout this paper
(X, ) and (Y, 1) denote generalized topological spaces. Let X be a non empty set and
gx be a generalized topology and m x a minimal structure on X. A triple (X, gx,my) is
called a generalized topology and minimal structure space (briefly GT M S space). Let
(X, gx,myx) be a generalized topology and minimal structure and A a subset of X. The
closure and interior of A in gy are denote by gx-CI(A) and gx-Int(A), respectively.
And the closure and interior of A in my are denoted by myx — CI(A) and mx — Int(A),
respectively. In this paper (X, u, m) (resp. i,,(A)) denote generalized topology and min-
imal structure space (resp. mx-Int(A)). The element of (X, u, m) are called m,-open
sets. A C X is m-a-open [7] (resp. m-semi-open [7], m -pre-open, [7] m,-B-open)
[7],iff A C in(cu(@in(A))) (resp. A C cy(im(A)), A Cin(cu(A)), A C cu(im(cyu(A)))).
A function f : (X, u,m) — (Y,A) is said to be (uy,, A) [7] (resp. (o, A)-continuous
[7],(oy, A)-continuous [7], (77,,, A)-continuous [7], (B, A)-continuous) [7], if for each
r-open set U in (Y, 1), f~1(U) is m ,-open (resp. m,-a-open, nl,-semi-open, m -pre-
open, m-fB-open) setin (X, u, m). In this paper the minimal structure m is closed under
arbitrary union.

Lemma 1.1. [2], Lemma 2.2 Let (X, ) be a generalized topological spaces. For any
A C X, we have

1. ig(A) = ANcuiy(A)
2. ig(A) = ANiycuiy(A).

Lemma 1.2. [2], Theorem 2.1 For a generalized topology n on X, we have u C
a(p) C o) C B(u).

Proposition 1.3. Let (X, u, m) be generalized topology and minimal structure space,
where m is closed under union. Then

1. A C B C X implies i,,(A) C i,(B),
2. im(A) C A,

3. im(im(A)) = im(A),

4. in(A)=A,if A em,
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5. Ais m-closed if and only if ¢,,(A) = A.

Proof.
1. (1) and (2) are evident.

3. By(Q)ipin(A) C in(A).Ontheotherhandif L € mand L C Athen L C i,,(A)by
definition so that L C i,,i,,(A) by definition again, consequently i,,(A) C i,;in(A)
and i,,(A) = i,iA.

4. If A € m, then i,,(A) = U{F : F Ccm, F C A} = A. Conversely, since m is
closed under arbitrary union, then i,,(A) € m. It follows that A € m.

5. If A is m-closed set, then X — A € m. By definition of i), i,,(X — A) = X — A,
in(X —A) =X — c,(A). In consequence ¢, (A) = A.
2. The class of D(u, @)-sets and related sets
Definition 2.1. For a generalized topological space (X, i), we denote:
L. D(n,0)={A € X :i,(A) =is(A)},
2. D(n,a)={A € X :i,(A) = ia(A)},
3. D(a,0)={A C X :iy(A) =is(A)}.

Theorem 2.2. In (X, u), the following holds:

1. Every D(u,o0)-setis D(u, or)-set, but not conversely.

2. Every p-a-open setis D(w, o)-set but not conversely.

Proof.

1. Let A be a D(u,0)-set. Then i, (A) = ix(A) = AN cuiy(A). Now, iy(A) =
ANiygeuiy(A) S ANcyiy(A) =is(A) =1i,(A). Also, i, (A) € ANicuiy(A) =
io(A). Hence i (A) = iq(A) and A is a D(u, a)-set.

2. Let A be a u-a-open set. Then A = iy(A) and A = i, (A), since a() C o () by
Lemma 1.2. Therefore i, (A) = i, (A). Hence A is D(«, o)-set.

Example 2.3. Let X = {a,b,c}, u = {0, {a},{a,b}}. Then A = {c} is D(u, @)-set but
not D(u, o)-set.

Example 2.4. Let X = {a,b,c}, u = {¥,{a, b}, {b,c}, X}. Then A = {a,c} is D(«,0)-
set but not p-a-open set.
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Remark 2.5. The following example show that in (X, ), the intersection (resp. union)
of two D(u,a)-sets (resp. D(u,o0)-sets, D(«, 0)-sets) need not be D(u,a)-set (resp.
D(u,o0)-set, D(a, o)-set).

Example 2.6. Let X = {a,b,c,d, e}, u = {0, {a}, {b},{c}, {a, b}, {a,c}, {b,c},
{a,b,c},{a,c,d},{b,c,d},{a,b,c,d}}. ThenA = {a,c,d}and B = {b,c,d}are D(u,0)-
sets and D(w, 0)-sets but A N B = {c, d} is neither D(u, o )-set nor D(«, o )-set.

Example 2.7. Let X = {a,b,c,d, e}, n = {0, {a},{d},{a,d},{d, e}, {b,c, e},
{a,c,e}, {a,d,e}, {a,b,c,e}, {b,c,d, e}, {a,c,d, e}, X}. Then A = {a,c,d,e} and B =
{b,c,d, e} are D(u,x)-setsbut AN B = {c,d, e} is not a D(u,a)-set.

Example 2.8. Let X = {a,b,c,d}, u = {0, {a}, {b},{a, b}, {b,c,d},
{a,c,d},X}. Then A = {a,b} and B = {d} are D(u, a)-setand D(u,o)-setbut AUB =
{a, b, d} is neither D(u, a)-set nor D(u, o )-set.

Example 2.9. Let X = {a,b,c,d}, n = {0, {a}, {b},{c},{a, b}, {a,c},{b,c},
{a,b,c},{a,c,d}, X}. Then A = {a,b} and B = {d} are D(«,0)-sets but AU B =
{a,b,d} is not a D(x, o)-set.

Theorem 2.10. Let (X, u)bea generalized topological space. Thena(u)ND(u, ) = .

Proof. Let A € a(u) N D(u, ). Then A = iy(A), iy(A) = iy(A) and consequently
A € . Conversely, if A € u, then A = i,(A) and iy (A) since © C a(u). Therefore
A€ a(uw)N D(u,a). Hence a() N D(, ) = . |

Theorem 2.11. Let A be asubsetof (X, i). Then the following conditions are equivalent:
1. Ais u-open,
2. Ais pu-a-open and a D(u, 0)-set,

3. Ais p-semi-open and a D(u, o)-set.

Proof. (1) = (2) Let A be a pu-open set. Every p-open set is p-o-open set by Lemma
1.1. Since A = i,(A), then A Ncyiy (A) = ANcy(A) = A =i,(A). Therefore A is
D(u, o)-set.

(2) = (3) is trivial by Lemma 1.2.

(3) = (1) Let A is u-semi-open and D(u,o0)-set. Then A =i,(A) and i, (A) = is(A).
Therefore A =i, (A). Hence A is u-open. |

Theorem 2.12. Let (X, i) be a generalized topological space. Then
o(u) N D(a,0) = a(u).

Proof. Let A € o(u) N D(x,0). Then A = i,(A), iq(A) = i, (A) and consequently
A € a(un). Conversely,if A € a(u), then A = iy(A)and A = i, (A), since a(un) C o ().
Therefore A € o(w) N D(a,0). Hence () N D(a,0) = a (). [
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Remark 2.13.

1. The notions of p-a-open sets and D(u, o)-sets are independent,

2. The notions of p-a-open sets and D(u, o )-sets are independent,

3. The notions of p-semi-open sets and D(u, o )-sets are independent,
4. The notions of p-semi-open sets and D(«, o )-sets are independent,
5.

The notions of D(u,a)-sets and D(«, o )-sets are independent.
Example 2.14. Let X = {a,b,c,d}, u = {0, {a}, {b},{a, b}, {a,c},{a,b,c},
{b,c,d}, X}. Then A = {a, b,d} is p-a-open but neither D(u, o)-set nor D(u, o )-set.

Example 2.15. Let X = {a,b,c}, u = {¥,{a},{a,b}}. Then A = {a,c} is D(u,a)-set
but not p-a-open, B = {b}is D(u, o )-set but not u-a-open and C = {c} is u-semi-open
but neither D(u, o)-set nor D(«, o)-set.

Example 2.16. Let X = {a,b,c}, u = {9, {a, b},{b,c}, X}. Then A = {a} is D(u,0)-
set and D(«, o)-set but not p-semi-open.

Example 2.17. Let X = {a,b,c}, n = {9, {a},{a,b}}. Then A = {a,c} is D(u, a)-set
but not D(«, o)-set.

Example 2.18. Let X = {a,b,c,d}, n = {0,{a}, {b},{a, b}, {b,c,d},{a,c,d},
X}. Then A = {a, b, c} is D(«, o)-set but not D(u, or)-set.

3. The class of D,,(it, a)-sets and related sets

Definition 3.1. For a generalized topology and minimal structure space (X, i, m), we
denote:

L. Dy, 0)={A S X 1 im(A) = AN ig(cp(im(A))},
2. D, 0)={A S X 1 im(A) = AN cp(im(A))),
3. Dp(e,0)={A € X : ANip(cu(im(A) = ANculin(A))}.

Theorem 3.2. In (X, u, m), every D,,(u,o0)-setis D,,(u, @)-set, but not conversely.

Example 3.3. Let Let X = R be the set of all real numbers, u = {#,R — Q — V/2} and
m = {#, Q, R}, where Q is set of all rational numbers and R — Q is set of all irrational
numbers. Then A = QU V2is D, (u, a)-set but not Dy, (u, o)-set.

Remark 3.4. The following example show that in (X, i, m), intersection (resp. union)
of two Dy, (i, a)-sets (resp. D, (u,o0)-sets, Dy, («,o)-sets) need not be D, (i, o)-set
(resp. Dy, (u,o0)-set, Dy, (o, 0)-set).
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Example 3.5. Let X = {a,b,c,d, e}, u = {0, {a}, {c}, {a, b}, {a, c}, {b, c},
{c,d},{a,b,c},{a,c,d},{b,c,d},{b,d, e}, {a,b,c,d},{a,b,d, e},{b,c,d, e}, X}andm =
{@,{a}, {b},{c},{a, b}, {a,c}, {b,c},{a,b,c}, {b,c,d}, {a,b,c,d}, {b,c,d,e},

X}. Then A = {a,b,d,e}, B = {b,c,d, e} are Dy, (u,a)-sets (resp. D,,(u,o)-sets) but
ANB = {b,d,e}isnot D, (u,a)-set (resp. D,,(u,0)-set) and C = {b,d}, D = {e} are
Dy, (1, a)-sets (resp. D, (u,o0)-sets) but C U D = {b,d, e} is not D,, (1, )-set (resp.
Dy, (u, o)-set).

Example 3.6. Let X = {a,b,c,d, e}, u = {0, {a}, {b}, {c}, {a, b}, {a, c},

{b,c},{a,b,c}, {a,c,d},{b,c,d}, {a,b,d},{a,b,c,d}} and m = {0, {a}, {b},
{a,b},{a,c},{a,b,c},{b,c,d,e}, X}. Then A = {a,b,c,d}, B = {a,b,d, e}are D,,(c,0)-
sets but A N B is not a D,,(x,0)-set and C = {c}, D = {e} are D,,(«,o)-sets but
D UC ={c,e}isnot D,,(x,c)-set.

Theorem 3.7. A subset A of (X, u,m) is m,-open if and only if m,-o-open and
D, (., ar)-set.

Proof. Lat A be m,-a-open and D,,(u,a)-set. Then A C i, (cy(im(A))) and iy, (A) =
im(cu(im(A))). Whichimpliesi,,,(A) C A C ANiy(cy(im(A))). Thereforei, (A) C A C
im(A). Hence A is m, -open. Conversely, if A is m -open, then i,,(A) C c,(in(A)),
im(A) C im(cu(in(A))) implies A Niy(A) C A Niy(cu(im(A))) thus i, (A) C AN
im(Cp(im(A))). im(cu(im(A)) C culin(A)) = cu(A)) implies A N ip(cu(im(A))) C
ANcyu(A)=A=i,(A). Hence A is Dy, (i, or)-set.

Theorem 3.8. Let A be a subset of (X, i, m). Then the following conditions are equiv-
alent:

1. Ais my-open,
2. Aismy-a-open and D, (1, 0)-set,

3. Ais my-semi-open and D, (i, o )-set.

Proof. (1) = (2). Let A is m-open. Then i,,(A) C ¢, (i (A)), im(A) C in(cu(in(A))).
Therefore A C i,(c;(im(A))) and A Ncy(inm(A) = ANcy(A) = A =i,(A). Hence A
m -a-open and D, (u, o)-set.

(2) = (3). Obvious.

(3) = (1). Let A be m,-semi-open and D, (u, o)-set. Then A C ¢, (i;,(A)) and i, (A) =
ANcy(iy(A)), A Cculim(A) =ANcu(in(A)) =i,y(A). Hence A is m-open. [ |

Theorem 3.9. A subset A of (X, u,m) is m,-a-open if and only if m ,-semi-open and
D,,(a, 0)-set.

Proof. Let A be m-a-open set. Then A C i,(c;(in(A))) C cu(im(A)), thus A is m -
semi-open and ANiy, (¢, (im(A)) = A = ANcu(in(A)). Hence A is Dy, (a, 0)-set. Con-
versely A be m-semi-open and D,,(«, 0)-set. Then ANiy,(c,(im(A))) = ANcy(in(A))
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and A C cu(in(A)) which implies A C A N (¢ (in(A)) = AN iy(cu(in(A)) C
im(cu(in(A))). Hence A is m,-a-open set. [ |
4. Decompositions of (u,,, A)-continuity

Definition 4.1. A function f : (X,u) — (Y, X) is said to be (D(u, o), A)-continuous
(resp.(D(u, 0), A)-continuous and (D(«, o), A)-continuous) if f_l(U) is a D(u, a)-set
(resp. D(u,o0)-set, D(a, 0)-set) for each U € A.

Definition 4.2. A function f : (X, u) — (Y, A) is said to be (D,,(u, @), A)-continuous
(resp.(Dy, (., o), A)-continuous and (D,, (o, o), A)-continuous) if f_l(U) isa Dy (u,a)-
set (resp. Dy, (u,0)-set, Dy, (a, 0)-set) foreach U € A.

Remark 4.3.
1. The notions of m,-a-open sets and D,,(u, @)-sets are independent,
2. The notions of m-a-open sets and D,, (1, 0 )-sets are independent,
3. The notions of m,-semi-open sets and D, (i, o)-sets are independent,
4. The notions of m-semi-open sets and D,,(«, o)-sets are independent,

5. The notions of D,, (i, «v)-sets and D,, (e, 0 )-sets are independent.

Example 4.4. Let X = {a,b,c,d, e}, u = {0, {a}, {b},{c}, {a, b}, {a,c},

{b,c},{a,b,c}, {a,c,d},{b,c,d},{a,b,d},{a,b,c,d}} and m = {0, {a, b}, {a, c},
{a,b,c}, {b,c,d,e}, X}. Then A = {a,b, c,d} is m,-a-open (resp. m,-semi-open) but
not D,, (i, av)-set (resp. Dy, (i, 0)-set), B = {c}is D,, (i, o)-set (resp. D,,(u, o )-set) but
not m-c-open (resp. m,-semi-open), C = {e} is m,-semi-open (resp. D,,(u,a)-set)
but not D,,(«, o)-set.

Theorem 4.5. A function f : (X,u) — (Y, A) is (u, A)-continuous if and only if it is
(a, A)-continuous and (D(u, @), A)-continuous.

Proof. This is an immediate consequence of Theorem 2.10. [
Theorem 4.6. Let f : (X, ) — (Y, A). Then the following conditions are equivalent:
1. f1is (u, A)-continuous,
2. fis («, A)-continuous and (D(u, o), A)-continuous,

3. fis (o, A)-continuous and (D(u, o), A)-continuous.

Proof. The proof is follows from Theorem 2.11. |



610 R. Ramesh, R. Suresh and S. Palaniammal

Theorem 4.7. A function f : (X,u) — (Y, 1) is («, A)-continuous if and only if it is
(o, A)-continuous and (D(«, o), A)-continuous.

Proof. This is an immediate consequence of Theorem 2.12. [

Theorem 4.8. A function f : (X, u,m) — (Y, ) is (ium, A)-continuous if and only if it
is (o, A)-continuous and (D, (i, &), A)-continuous.

Proof. This is an immediate consequence of Theorem 3.7. |

Theorem4.9. Let f : (X, u,m) — (Y, X). Then the following conditions are equivalent:

1. f1is (um,r)-continuous,
2. f is (o, A)-continuous and (D,, (i, o), A)-continuous,

3. f1is (o, A)-continuous and (D,, (i, o), A)-continuous.

Proof. The proof is follows from Theorem 3.8. |

Theorem 4.10. A function f : (X, u,m) — (Y, 1) is (o, A)-continuous if and only if
it is (oy,, A)-continuous and (D,,(«, o), A)-continuous.

Proof. The proof is follows from Theorem 3.9. |
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